Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Biochemical Study of Fibrinolytic Protease from Euphausia superba Possessing Multifunctional Serine Protease Activity

Author(s): Guo-Ying Qian, Gyutae Lim, Shang-Jun Yin, Jun-Mo Yang, Jinhyuk Lee* and Yong-Doo Park*

Volume 28, Issue 6, 2021

Published on: 12 November, 2020

Page: [651 - 664] Pages: 14

DOI: 10.2174/0929866527666201112123714

Price: $65

Abstract

Background: Fibrinolytic protease from Euphausia superba (EFP) was isolated.

Objective: Biochemical distinctions, regulation of the catalytic function, and the key residues of EFP were investigated.

Methods: The serial inhibition kinetic evaluations coupled with measurements of fluorescence spectra in the presence of 4-(2-aminoethyl) benzene sulfonyl fluoride hydrochloride (AEBSF) was conducted. The computational molecular dynamics (MD) simulations were also applied for a comparative study.

Results: The enzyme behaved as a monomeric protein with a molecular mass of about 28.6 kD with Km BApNA = 0.629 ± 0.02 mM and kcat/Km BApNA = 7.08 s-1/mM. The real-time interval measurements revealed that the inactivation was a first-order reaction, with the kinetic processes shifting from a monophase to a biphase. Measurements of fluorescence spectra showed that serine residue modification by AEBSF directly caused conspicuous changes of the tertiary structures and exposed hydrophobic surfaces. Some osmolytes were applied to find protective roles. These results confirmed that the active region of EFP is more flexible than the overall enzyme molecule and serine, as the key residue, is associated with the regional unfolding of EFP in addition to its catalytic role. The MD simulations were supportive to the kinetics data.

Conclusion: Our study indicated that EFP has an essential serine residue for its catalyst function and associated folding behaviors. Also, the functional role of osmolytes such as proline and glycine that may play a role in defense mechanisms from environmental adaptation in a krill’s body was suggested.

Keywords: Fibrinolytic protease, Euphausia superba, kinetics, unfolding, serine residue, osmolytes, molecular dynamics.

Graphical Abstract
[1]
Si, Y.X.; Song, J.J.; Fang, N.Y.; Wang, W.; Wang, Z.J.; Yang, J.M.; Qian, G.Y.; Yin, S.J.; Park, Y.D. Purification, characterization, and unfolding studies of arginine kinase from Antarctic krill. Int. J. Biol. Macromol., 2014, 67, 426-432.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.044] [PMID: 24690537]
[2]
Si, Y.X.; Fang, N.Y.; Wang, W.; Wang, Z.J.; Yang, J.M.; Qian, G.Y.; Yin, S.J.; Park, Y.D. Folding studies of arginine kinase from Euphausia superba using denaturants. Appl. Biochem. Biotechnol., 2014, 172(8), 3888-3901.
[http://dx.doi.org/10.1007/s12010-014-0802-9] [PMID: 24577673]
[3]
Wang, Z.J.; Lee, J.; Si, Y.X.; Wang, W.; Yang, J.M.; Yin, S.J.; Qian, G.Y.; Park, Y.D. A folding study of Antarctic krill (Euphausia superba) alkaline phosphatase using denaturants. Int. J. Biol. Macromol., 2014, 70, 266-274.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.001] [PMID: 25016161]
[4]
Fang, N.Y.; Lee, J.; Yin, S.J.; Wang, W.; Wang, Z.J.; Yang, J.M.; Qian, G.Y.; Si, Y.X.; Park, Y.D. Effects of osmolytes on arginine kinase from Euphausia superba: a study on thermal denaturation and aggregation. Process Biochem., 2014, 49, 936-947.
[http://dx.doi.org/10.1016/j.procbio.2014.03.019]
[5]
Jin, Q.X.; Yin, S.J.; Wang, W.; Wang, Z.J.; Yang, J.M.; Qian, G.Y.; Si, Y.X.; Park, Y.D. The effect of Zn2+ on Euphausia superba arginine kinase: unfolding and aggregation studies. Process Biochem., 2014, 49, 821-829.
[http://dx.doi.org/10.1016/j.procbio.2014.02.004]
[6]
Cheng, J.G.; Si, Y.X.; Lee, J.; Zhao, F.; Yang, J.M.; Qian, G.Y.; Yin, S.J.; Park, Y.D. The effect of Cu2+ on arginine kinase from Euphausia superba: a computational simulation integrating unfolding and aggregation studies. Process Biochem., 2015, 50, 395-405.
[http://dx.doi.org/10.1016/j.procbio.2014.12.010]
[7]
Turkiewicz, M.; Galas, E.; Kalinowska, H.; Romanowska, I.; Zielińska, M. Purification and characterization of a proteinase from Euphausia superba Dana (Antarctic krill). Acta Biochim. Pol., 1986, 33(2), 85-99.
[PMID: 3532651]
[8]
Turkiewicz, M.; Galas, E.; Kalinowska, H. Collagenolytic serine proteinase from Euphausia superba Dana (Antarctic krill). Comp. Biochem. Physiol. B, 1991, 99(2), 359-371.
[http://dx.doi.org/10.1016/0305-0491(91)90056-J] [PMID: 1662593]
[9]
Turkiewicz, M.; Kalinowska, H.; Galas, E. An endo-(1----3)-beta-glucanase and a collagenolytic serine proteinase from Euphausia superba Dana (Antarctic krill). Acta Biochim. Pol., 1991, 38(1), 79-85.
[PMID: 1796712]
[10]
Sjödahl, J.; Emmer, A.; Vincent, J.; Roeraade, J. Characterization of proteinases from Antarctic krill (Euphausia superba). Protein Expr. Purif., 2002, 26(1), 153-161.
[http://dx.doi.org/10.1016/S1046-5928(02)00519-3] [PMID: 12356483]
[11]
Hellgren, K. Assessment of Krillase chewing gum for the reduction of gingivitis and dental plaque. J. Clin. Dent., 2009, 20(3), 99-102.
[PMID: 19711611]
[12]
Berg, C.H.; Kalfas, S.; Malmsten, M.; Arnebrant, T. Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases originating from Euphausia superba for plaque control. Eur. J. Oral Sci., 2001, 109(5), 316-324.
[http://dx.doi.org/10.1034/j.1600-0722.2001.00099.x] [PMID: 11695752]
[13]
Benjamin, D.C.; Kristjánsdóttir, S.; Gudmundsdóttir, A. Increasing the thermal stability of euphauserase. A cold-active and multifunctional serine protease from Antarctic krill. Eur. J. Biochem., 2001, 268(1), 127-131.
[http://dx.doi.org/10.1046/j.1432-1327.2001.01857.x] [PMID: 11121112]
[14]
Hellgren, L.; Mohr, V.; Vincent, J. Proteases of Antarctic krill--a new system for effective enzymatic debridement of necrotic ulcerations. Experientia, 1986, 42(4), 403-404.
[http://dx.doi.org/10.1007/BF02118628] [PMID: 3514270]
[15]
Anheller, J.E.; Hellgren, L.; Karlstam, B.; Vincent, J. Biochemical and biological profile of a new enzyme preparation from Antarctic krill (E. superba) suitable for debridement of ulcerative lesions. Arch. Dermatol. Res., 1989, 281(2), 105-110.
[http://dx.doi.org/10.1007/BF00426587] [PMID: 2774638]
[16]
Sangwan, V.S.; Akpek, E.K.; Voo, I.; Zhao, T.; Pinar, V.; Yang, J.; Christen, W.; Baltatzis, S.; Wild, R.; Foster, C.S. Krill protease effects on wound healing after corneal alkali burn. Cornea, 1999, 18(6), 707-711.
[http://dx.doi.org/10.1097/00003226-199911000-00014] [PMID: 10571303]
[17]
Citron, M.; Diehl, T.S.; Capell, A.; Haass, C.; Teplow, D.B.; Selkoe, D.J. Inhibition of amyloid beta-protein production in neural cells by the serine protease inhibitor AEBSF. Neuron, 1996, 17(1), 171-179.
[http://dx.doi.org/10.1016/S0896-6273(00)80290-1] [PMID: 8755488]
[18]
Huang, J.L.; Nagy, A.; Ivleva, V.B.; Blackstock, D.; Arnold, F.; Cai, C.X. Hydrolysis-kinetic study of AEBSF, a protease inhibitor used during cell-culture processing of the HIV-1 broadly neutralizing antibody CAP256-VRC25.26. Anal. Chem., 2018, 90(7), 4293-4296.
[http://dx.doi.org/10.1021/acs.analchem.7b05316] [PMID: 29508618]
[19]
Souto, X.M.; Branquinha, M.H.; Santos, A.L.S. Chymotrypsin- and trypsin-like activities secreted by the multidrug-resistant yeasts forming the Candida haemulonii complex An. Acad. Bras. Cienc., 2019, 91, e25180735.
[20]
Limón, D.; Fábrega, M.J.; Calpena, A.C.; Badia, J.; Baldomà, L.; Pérez-García, L. Multifunctional serine protease inhibitor-coated water-soluble gold nanoparticles as a novel targeted approach for the treatment of inflammatory skin diseases Bioconjug. Chem., 2018, 29, 1060-1072.
[21]
Chu, T.M.; Kawinski, E. Plasmin, substilisin-like endoproteases, tissue plasminogen activator, and urokinase plasminogen activator are involved in activation of latent TGF-beta 1 in human seminal plasma. Biochem. Biophys. Res. Commun., 1998, 253(1), 128-134.
[http://dx.doi.org/10.1006/bbrc.1998.9760] [PMID: 9875232]
[22]
Van der Gucht, W.; Leemans, A.; De Schryver, M.; Heykers, A.; Caljon, G.; Maes, L.; Cos, P.; Delputte, P.L. Respiratory syncytial virus (RSV) entry is inhibited by serine protease inhibitor AEBSF when present during an early stage of infection. Virol. J., 2017, 14(1), 157.
[http://dx.doi.org/10.1186/s12985-017-0824-3] [PMID: 28818113]
[23]
Sreelatha, L.; Malakar, S.; Songprakhon, P.; Morchang, A.; Srisawat, C.; Noisakran, S.; Yenchitosomanus, P.T.; Limjindaporn, T. Serine protease inhibitor AEBSF reduces dengue virus infection via decreased cholesterol synthesis. Virus Res., 2019, 271
[http://dx.doi.org/10.1016/j.virusres.2019.197672] [PMID: 31386864]
[24]
Salamanca, M.H.; Barría, C.; Asenjo, J.A.; Andrews, B.A. Isolation, purification and preliminary characterization of cryophilic proteases of marine origin. Bioseparation, 2001, 10(4-5), 237-241.
[http://dx.doi.org/10.1023/A:1016383212244] [PMID: 12233747]
[25]
Tams, J.W.; Welinder, K.G. Unfolding and refolding of Coprinus cinereus peroxidase at high pH, in urea, and at high temperature. Effect of organic and ionic additives on these processes. Biochemistry, 1996, 35(23), 7573-7579.
[http://dx.doi.org/10.1021/bi953067l] [PMID: 8652538]
[26]
Wang, Z.J.; Ma, W.; Yang, J.M.; Kang, Y.; Park, Y.D. Effects of Cu2+ on alkaline phosphatase from Macrobrachium rosenbergii. Int. J. Biol. Macromol., 2018, 117, 116-123.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.165] [PMID: 29802922]
[27]
Wang, Z.J.; Zheng, L.; Yang, J.M.; Kang, Y.; Park, Y.D. Proteomic analyses for profiling regulated proteins/enzymes by Fucus vesiculosus fucoidan in B16 melanoma cells: A combination of enzyme kinetics functional study. Int. J. Biol. Macromol., 2018, 112, 667-674.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.011] [PMID: 29408614]
[28]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[29]
Benson, D.A.; Karsch-Mizrachi, I.; Clark, K.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res., 2012, 40(Database issue), D48-D53.
[http://dx.doi.org/10.1093/nar/gkr1202] [PMID: 22144687]
[30]
Remmert, M.; Biegert, A.; Hauser, A.; Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods, 2011, 9(2), 173-175.
[http://dx.doi.org/10.1038/nmeth.1818] [PMID: 22198341]
[31]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics J. Mol. Graph., 1996, 14, 33-38.
[32]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[33]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[34]
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A.D., Jr. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem., 2010, 31(4), 671-690.
[PMID: 19575467]
[35]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy