Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Therapeutic Agents for COVID-19: an Overview

Author(s): Sreejan Manna, Mainak Mal, Manas Bhowmik and Dipika Mandal*

Volume 16, Issue 1, 2021

Published on: 11 November, 2020

Page: [22 - 44] Pages: 23

DOI: 10.2174/1574885515999201111201713

Price: $65

Abstract

Background: The pathological agent of Coronavirus disease 2019 (COVID-19) is a novel coronavirus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has its origin in Wuhan, China, and spread to other provinces of China and subsequently to other countries resulting in a pandemic worldwide. The virus is extremely contagious and causes pneumonia and respiratory failure. Since its emergence, researchers around the world are trying to develop vaccines and find suitable drugs for the treatment of COVID-19.

Objective: To give an overview of the various therapeutic agents for COVID-19 such as vaccines and drugs that are in preclinical stage or under different stages of clinical trials.

Results: As per World Health Organization (WHO), there are 137 vaccines under development to date, out of which few vaccines have successfully completed preclinical studies and reached clinical trials. According to the present scenario, only one coronavirus vaccine (sputnik-V) has been approved by the Ministry of Health of the Russian Federation. Till date, there are no United States Food and Drug Administration (USFDA) approved drugs to treat COVID-19 patients. However, depending on patient’s condition, different drugs such as antiviral agents like Remdesivir, antimalarial drugs like Hydroxychloroquine, antibiotics like Azithromycin and corticosteroids like Dexamethasone are being applied and some of them have proved to be effective up to a certain extent.

Conclusion: Although several vaccines for COVID-19 are under development and various drugs have been tried for its treatment, an ideal drug candidate or a vaccine is still lacking. Almost all the big pharmaceutical companies are associated with one or more research initiatives in order to develop vaccines and drugs. Many of them are going through clinical stages, expecting a positive outcome by the end of 2020.

Keywords: COVID-19, coronavirus, drugs, vaccines, therapeutics, SARS-CoV-2.

Graphical Abstract
[2]
Singhal T. A review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[3]
World Health Organization Novel Coronavirus (2019-nCoV) Situation Report -2. 2019.https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200122-sitrep-2-2019-ncov.pdf
[4]
Richman DD, Whitley RJ, Hayden FG. Clinical virology. 4th ed. Washington: ASM Press 2016.
[http://dx.doi.org/10.1128/9781555819439]
[5]
Burrell CJ, Howard CR, Murphy FA. Coronaviruses Fenner and White’s Medical Virology. 5th ed. Academic Press 2017.
[6]
van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382(16): 1564-7.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[7]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[8]
Guan WJ, Ni ZY, Hu Y, et al. China medical treatment expert group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[9]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5 ] [PMID: 31986264]
[10]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7 ] [PMID: 32007143]
[11]
Hoffmann M, Weber HK, Kruger N, Muller M, Drosten C, Pohlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells bioRxiv 2019. 01.31.929042 [Preprint].
[http://dx.doi.org/10.1101/2020.01.31.929042]
[12]
Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417(6891): 822-8.
[http://dx.doi.org/10.1038/nature00786] [PMID: 12075344]
[13]
Raizada MK, Ferreira AJ. ACE2: a new target for cardiovascular disease therapeutics. J Cardiovasc Pharmacol 2007; 50(2): 112-9.
[http://dx.doi.org/10.1097/FJC.0b013e3180986219 ] [PMID: 17703127]
[14]
André FE. The future of vaccines, immunisation concepts and practice. Vaccine 2001; 19(17-19): 2206-9.
[http://dx.doi.org/10.1016/S0264-410X(00)00546-6 ] [PMID: 11257334]
[15]
Guarner J. Three emerging coronaviruses in two decades. Am J Clin Pathol 2020; 153(4): 420-1.
[http://dx.doi.org/10.1093/ajcp/aqaa029] [PMID: 32053148]
[16]
Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 2013; 11(12): 836-48.
[http://dx.doi.org/10.1038/nrmicro3143] [PMID: 24217413]
[17]
Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology 2005; 334(2): 160-5.
[http://dx.doi.org/10.1016/j.virol.2005.01.042] [PMID: 15780866]
[18]
Clover biopharmaceuticals vaccines programs SARS-CoV- 2(COVID-19) Vaccine: “S-Trimer”. Available from: http://www.cloverbiopharma.com/index.php?m=content&c=index&a=lists&catid=42(Accessed on June 17, 2020).
[19]
Kim E, Erdos G, Huang S, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 2020; 55102743
[http://dx.doi.org/10.1016/j.ebiom.2020.102743] [PMID: 32249203]
[20]
Miramar FL. Generex provides coronavirus update: generex receives contract from Chinese partners to develop a COVID-19 vaccine using Ii-Key peptide vaccines 2020.https://storage.googleapis.com/wzukusers/user-26831283/documents/5e57ed391b286sVf68Kq/PR_Generex_Coronavirus_Update_2_27_2020.pdf Feb 2; [cited: 18 June 2020] Available from:
[21]
Takashima Y, Osaki M, Ishimaru Y, Yamaguchi H, Harada A. Artificial molecular clamp: a novel device for synthetic polymerases. Angew Chem Int Ed Engl 2011; 50(33): 7524-8.
[http://dx.doi.org/10.1002/anie.201102834] [PMID: 21744450]
[22]
Alex K. Novavax is beginning clinical trials of its coronavirus vaccines. [cited 19 June 2020]; https://www.forbes.com/sites/alexknapp/2020/05/25/novavax-is-beginning-clinical-trials-of-its-coronavirus-vaccine/#5f08629a5654 Available from:
[23]
Yang ZY, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004; 428(6982): 561-4.
[http://dx.doi.org/10.1038/nature02463] [PMID: 15024391]
[24]
Inovio DNA Medicines Pipeline: infectious diseases (Non HPVAssocoated). Available from: https://www.inovio.com/dna-medicines-pipeline/ (Accessed on September 4, 2020).
[25]
Applied DNA. Takis Biotech design four Covid-19 vaccine candidates. [cited: 19 June 2020]; https://www.pharmaceutical-technology.com/news/applied-dna-takis-covid-19-vaccine/ Available from:
[26]
ZydusCadila launches a fast tracked programme to develop vaccine for the novel coronavirus, 2019-nCoV (COVID-19). [cited: 4 September 2020]; https://pipelinereview.com/index.php/2020021773810/Vaccines/Zydus-Cadila-launches-a-fast-tracked-programme-to-develop-vaccine-for-the-novel-coronavirus-2019-nCoV-COVID-19.html Available from:
[27]
Plotkin SA, Orenstein WA, Offit PA. Vaccines. 6th ed. Philadelphia: Elsevier 2013.
[35]
Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol 2007; 18(6): 546-56.
[http://dx.doi.org/10.1016/j.copbio.2007.10.010] [PMID: 18063357]
[41]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[42]
Prophylactic Vaccines https://www.modernatx.com/pipeline
[47]
Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol 2020; 92(6): 556-63.
[http://dx.doi.org/10.1002/jmv.25729] [PMID: 32104907]
[48]
Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics 2020; 47(2): 119-21.
[http://dx.doi.org/10.1016/j.jgg.2020.02.001] [PMID: 32173287]
[49]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[50]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3 ] [PMID: 32171076]
[53]
Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing) 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[56]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[57]
Lescure FX, Bouadma L, Nguyen D, et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis 2020; 20(6): 697-706.
[http://dx.doi.org/10.1016/S1473-3099(20)30200-0 ] [PMID: 32224310]
[61]
Hampton T. New flu antiviral candidate may thwart drug resistance. JAMA 2020; 323(1): 17.
[http://dx.doi.org/10.1001/jama.2019.20225] [PMID: 31910262]
[63]
Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci USA 2017; 114(2): 206-14.
[http://dx.doi.org/10.1073/pnas.1617020114] [PMID: 28003465]
[64]
Khamitov RA, Loginova SIa, Shchukina VN, Borisevich SV, Maksimov VA, Shuster AM. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr Virusol 2008; 53(4): 9-13.
[65]
Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis 2020; 71(15): 769-77.
[http://dx.doi.org/10.1093/cid/ciaa272] [PMID: 32176772]
[66]
Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med 2006; 3(9)e343
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[67]
Arabi YM, Shalhoub S, Mandourah Y, et al. Ribavirin and interferon therapy for critically ill patients with Middle East respiratory syndrome: a multicenter observational study. Clin Infect Dis 2020; 70(9): 1837-44.
[http://dx.doi.org/10.1093/cid/ciz544] [PMID: 31925415]
[68]
Gao J, Zhenxue T, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[69]
Yao X, Ye F, Zhang M, et al. vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020. ciaa237 2020.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[70]
Fox R. Anti-malarial drugs: possible mechanisms of action in autoimmune disease and prospects for drug development. Lupus 1996; 5(Suppl. 1): S4-S10.
[http://dx.doi.org/10.1177/0961203396005001031] [PMID: 8803903]
[71]
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57: 279-83.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[72]
Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol 2012; 42(2): 145-53.
[http://dx.doi.org/10.1007/s12016-010-8243-x] [PMID: 21221847]
[73]
Fox RI. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum 1993; 23(2)(Suppl. 1): 82-91.
[http://dx.doi.org/10.1016/S0049-0172(10)80012-5 ] [PMID: 8278823]
[74]
Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949 ] [PMID: 32205204]
[75]
Beigelman A, Mikols CL, Gunsten SP, Cannon CL, Brody SL, Walter MJ. Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis. Respir Res 2010; 11(1): 90.
[http://dx.doi.org/10.1186/1465-9921-11-90] [PMID: 20591166]
[76]
Amsden GW. Anti-inflammatory effects of macrolides--an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J Antimicrob Chemother 2005; 55(1): 10-21.
[http://dx.doi.org/10.1093/jac/dkh519] [PMID: 15590715]
[77]
Zarogoulidis P, Papanas N, Kioumis I, Chatzaki E, Maltezos E, Zarogoulidis K. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur J Clin Pharmacol 2012; 68(5): 479-503.
[http://dx.doi.org/10.1007/s00228-011-1161-x] [PMID: 22105373]
[78]
Schaper C. A Mechanism of action for hydroxychloroquine and azithromycin to inhibit coronavirus disease COVID-19. ChemRxiv 2020; 19: 54.
[http://dx.doi.org/10.26434/chemrxiv.12148914.v1]
[79]
Zithromax (azithromycin 250 mg and 500 mg tablets and azithromycin oral suspension) package insert. New York, NY: Pfizer Inc. 2019.
[80]
Actemra (tocilizumab) injection package insert. South San Francisco, CA: Genentech, Inc. 2019.
[81]
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117(20): 10970-5.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[82]
US Food & Drug Administration Drug Safety and Availability: FDA Advices patients on Use of Non-steroidal Anti-inflammatory Drugs (NSAIDs) for COVID-19. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-advises-patients-use-non-steroidal-anti-inflammatory-drugs-nsaids-covid-19 (Accessed on June 23 2020).
[83]
Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4)e21
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8 ] [PMID: 32171062]
[84]
World Health Organization Newsroom. WHO Welcomes Preliminary Results About Dexamethasone Use in Treating Critically Ill COVID-19 Patients https://www.who.int/news-room/detail/16-06-2020-who-welcomes-preliminary-results-about-dexamethasone-use-in-treating-critically-ill-covid-19-patients
[85]
Villar J, Ferrando C, Martínez D, et al. dexamethasone in ARDS network. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020; 8(3): 267-76.
[http://dx.doi.org/10.1016/S2213-2600(19)30417-5 ] [PMID: 32043986]
[86]
Focosi D, Tang J, Anderson A, Tuccori M. Convalescent plasma therapy for Covid-19: State of the Art. Preprints 2020.
[http://dx.doi.org/10.20944/preprints202004.0097.v1]
[87]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178104787
[http://dx.doi.org/10.1016/j.antiviral.2020.104787 ] [PMID: 32251768]
[88]
Ehrlich A, Uhl S, Ioannidis K, Hofree M, tenOever BR, Nahmias Y. The SARS-CoV-2 Transcriptional Metabolic Signature in Lung Epithelium. SSRN 2020.
[http://dx.doi.org/10.2139/ssrn.3650499]
[89]
Maxmen A. More than 80 clinical trials launch to test coronavirus treatments. Nature 2020; 578(7795): 347-8.
[http://dx.doi.org/10.1038/d41586-020-00444-3] [PMID: 32071447]
[90]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[91]
Mifsud EJ, Hayden FG, Hurt AC. Anti virals targeting the polymerase complex of influenza viruses. Antiviral Res 2019; 169104545
[http://dx.doi.org/10.1016/j.antiviral.2019.104545 ] [PMID: 31247246]
[92]
Seneviratne SL, Abeysuriya V, Mel SD, Zoysa ID, Niloofa R. Favipiravir in Covid-19. Int J ProgSci Tech 2020; 19(2): 143-5.
[93]
Guo D. Old weapon for new enemy: drug repurposing for treatment of newly emerging viral diseases. Virol Sin 2020; 35(3): 253-5.
[http://dx.doi.org/10.1007/s12250-020-00204-7] [PMID: 32048130]
[94]
Chary MA, Barbuto AF, Izadmehr S, Hayes BD, Burns MM. COVID-19: therapeutics and their toxicities. J Med Toxicol 2020; 16(3): 284-94.
[http://dx.doi.org/10.1007/s13181-020-00777-5] [PMID: 32356252]
[95]
Lian N, Xie H, Lin S, Huang J, Zhao J, Lin Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin Microbiol Infect 2020; 26(7): 917-21.
[http://dx.doi.org/10.1016/j.cmi.2020.04.026] [PMID: 32344167]
[96]
Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning COVID-19. J Med Virol 2020; 92(7): 740-6.
[http://dx.doi.org/10.1002/jmv.25798] [PMID: 32227493]
[97]
Mondher T, Samuel A. Commentary on “Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open label non-randomized clinical trial” by Gautret et al. J Mark Access Health Policy 2020; 8(1)1758390
[http://dx.doi.org/10.1080/20016689.2020.1758390 ] [PMID: 32537099]
[98]
Colaneri M, Bogliolo L, Valsecchi P, et al. Tocilizumab for treatment of severe COVID-19 patients: preliminary results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms 2020; 8(5): 695.
[99]
Erol A. High-dose intravenous vitamin C treatment for COVID-19. OSF Preprints 2020.
[http://dx.doi.org/10.31219/osf.io/p7ex8.]
[100]
Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020; 395(10223): e30-1.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4 ] [PMID: 32032529]
[101]
Efficacy and safety of darunavir and cobicistat for treatment of COVID-19 (DC-COVID-19). [cited: 20 June 2020]; Available from: https://clinicaltrials.gov/ct2/show/NCT04252274
[102]
McCreary EK, Pogue JM. Coronavirus disease 2019 treatment: A review of early and emerging options. Open Forum Infect Dis 2020; 7(4): a105.
[http://dx.doi.org/10.1093/ofid/ofaa105] [PMID: 32284951]
[103]
Gamiño-Arroyo AE, Guerrero ML, McCarthy S, et al. Mexico emerging infectious diseases clinical research network (LaRed). efficacy and safety of nitazoxanide in addition to standard of care for the treatment of severe acute respiratory illness. Clin Infect Dis 2019; 69(11): 1903-11.
[http://dx.doi.org/10.1093/cid/ciz100] [PMID: 30753384]
[104]
MaassenVanDenBrink A, de Vries T, Danser AHJ. Headache medication and the COVID-19 pandemic. J Headache Pain 2020; 21: 38.
[http://dx.doi.org/10.1186/s10194-020-01106-5]
[105]
Atal S, Fatima Z. IL-6 inhibitors in the treatment of serious COVID-19: a promising therapy? Pharm Med 2020; 13: 1-9.
[http://dx.doi.org/10.1007/s40290-020-00342-z] [PMID: 32535732]
[106]
Xu J, Shi PY, Li H, Zhou J. Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infect Dis 2020; 6(5): 909-15.
[http://dx.doi.org/10.1021/acsinfecdis.0c00052] [PMID: 32125140]
[109]
Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostatmesylate blocks activation of SARS-CoV-2: new treatment option for COVID19. Antimicrob Agents Chemother 2020; 64(6): e00754-20.
[http://dx.doi.org/10.1128/AAC.00754-20] [PMID: 32312781]
[110]
Sayad B, Sobhani M, Khodarahmi R. Sofosbuvir as repurposed antiviral drug against COVID-19: why were we convinced to evaluate the drug in a registered/approved clinical trial? Arch Med Res 2020; 51(6): 577-81.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.018] [PMID: 32387040]
[111]
Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci 2020; 24(7): 4040-7.
[http://dx.doi.org/10.26355/eurrev_202004_20875 ] [PMID: 32329881]
[114]
Monteagudo LA, Boothby A, Gertner E. Continuous intravenous anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol 2020; 2(5): 276-82.
[http://dx.doi.org/10.1002/acr2.11135] [PMID: 32267081]
[115]
Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol 2020; 2(7): e393-400.
[http://dx.doi.org/10.1016/S2665-9913(20)30164-8 ] [PMID: 32835245]
[116]
Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica 2020; 44e40
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[117]
Nguyen AA, Habiballah SB, Platt CD, Geha RS, Chou JS, McDonald DR. immunoglobulins in the treatment of covid-19 infection: proceed with caution. Clin Immunol 2020; 216108459
[http://dx.doi.org/10.1016/j.clim.2020.108459] [PMID: 32418917]
[118]
Yamamoto N, Matsuyam S, Hoshino T, Yamamoto N. Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.06.026476]
[120]
Lin M-H, Moses DC, Hsieh C-H, et al. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res 2018; 150: 155-63.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.015] [PMID: 29289665]
[121]
O’Keefe BR, Giomarelli B, Barnard DL, et al. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol 2010; 84(5): 2511-21.
[http://dx.doi.org/10.1128/JVI.02322-09] [PMID: 20032190]
[124]
Roivant pushing gimsilumab testing for ARDS in COVID-19 patients 2020.
[129]
Ojha PK, Kar S, Krishna JG, Roy K, Leszczynski J. Therapeutics for COVID-19: from computation to practices-where we are, where we are heading to. Mol Divers 2020; 84: 2511-21.
[http://dx.doi.org/10.1007/s11030-020-10134-x] [PMID: 32880078]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy