Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

An Overview of Ovarian Cancer: Molecular Processes Involved and Development of Target-based Chemotherapeutics

Author(s): Basheerulla Shaik, Tabassum Zafar, Krishnan Balasubramanian and Satya P. Gupta*

Volume 21, Issue 4, 2021

Published on: 11 November, 2020

Page: [329 - 346] Pages: 18

DOI: 10.2174/1568026620999201111155426

Abstract

Ovarian cancer is one of the leading gynecologic diseases with a high mortality rate worldwide. Current statistical studies on cancer reveal that over the past two decades, the fifth most common cause of death related to cancer in females of the western world is ovarian cancer. In spite of significant strides made in genomics, proteomics and radiomics, there has been little progress in transitioning these research advances into effective clinical administration of ovarian cancer. Consequently, researchers have diverted their attention to finding various molecular processes involved in the development of this cancer and how these processes can be exploited to develop potential chemotherapeutics to treat this cancer. The present review gives an overview of these studies which may update the researchers on where we stand and where to go further. The unfortunate situation with ovarian cancer that still exists is that most patients with it do not show any symptoms until the disease has moved to an advanced stage. Undoubtedly, several targets-based drugs have been developed to treat it, but drug-resistance and the recurrence of this disease are still a problem. For the development of potential chemotherapeutics for ovarian cancer, however, some theoretical approaches have also been applied. A description of such methods and their success in this direction is also covered in this review.

Keywords: Ovarian cancer, Targeted therapy, Antibodies, Vitamin D, Molecular hydrogen, Computer-assisted artificial intelligence Techniques, Quantum chemical drug discovery.

« Previous
Graphical Abstract
[1]
Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer, 2010, 127(12), 2893-2917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[3]
American Cancer Society In: Cancer Facts & Figures 2015; Amer. Cancer Soc: Atlanta; , 2015.
[4]
National Cancer Institute. Surveillance, Epidemiology, and end results program. Cancer stat facts: ovarian cancer, 2018.Available from: https://seer.cancer.gov/statfacts/html/ovary.html
[5]
Chien, J.; Poole, E. Ovarian cancer prevention, screening and early detection: report from the 11th Biennial Ovarian Cancer Research Symposium Intl. J. Gynaecol. Cancer., 2018, 27, S20-S22.
[6]
Hattori, S.; Kajiyama, H.; Fuji, U.; Furui, Y.; Ishibashi, Y.; Hattori, Y.; Takahashi, N.; Kikkawa, F.; Misawa, T. Clinical characteristics of primary peritoneal carcinoma patients: a single-institution experience involving 8 patients. Nagoya J. Med. Sci., 2016, 78(4), 407-414.
[PMID: 28008196]
[7]
Li, S.; Zhou, J.; Wu, H.; Lu, Q.; Tai, Y.; Liu, Q.; Wang, C. Oncogenic transformation of normal breast epithelial cells co-cultured with cancer cells. Cell Cycle, 2018, 17(16), 2027-2040.
[http://dx.doi.org/10.1080/15384101.2018.1511510 PMID: 30160604]
[8]
Lim, D.; Oliva, E. Precursors and pathogenesis of ovarian carcinoma. Pathology, 2013, 45(3), 229-242.
[http://dx.doi.org/10.1097/PAT.0b013e32835f2264 PMID: 23478230]
[9]
Krzystyniak, J.; Ceppi, L.; Dizon, D.S.; Birrer, M.J. Epithelial ovarian cancer: the molecular genetics of epithelial ovarian cancer. Ann. Oncol., 2016, 27(Suppl. 1), i4-i10.
[http://dx.doi.org/10.1093/annonc/mdw083] [PMID: 27141069]
[10]
Bell, D.; Berchuck, A.; Birrer, M. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474(7353), 609-615.
[http://dx.doi.org/10.1038/nature10166] [PMID: 21720365]
[11]
Momenimovahed, Z.; Tiznobaik, A.; Taheri, S.; Salehiniya, H. Ovarian cancer in the world: epidemiology and risk factors. Int. J. Womens Health, 2019, 11, 287-299.
[http://dx.doi.org/10.2147/IJWH.S197604] [PMID: 31118829]
[12]
Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet, 2014, 384(9951), 1376-1388.
[http://dx.doi.org/10.1016/S0140-6736(13)62146-7 PMID: 24767708]
[13]
Tang, H.; Liu, Y.; Wang, X.; Guan, L.; Chen, W.; Jiang, H.; Lu, Y. Clear cell carcinoma of the ovary clinicopathologic features and outcomes in a Chinese cohort. Medicine, 2018, 97(21)e10881
[14]
Zhao, T.; Shao, Y.; Liu, Y.; Wang, X.; Guan, L.; Lu, Y. Endometriosis does not confer improved prognosis in ovarian clear cell carcinoma: a retrospective study at a single institute. J. Ovarian Res., 2018, 11(1), 53.
[http://dx.doi.org/10.1186/s13048-018-0425-9] [PMID: 29941051]
[15]
Lalwani, N.; Prasad, S.R.; Vikram, R.; Shanbhogue, A.K.; Huettner, P.C.; Fasih, N. Histologic, molecular, and cytogenetic features of ovarian cancers: implications for diagnosis and treatment. Radiographics, 2011, 31(3), 625-646.
[http://dx.doi.org/10.1148/rg.313105066] [PMID: 21571648]
[16]
Xu, W.; Rush, J.; Rickett, K.; Coward, J.I.G. Mucinous ovarian cancer: A therapeutic review. Crit. Rev. Oncol. Hematol., 2016, 102, 26-36.
[http://dx.doi.org/10.1016/j.critrevonc.2016.03.015 PMID: 27083591]
[17]
Worzfeld, T.; Pogge von Strandmann, E.; Huber, M.; Adhikary, T.; Wagner, U.; Reinartz, S.; Müller, R. The unique molecular and cellular microenvironment of ovarian cancer. Front. Oncol., 2017, 7, 24.
[http://dx.doi.org/10.3389/fonc.2017.00024] [PMID: 28275576]
[18]
Ghoneum, A.; Afify, H.; Salih, Z.; Kelly, M.; Said, N. Role of tumor microenvironment in ovarian cancer pathobiology. Oncotarget, 2018, 9(32), 22832-22849.
[http://dx.doi.org/10.18632/oncotarget.25126] [PMID: 29854318]
[19]
Colombo, N.; Peiretti, M.; Parma, G.; Lapresa, M.; Mancari, R.; Carinelli, S.; Sessa, C.; Castiglione, M. ESMO guidelines working group. newly diagnosed and relapsed epithelial ovarian carcinoma: esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2010, 21(Suppl. 5), v23-v30.
[http://dx.doi.org/10.1093/annonc/mdq244] [PMID: 20555088]
[20]
Lisio, M.A.; Fu, L.; Goyeneche, A.; Gao, Z.H.; Telleria, C. High-grade serous ovarian cancer: basic sciences, clinical and therapeutic standpoints. Int. J. Mol. Sci., 2019, 20(4), 952.
[http://dx.doi.org/10.3390/ijms20040952] [PMID: 30813239]
[21]
Perets, R.; Wyant, G.A.; Muto, K.W.; Bijron, J.G.; Poole, B.B.; Chin, K.T.; Chen, J.Y.; Ohman, A.W.; Stepule, C.D.; Kwak, S.; Karst, A.M.; Hirsch, M.S.; Setlur, S.R.; Crum, C.P.; Dinulescu, D.M.; Drapkin, R. Transformation of the fallopian tube secretory epithelium leads to highgrade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell, 2013, 24(6), 751-765.
[http://dx.doi.org/10.1016/j.ccr.2013.10.013] [PMID: 24332043]
[22]
McDaniel, A.S.; Stall, J.N.; Hovelson, D.H.; Cani, A.K.; Liu, C.J.; Tomlins, S.A.; Cho, K.R. Next-generation sequencing of tubal intraepithelial carcinomas. JAMA Oncol., 2015, 1(8), 1128-1132.
[http://dx.doi.org/10.1001/jamaoncol.2015.1618] [PMID: 26181193]
[23]
Motohara, T.; Masuda, K.; Morotti, M.; Zheng, Y.; El-Sahhar, S.; Chong, K.Y.; Wietek, N.; Alsaadi, A.; Karaminejadranjbar, M.; Hu, Z.; Artibani, M.; Gonzalez, L.S.; Katabuchi, H.; Saya, H.; Ahmed, A.A. An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene, 2019, 38(16), 2885-2898.
[http://dx.doi.org/10.1038/s41388-018-0637-x] [PMID: 30568223]
[24]
Yin, M.; Shen, J.; Yu, S.; Fei, J.; Zhu, X.; Zhao, J.; Zhai, L.; Sadhukhan, A.; Zhou, J. Tumor associated macrophages (TAMs): A critical activator in ovarian cancer metastasis. OncoTargets Ther., 2019, 12, 8687-8699.
[http://dx.doi.org/10.2147/OTT.S216355] [PMID: 31695427]
[25]
Al Bakir, M.; Gabra, H. The molecular genetics of hereditary and sporadic ovarian cancer: implications for the future. Br. Med. Bull., 2014, 112(1), 57-69.
[http://dx.doi.org/10.1093/bmb/ldu034] [PMID: 25473022]
[26]
Yeung, T.L.; Leung, C.S.; Yip, K.P.; Au Yeung, C.L.; Wong, S.T.; Mok, S.C. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am. J. Physiol. Cell Physiol., 2015, 309(7), C444-C456.
[http://dx.doi.org/10.1152/ajpcell.00188.2015] [PMID: 26224579]
[27]
Ma, X. The omentum, a niche for premetastatic ovarian cancer. J. Exp. Med., 2020, 217(4)e20192312
[http://dx.doi.org/10.1084/jem.20192312] [PMID: 32103261]
[28]
Lengyel, E. Ovarian cancer development and metastasis. Am. J. Pathol., 2010, 177(3), 1053-1064.
[http://dx.doi.org/10.2353/ajpath.2010.100105] [PMID: 20651229]
[29]
Schild, T.; Low, V.; Blenis, J.; Gomes, A.P. Unique metabolic adaptations dictate distal organ-specific metastatic colonization. Cancer Cell, 2018, 33(3), 347-354.
[http://dx.doi.org/10.1016/j.ccell.2018.02.001] [PMID: 29533780]
[30]
Meza-Perez, S.; Randall, T.D. Immunological functions of the omentum. Trends Immunol., 2017, 38(7), 526-536.
[http://dx.doi.org/10.1016/j.it.2017.03.002] [PMID: 28579319]
[31]
Chkourko Gusky, H.; Diedrich, J.; MacDougald, O.A.; Podgorski, I. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression. Obes. Rev., 2016, 17(11), 1015-1029.
[http://dx.doi.org/10.1111/obr.12450] [PMID: 27432523]
[32]
Pradeep, S.; Kim, S.W.; Wu, S.Y.; Nishimura, M.; Chaluvally-Raghavan, P.; Miyake, T.; Pecot, C.V.; Kim, S.J.; Choi, H.J.; Bischoff, F.Z.; Mayer, J.A.; Huang, L.; Nick, A.M.; Hall, C.S.; Rodriguez-Aguayo, C.; Zand, B.; Dalton, H.J.; Arumugam, T.; Lee, H.J.; Han, H.D.; Cho, M.S.; Rupaimoole, R.; Mangala, L.S.; Sehgal, V.; Oh, S.C.; Liu, J.; Lee, J.S.; Coleman, R.L.; Ram, P.; Lopez-Berestein, G.; Fidler, I.J.; Sood, A.K. Hematogenous metastasis of ovarian cancer: rethinking mode of spread. Cancer Cell, 2014, 26(1), 77-91.
[http://dx.doi.org/10.1016/j.ccr.2014.05.002] [PMID: 25026212]
[33]
Nwabo Kamdje, A.H.; Kamga, P.T.; Simo, R.T.; Vecchio, L.; Seke Etet, P.F.; Muller, J.M.; Bassi, G.; Lukong, E.; Goel, R.K.; Amvene, J.M.; Krampera, M. Mesenchymal stromal cells’ role in tumor microenvironment: involvement of signaling pathways. Cancer Biol. Med., 2017, 14(2), 129-141.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0033] [PMID: 28607804]
[34]
Lis, R.; Touboul, C.; Raynaud, C.M.; Malek, J.A.; Suhre, K.; Mirshahi, M.; Rafii, A. Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties. PLoS One, 2012, 7(5) In press
[http://dx.doi.org//10.1371/journal.pone.0038340] [PMID: 22666502]
[35]
Klopp, A.H.; Zhang, Y.; Solley, T.; Amaya-Manzanares, F.; Marini, F.; Andreeff, M.; Debeb, B.; Woodward, W.; Schmandt, R.; Broaddus, R.; Lu, K.; Kolonin, M.G. Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors. Clin. Cancer Res., 2012, 18(3), 771-782.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1916] [PMID: 22167410]
[36]
Colvin, E.K. Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front. Oncol., 2014, 4, 137.
[http://dx.doi.org/10.3389/fonc.2014.00137] [PMID: 24936477]
[37]
Qian, B.; Deng, Y. Im, J.H.; Muschel, R.J.; Zou, Y.; Li, J.; Lang, R.A.; Pollard, J.W. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One, 2009, 4(8) In press
[http://dx.doi.org/10.1371/journal.pone.0006562] [PMID: 19668347]
[38]
Cortez-Retamozo, V.; Etzrodt, M.; Newton, A.; Rauch, P.J.; Chudnovskiy, A.; Berger, C.; Ryan, R.J.H.; Iwamoto, Y.; Marinelli, B.; Gorbatov, R.; Forghani, R.; Novobrantseva, T.I.; Koteliansky, V.; Figueiredo, J.L.; Chen, J.W.; Anderson, D.G.; Nahrendorf, M.; Swirski, F.K.; Weissleder, R.; Pittet, M.J. Origins of tumor-associated macrophages and neutrophils. Proc. Natl. Acad. Sci. USA, 2012, 109(7), 2491-2496.
[http://dx.doi.org/10.1073/pnas.1113744109] [PMID: 22308361]
[39]
Bingle, L.; Brown, N.J.; Lewis, C.E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol., 2002, 196(3), 254-265.
[http://dx.doi.org/10.1002/path.1027] [PMID: 11857487]
[40]
Ruiz-Rosado,Jde. D; Olguin, J. E; Juarez, Avelar; I.Saavedra, R.; Terrazas, L.I; Robledo-Avila, F. H.; Vazquez-Mendoza, A.; Fernández, J.; Satoskar, A. R; Partida-Sánchez, S.; Rodriguez-Sosa, M. MIF promotes classical activation and conversion of inflammatory Ly6C (high) monocytes into TipDCs during murine toxoplasmosis. Mediators Inflamm., 2016, 9101762 In press
[41]
Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol., 2019, 12(1), 76.
[http://dx.doi.org/10.1186/s13045-019-0760-3] [PMID: 31300030]
[42]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog., 2013, 18(1-2), 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40 PMID: 23237552]
[43]
Scully, O.J.; Bay, B.H.; Yip, G.; Yu, Y. Breast cancer metastasis. Cancer Genomics Proteomics, 2012, 9(5), 311-320.
[PMID: 22990110]
[44]
Fidler, I.J.; Kripke, M.L. The challenge of targeting metastasis. Cancer Metastasis Rev., 2015, 34(4), 635-641.
[http://dx.doi.org/10.1007/s10555-015-9586-9] [PMID: 26328524]
[45]
Komohara, Y.; Jinushi, M.; Takeya, M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci., 2014, 105(1), 1-8.
[http://dx.doi.org/10.1111/cas.12314] [PMID: 24168081]
[46]
Ruffell, B.; Coussens, L.M. Macrophages and therapeutic resistance in cancer. Cancer Cell, 2015, 27(4), 462-472.
[http://dx.doi.org/10.1016/j.ccell.2015.02.015] [PMID: 25858805]
[47]
Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 2002, 23(11), 549-555.
[http://dx.doi.org/10.1016/S1471-4906(02)02302-5 PMID: 12401408]
[48]
Helm, O.; Held-Feindt, J.; Grage-Griebenow, E.; Reiling, N.; Ungefroren, H.; Vogel, I.; Krüger, U.; Becker, T.; Ebsen, M.; Röcken, C.; Kabelitz, D.; Schäfer, H.; Sebens, S. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int. J. Cancer, 2014, 135(4), 843-861.
[http://dx.doi.org/10.1002/ijc.28736] [PMID: 24458546]
[49]
Papp, E.; Hallberg, D.; Konecny, G.E.; Bruhm, D.C.; Adleff, V.; Noë, M.; Kagiampakis, I.; Palsgrove, D.; Conklin, D.; Kinose, Y.; White, J.R.; Press, M.F.; Drapkin, R.; Easwaran, H.; Baylin, S.B.; Slamon, D.; Velculescu, V.E.; Scharpf, R.B. Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines. Cell Rep., 2018, 25(9), 2617-2633.
[http://dx.doi.org/10.1016/j.celrep.2018.10.096] [PMID: 30485824]
[50]
Weidle, U.H.; Birzele, F.; Kollmorgen, G.; Rueger, R. Mechanisms and targets involved in dissemination of ovarian cancer. Cancer Genomics Proteomics, 2016, 13(6), 407-423.
[http://dx.doi.org/10.21873/cgp.20004] [PMID: 27807064]
[51]
Tavassoli, F.A.; Devilee, P. Tumors of the Breast and Female Genital Organs; Kleihues, P; Sobin, L., Ed.; IARC Press: Lyon, 2003, pp. 113-203.
[52]
Vang, R.; Shih, IeM.; Kurman, R.J. Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv. Anat. Pathol., 2009, 16(5), 267-282.
[http://dx.doi.org/10.1097/PAP.0b013e3181b4fffa] [PMID: 19700937]
[53]
Kurman, R.J. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann. Oncol., 2013, 24(Suppl. 10), x16-x21.
[http://dx.doi.org/10.1093/annonc/mdt463] [PMID: 24265397]
[54]
Ledermann, J.A. PARP inhibitors in ovarian cancer. Ann. Oncol., 2016, 27(Suppl. 1), i40-i44.
[http://dx.doi.org/10.1093/annonc/mdw094] [PMID: 27141070]
[55]
Liefers-Visser, J.A.L.; Meijering, R.A.M.; Reyners, A.K.L.; van der Zee, A.G.J.; de Jong, S. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer. Cancer Treat. Rev., 2017, 60, 90-99.
[http://dx.doi.org/10.1016/j.ctrv.2017.08.012] [PMID: 28934637]
[56]
Elnakat, H.; Ratnam, M. Role of folate receptor genes in reproduction and related cancers. Front. Biosci., 2006, 11, 506-519.
[http://dx.doi.org/10.2741/1815] [PMID: 16146749]
[57]
Zhang, J.; Patel, L.; Pienta, K.J. CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev., 2010, 21(1), 41-48.
[http://dx.doi.org/10.1016/j.cytogfr.2009.11.009] [PMID: 20005149]
[58]
Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res., 2009, 29(6), 313-326.
[http://dx.doi.org/10.1089/jir.2008.0027] [PMID: 19441883]
[59]
Charo, I.F.; Ransohoff, R.M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med., 2006, 354(6), 610-621.
[http://dx.doi.org/10.1056/NEJMra052723] [PMID: 16467548]
[60]
Loberg, R.D.; Day, L.L.; Harwood, J.; Ying, C.; St John, L.N.; Giles, R.; Neeley, C.K.; Pienta, K.J. CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia, 2006, 8(7), 578-586.
[http://dx.doi.org/10.1593/neo.06280] [PMID: 16867220]
[61]
Moisan, F.; Francisco, E.B.; Brozovic, A.; Duran, G.E.; Wang, Y.C.; Chaturvedi, S.; Seetharam, S.; Snyder, L.A.; Doshi, P.; Sikic, B.I. Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers. Mol. Oncol., 2014, 8(7), 1231-1239.
[http://dx.doi.org/10.1016/j.molonc.2014.03.016] [PMID: 24816187]
[62]
Toy, E.P.; Azodi, M.; Folk, N.L.; Zito, C.M.; Zeiss, C.J.; Chambers, S.K. Enhanced ovarian cancer tumorigenesis and metastasis by the macrophage colony-stimulating factor. Neoplasia, 2009, 11(2), 136-144.
[http://dx.doi.org/10.1593/neo.81150] [PMID: 19177198]
[63]
Chambers, S.K.; Kacinski, B.M.; Ivins, C.M.; Carcangiu, M.L. Overexpression of epithelial CSF-1 and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer; contrasted with a positive effect of stromal CSF-1. Clin. Cancer Res., 1997, 3, 999-1007.
[PMID: 9815777]
[64]
Cai, Y.; Wang, J.; Zhang, L.; Wu, D.; Yu, D.; Tian, X.; Liu, J.; Jiang, X.; Shen, Y.; Zhang, L.; Ren, M.; Huang, P. Expressions of fatty acid synthase and HER2 are correlated with poor prognosis of ovarian cancer. Med. Oncol., 2015, 32(1), 391.
[http://dx.doi.org/10.1007/s12032-014-0391-z] [PMID: 25433947]
[65]
Luo, H.; Xu, X.; Ye, M.; Sheng, B.; Zhu, X. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS One, 2018, 13(1) In press
[http://dx.doi.org//10.1371/journal.pone.0191972] [PMID: 29381731]
[66]
Siwak, D.R.; Carey, M.; Hennessy, B.T.; Nguyen, C.T.; McGahren Murray, M.J.; Nolden, L.; Mills, G.B. Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. J. Oncol., 2010. In press
[http://dx.doi.org/10.1155/2010/568938] [PMID: 20037743]
[67]
Skirnisdóttir, I.; Sorbe, B.; Seidal, T. The growth factor receptors HER-2/neu and EGFR, their relationship, and their effects on the prognosis in early stage (FIGO I-II) epithelial ovarian carcinoma. Int. J. Gynecol. Cancer, 2001, 11(2), 119-129.
[http://dx.doi.org/10.1046/j.1525-1438.2001.011002119.x] [PMID: 11328410]
[68]
Gavalas, N.G.; Liontos, M.; Trachana, S.P.; Bagratuni, T.; Arapinis, C.; Liacos, C.; Dimopoulos, M.A.; Bamias, A. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int. J. Mol. Sci., 2013, 14(8), 15885-15909.
[http://dx.doi.org/10.3390/ijms140815885] [PMID: 23903048]
[69]
Bozas, G.; Terpos, E.; Gika, D.; Karadimou, A.; Dimopoulos, M.A.; Bamias, A. Prechemotherapy serum levels of CD105, transforming growth factor beta2, and vascular endothelial growth factor are associated with prognosis in patients with advanced epithelial ovarian cancer treated with cytoreductive surgery and platinum-based chemotherapy. Int. J. Gynecol. Cancer, 2010, 20(2), 248-254.
[http://dx.doi.org/10.1111/IGC.0b013e3181cc25c3 PMID: 20134268]
[70]
Guo, B-Q.; Lu, W-Q. The prognostic significance of high/positive expression of tissue VEGF in ovarian cancer. Oncotarget, 2018, 9(55), 30552-30560.
[http://dx.doi.org/10.18632/oncotarget.25702] [PMID: 30093968]
[71]
Gold, P.; Freedman, S.O. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J. Exp. Med., 1965, 121, 439-462.
[http://dx.doi.org/10.1084/jem.121.3.439] [PMID: 14270243]
[72]
Ueland, F.R. A perspective on ovarian cancer biomarkers: Past, present and yet-to-come. Diagnostics (Basel), 2017, 7(1), 14.
[http://dx.doi.org/10.3390/diagnostics7010014] [PMID: 28282875]
[73]
Khoo, S.K.; MacKay, E.V. Carcinoembryonic antigen (CEA) in ovarian cancer: factors influencing its incidence and changes which occur in response to cytotoxic drugs. Br. J. Obstet. Gynaecol., 1976, 83(10), 753-759.
[http://dx.doi.org/10.1111/j.1471-0528.1976.tb00739.x PMID: 990213]
[74]
Bast, R.C., Jr; Feeney, M.; Lazarus, H.; Nadler, L.M.; Colvin, R.B.; Knapp, R.C. Reactivity of a monoclonal antibody with human ovarian carcinoma. J. Clin. Invest., 1981, 68(5), 1331-1337.
[http://dx.doi.org/10.1172/JCI110380] [PMID: 7028788]
[75]
Moore, R.G.; Miller, M.C.; Disilvestro, P.; Landrum, L.M.; Gajewski, W.; Ball, J.J.; Skates, S.J. Evaluation of the diagnostic accuracy of the risk of ovarian malignancy algorithm in women with a pelvic mass. Obstet. Gynecol., 2011, 118(2 Pt 1), 280-288.
[http://dx.doi.org/10.1097/AOG.0b013e318224fce2 PMID: 21775843]
[76]
Ueland, F.R.; Desimone, C.P.; Seamon, L.G.; Miller, R.A.; Goodrich, S.; Podzielinski, I.; Sokoll, L.; Smith, A.; van Nagell, J.R., Jr; Zhang, Z. Effectiveness of a multivariate index assay in the preoperative assessment of ovarian tumors. Obstet. Gynecol., 2011, 117(6), 1289-1297.
[http://dx.doi.org/10.1097/AOG.0b013e31821b5118 PMID: 21606739]
[77]
Zhang, Z.; Chan, D.W. The road from discovery to clinical diagnostics: lessons learned from the first FDA-cleared in vitro diagnostic multivariate index assay of proteomic biomarkers. Cancer Epidemiol. Biomarkers Prev., 2010, 19(12), 2995-2999.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0580 PMID: 20962299]
[78]
Coleman, R.; Herzog, T.; Chan, D.; Munroe, D.; Pappas, T.; Smith, A.; Zhang, Z.; Wolf, J. Validation of a second-generation multivariate index assay for malignancy risk of adnexal masses. Am. J. Obstet. Gynecol., 2016, 215(82), e1-e82.
[http://dx.doi.org/10.1016/j.ajog.2016.03.003]
[79]
Jacobs, I.J.; Menon, U.; Ryan, A.; Gentry-Maharaj, A.; Burnell, M.; Kalsi, J.K.; Amso, N.N.; Apostolidou, S.; Benjamin, E.; Cruickshank, D.; Crump, D.N.; Davies, S.K.; Dawnay, A.; Dobbs, S.; Fletcher, G.; Ford, J.; Godfrey, K.; Gunu, R.; Habib, M.; Hallett, R.; Herod, J.; Jenkins, H.; Karpinskyj, C.; Leeson, S.; Lewis, S.J.; Liston, W.R.; Lopes, A.; Mould, T.; Murdoch, J.; Oram, D.; Rabideau, D.J.; Reynolds, K.; Scott, I.; Seif, M.W.; Sharma, A.; Singh, N.; Taylor, J.; Warburton, F.; Widschwendter, M.; Williamson, K.; Woolas, R.; Fallowfield, L.; McGuire, A.J.; Campbell, S.; Parmar, M.; Skates, S.J. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet, 2016, 387(10022), 945-956.
[http://dx.doi.org/10.1016/S0140-6736(15)01224-6 PMID: 26707054]
[80]
Ormsby, E.L.; Pavlik, E.J.; van Nagell, J.R. Ultrasound follow up of an adnexal mass has the potential to save lives. Am. J. Obstet. Gynecol., 2015, 213(5), 657-661.
[http://dx.doi.org/10.1016/j.ajog.2015.06.041] [PMID: 26116103]
[81]
Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer, 2011, 11(6), 426-437.
[http://dx.doi.org/10.1038/nrc3066] [PMID: 21562580]
[82]
Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; Antonarakis, E.S.; Azad, N.S.; Bardelli, A.; Brem, H.; Cameron, J.L.; Lee, C.C.; Fecher, L.A.; Gallia, G.L.; Gibbs, P.; Le, D.; Giuntoli, R.L.; Goggins, M.; Hogarty, M.D.; Holdhoff, M.; Hong, S.M.; Jiao, Y.; Juhl, H.H.; Kim, J.J.; Siravegna, G.; Laheru, D.A.; Lauricella, C.; Lim, M.; Lipson, E.J.; Marie, S.K.; Netto, G.J.; Oliner, K.S.; Olivi, A.; Olsson, L.; Riggins, G.J.; Sartore-Bianchi, A.; Schmidt, K.; Shih, M.; Oba-Shinjo, S.M.; Siena, S.; Theodorescu, D.; Tie, J.; Harkins, T.T.; Veronese, S.; Wang, T.L.; Weingart, J.D.; Wolfgang, C.L.; Wood, L.D.; Xing, D.; Hruban, R.H.; Wu, J.; Allen, P.J.; Schmidt, C.M.; Choti, M.A.; Velculescu, V.E.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N.; Diaz, L.A., Jr Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med., 2014, 6(224)224ra24
[http://dx.doi.org/10.1126/scitranslmed.3007094] [PMID: 24553385]
[83]
Kulbe, H.; Otto, R.; Darb-Esfahani, S.; Lammert, H.; Abobaker, S.; Welsch, G.; Chekerov, R.; Schäfer, R.; Dragun, D.; Hummel, M.; Leser, U.; Sehouli, J.; Braicu, E.I. Discovery and validation of novel biomarkers for detection of epithelial ovarian cancer. Cells, 2019, 8(7), 713.
[http://dx.doi.org/10.3390/cells8070713] [PMID: 31336942]
[84]
Sourbier, C. Ovarian cancer: emerging molecular-targeted therapies. Biologics, 2012, 6, 147-154.
[http://dx.doi.org/10.2147/BTT.S24155] [PMID: 22807625]
[85]
Hall, M.; Gourley, C.; McNeish, I.; Ledermann, J.; Gore, M.; Jayson, G.; Perren, T.; Rustin, G.; Kaye, S. Targeted anti-vascular therapies for ovarian cancer: current evidence. Br. J. Cancer, 2013, 108(2), 250-258.
[http://dx.doi.org/10.1038/bjc.2012.541] [PMID: 23385789]
[86]
Lim, H.J.; Ledger, W. Targeted therapy in ovarian cancer. Womens Health (Lond), 2016, 12(3), 363-378.
[http://dx.doi.org/10.2217/whe.16.4] [PMID: 27215391]
[87]
Huang, H.; Bhat, A.; Woodnutt, G.; Lappe, R. Targeting the ANGPT-TIE2 pathway in malignancy. Nat. Rev. Cancer, 2010, 10(8), 575-585.
[http://dx.doi.org/10.1038/nrc2894] [PMID: 20651738]
[88]
Vergote, I.; Oaknin, A.; Baurain, J.F.; Ananda, S.; Wong, S.; Su, X.; Wu, B.; Zhong, Z.; Warner, D.; Casado, A. A phase 1b, open-label study of trebananib in combination with paclitaxel and carboplatin in patients with ovarian cancer receiving interval or primary debulking surgery. Eur. J. Cancer, 2014, 50(14), 2408-2416.
[http://dx.doi.org/10.1016/j.ejca.2014.06.010] [PMID: 25037684]
[89]
Rouleau, M.; Patel, A.; Hendzel, M.J.; Kaufmann, S.H.; Poirier, G.G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer, 2010, 10(4), 293-301.
[http://dx.doi.org/10.1038/nrc2812] [PMID: 20200537]
[90]
Dziadkowiec, K.N.; Gąsiorowska, E.; Nowak-Markwitz, E.; Jankowska, A. PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. Przegl. Menopauz., 2016, 15(4), 215-219.
[http://dx.doi.org/10.5114/pm.2016.65667] [PMID: 28250726]
[91]
Ang, J.E.; Gourley, C.; Powell, C.B.; High, H.; Shapira-Frommer, R.; Castonguay, V.; De Greve, J.; Atkinson, T.; Yap, T.A.; Sandhu, S.; Banerjee, S.; Chen, L.M.; Friedlander, M.L.; Kaufman, B.; Oza, A.M.; Matulonis, U.; Barber, L.J.; Kozarewa, I.; Fenwick, K.; Assiotis, I.; Campbell, J.; Chen, L.; de Bono, J.S.; Gore, M.E.; Lord, C.J.; Ashworth, A.; Kaye, S.B. Efficacy of chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of PARP inhibitor resistance: a multi-institutional study. Clin. Cancer Res., 2013, 19(19), 5485-5493.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1262 PMID: 23922302]
[92]
Ledermann, J.; Harter, P.; Gourley, C.; Friedlander, M.; Vergote, I.; Rustin, G.; Scott, C.; Meier, W.; Shapira-Frommer, R.; Safra, T.; Matei, D.; Macpherson, E.; Watkins, C.; Carmichael, J.; Matulonis, U. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med., 2012, 366(15), 1382-1392.
[http://dx.doi.org/10.1056/NEJMoa1105535] [PMID: 22452356]
[93]
Lee, J.M.; Hays, J.L.; Annunziata, C.M.; Noonan, A.M.; Minasian, L.; Zujewski, J.A.; Yu, M.; Gordon, N.; Ji, J.; Sissung, T.M.; Figg, W.D.; Azad, N.; Wood, B.J.; Doroshow, J.; Kohn, E.C. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J. Natl. Cancer Inst., 2014, 106(6)
[http://dx.doi.org/10.1093/jnci/dju089] [PMID: 24842883]
[94]
Tutt, A.; Robson, M.; Garber, J.E.; Domchek, S.M.; Audeh, M.W.; Weitzel, J.N.; Friedlander, M.; Arun, B.; Loman, N.; Schmutzler, R.K.; Wardley, A.; Mitchell, G.; Earl, H.; Wickens, M.; Carmichael, J. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet, 2010, 376(9737), 235-244.
[http://dx.doi.org/10.1016/S0140-6736(10)60892-6 PMID: 20609467]
[95]
Raja, F.A.; Chopra, N.; Ledermann, J.A. Optimal first-line treatment in ovarian cancer. Ann. Oncol., 2012, 23(10)(Suppl. 10), x118-x127.
[http://dx.doi.org/10.1093/annonc/mds315] [PMID: 22987945]
[96]
Weroha, S.J.; Haluska, P. IGF-1 receptor inhibitors in clinical trials--early lessons. J. Mammary Gland Biol. Neoplasia, 2008, 13(4), 471-483.
[http://dx.doi.org/10.1007/s10911-008-9104-6] [PMID: 19023648]
[97]
Ray-Coquard, I.; Haluska, P.; O’Reilly, S.; Cottu, P.H.; Elit, L.; Provencher, D.M.; Beckmann, M.W.; Bosserman, L.D.; Jacod, S.; Houe, V.; Loberg, R.D.; Glaspy, J.A.; Karlan, B.; Slamon, D.J.; Konecny, G.E. A multicenter open-label phase II study of the efficacy and safety of ganitumab (AMG 479), a fully human monoclonal antibody against insulin-like growth factor type 1 receptor (IGF-1R) as second-line therapy in patients with recurrent platinum-sensitive ovarian cancer. ASCO Annual. Meeting.,, 2013, 31(p5515)
[98]
Ledermann, J.A.; Canevari, S.; Thigpen, T. Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Ann. Oncol., 2015, 26(10), 2034-2043.
[http://dx.doi.org/10.1093/annonc/mdv250] [PMID: 26063635]
[99]
Farrell, C.; Schweizer, C.; Wustner, J.; Weil, S.; Namiki, M.; Nakano, T.; Nakai, K.; Phillips, M.D. Population pharmacokinetics of farletuzumab, a humanized monoclonal antibody against folate receptor alpha, in epithelial ovarian cancer. Cancer Chemother. Pharmacol., 2012, 70(5), 727-734.
[http://dx.doi.org/10.1007/s00280-012-1959-y] [PMID: 22955257]
[100]
Armstrong, D.K.; White, A.J.; Weil, S.C.; Phillips, M.; Coleman, R.L. Farletuzumab (a monoclonal antibody against folate receptor alpha) in relapsed platinum-sensitive ovarian cancer. Gynecol. Oncol., 2013, 129(3), 452-458.
[http://dx.doi.org/10.1016/j.ygyno.2013.03.002] [PMID: 23474348]
[101]
Gibbs, D.D.; Theti, D.S.; Wood, N.; Green, M.; Raynaud, F.; Valenti, M.; Forster, M.D.; Mitchell, F.; Bavetsias, V.; Henderson, E.; Jackman, A.L. BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res., 2005, 65(24), 11721-11728.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2034 PMID: 16357184]
[102]
Germano, G.; Frapolli, R.; Belgiovine, C.; Anselmo, A.; Pesce, S.; Liguori, M.; Erba, E.; Uboldi, S.; Zucchetti, M.; Pasqualini, F.; Nebuloni, M.; van Rooijen, N.; Mortarini, R.; Beltrame, L.; Marchini, S.; Fuso Nerini, I.; Sanfilippo, R.; Casali, P.G.; Pilotti, S.; Galmarini, C.M.; Anichini, A.; Mantovani, A.; D’Incalci, M.; Allavena, P. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell, 2013, 23(2), 249-262.
[http://dx.doi.org/10.1016/j.ccr.2013.01.008] [PMID: 23410977]
[103]
Belgiovine, C.; Bello, E.; Liguori, M.; Craparotta, I.; Mannarino, L.; Paracchini, L.; Beltrame, L.; Marchini, S.; Galmarini, C.M.; Mantovani, A.; Frapolli, R.; Allavena, P.; D’Incalci, M. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. Br. J. Cancer, 2017, 117(5), 628-638.
[http://dx.doi.org/10.1038/bjc.2017.205] [PMID: 28683469]
[104]
Noel, M.S.; Hezel, A.F.; Linehan, D.; Wang-Gillam, A.; Eskens, F.; Sleijfer, S.; Desar, I.; Erdkamp, F.; Wilmink, J.; Diehl, J.; Potarca, A.; Zhao, N.; Deng, J.; Lohr, L.; Miao, S.C.; Charo, I.; Singh, R.; Schall, T.J.; Bekker, P. Orally administered CCR2 selective inhibitor CCX872-b clinical trial in pancreatic cancer. J. Clin. Oncol., 2017, 35, 4.
[http://dx.doi.org/10.1200/JCO.2017.35.4_suppl.276]
[105]
Linehan, D.; Noel, M.S.; Hezel, A.F.; Wang-Gillam, A.; Eskens, F.; Sleijfer, S.; Desar, I.M.; Erdkamp, F.; Wilmink, J.; Diehl, J.; Potarca, A.; Zhao, N.; Miao, S.; Deng, J.; Hillson, J.; Bekker, P.; Schall, T.J.; Singh, R. Overall survival in a trial of orally administered CCR2 inhibitor CCX872 in locally advanced/metastatic pancreatic cancer: Correlation with blood monocyte counts. J. Clin. Oncol., 2018, 36, 5.
[http://dx.doi.org/10.1200/JCO.2018.36.5_suppl.92]
[106]
Pradel, L.P.; Ooi, C.H.; Romagnoli, S.; Cannarile, M.A.; Sade, H.; Rüttinger, D.; Ries, C.H. Macrophage susceptibility to emactuzumab (RG7155) treatment. Mol. Cancer Ther., 2016, 15(12), 3077-3086.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0157 PMID: 27582524]
[107]
Cannarile, M.A.; Weisser, M.; Jacob, W.; Jegg, A.M.; Ries, C.H.; Rüttinger, D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer, 2017, 5(1), 53.
[http://dx.doi.org/10.1186/s40425-017-0257-y] [PMID: 28716061]
[108]
Zhou, J.; Tang, Z.; Gao, S.; Li, C.; Feng, Y.; Zhou, X. Tumor-associated macrophages: Recent insights and therapies. Front. Oncol., 2020, 10, 188.
[http://dx.doi.org/10.3389/fonc.2020.00188] [PMID: 32161718]
[109]
Langdon, S.P.; Sims, A.H. HER2-targeted antibody treatment for ovarian cancer - future opportunities. Mol. Pharm. Org. Process Res., 2016, 4(1), 1.
[http://dx.doi.org/10.4172/2329-9053.1000e125]
[110]
Bookman, M.A.; Darcy, K.M.; Clarke-Pearson, D.; Boothby, R.A.; Horowitz, I.R. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J. Clin. Oncol., 2003, 21(2), 283-290.
[http://dx.doi.org/10.1200/JCO.2003.10.104] [PMID: 12525520]
[111]
Baselga, J.; Cortés, J.; Kim, S.B. Im, S.A.; Hegg, R.; Im, Y.H.; Roman, L.; Pedrini, J.L.; Pienkowski, T.; Knott, A.; Clark, E.; Benyunes, M.C.; Ross, G.; Swain, S.M. CLEOPATRA Study Group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med., 2012, 366(2), 109-119.
[http://dx.doi.org/10.1056/NEJMoa1113216] [PMID: 22149875]
[112]
Makhija, S.; Amler, L.C.; Glenn, D.; Ueland, F.R.; Gold, M.A.; Dizon, D.S.; Paton, V.; Lin, C.Y.; Januario, T.; Ng, K.; Strauss, A.; Kelsey, S.; Sliwkowski, M.X.; Matulonis, U. Clinical activity of gemcitabine plus pertuzumab in platinum-resistant ovarian cancer, fallopian tube cancer, or primary peritoneal cancer. J. Clin. Oncol., 2010, 28(7), 1215-1223.
[http://dx.doi.org/10.1200/JCO.2009.22.3354] [PMID: 19901115]
[113]
Tapia, G.; Diaz-Padilla, I. Molecular Mechanisms of Platinum Resistance in Ovarian Cancer.Ovarian Cancer - A clinical and translational update; IntechOpen: London, 2013.
[http://dx.doi.org/10.5772/55562]
[114]
Cisplatin , In: The American Society of Health-System Pharmacists, 2016. Available at: https://ashpublications.org/
[115]
Stordal, B.; Davey, M. Understanding cisplatin resistance using cellular models. IUBMB Life, 2007, 59(11), 696-699.
[http://dx.doi.org/10.1080/15216540701636287] [PMID: 17885832]
[116]
Stordal, B.; Pavlakis, N.; Davey, R. A systematic review of platinum and taxane resistance from bench to clinic: an inverse relationship. Cancer Treat. Rev., 2007, 33(8), 688-703.
[http://dx.doi.org/10.1016/j.ctrv.2007.07.013] [PMID: 17881133]
[117]
Siddik, Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[118]
Rabik, C.A.; Dolan, M.E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev., 2007, 33(1), 9-23.
[http://dx.doi.org/10.1016/j.ctrv.2006.09.006] [PMID: 17084534]
[119]
Borst, P.; Rottenberg, S.; Jonkers, J. How do real tumors become resistant to cisplatin? Cell cycle Georgetown Tex (Internet). Landes Biosci., 2008, 7(10), 1353-1359.
[120]
Gottesman, M.M.; Ling, V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett., 2006, 580(4), 998-1009.
[http://dx.doi.org/10.1016/j.febslet.2005.12.060] [PMID: 16405967]
[121]
Anthoney, D.A.; Kaye, S.B. Drug resistance: the clinical perspective. Methods Mol. Med., 1999, 28, 1-15.
[PMID: 21374022]
[122]
Balasubramanian, K.; Liao, D.W. Spectroscopic properties of low-lying electronic states of rhodium dimer. J. Phys. Chem., 1989, 93(10), 3989-3992.
[http://dx.doi.org/10.1021/j100347a025]
[123]
Majumdar, D.; Balasubramanian, K.; Nitsche, H. A comparative theoretical study of bonding in UO22+, UO2+, UO2, UO2−, OUCO, O2U (CO)2 and UO2CO3. Chem. Phys. Lett., 2002, 361(1-2), 143-151.
[http://dx.doi.org/10.1016/S0009-2614(02)00899-0]
[124]
Balasubramanian, K.; Feng, P.Y. Potential‐energy surfaces for Pt2+ H and Pt+ H interactions. J. Chem. Phys., 1990, 92(1), 541-550.
[http://dx.doi.org/10.1063/1.458457]
[125]
Balasubramanian, K. Ten low-lying electronic states of Pd3. J. Chem. Phys., 1989, 91(1), 307-313.
[http://dx.doi.org/10.1063/1.457518]
[126]
Balasubramanian, K. Relativistic calculations of electronic states and potential energy surfaces of Sn3. J. Chem. Phys., 1986, 85(6), 3401-3406.
[http://dx.doi.org/10.1063/1.451815]
[127]
Balasubramanian, K. Relativistic effects in chemistry: Part B: Applications; Wiley: Hoboken, 1997, p. 527.
[128]
Pitzer, K.S., Ed.; Molecular Structure and Statistical Thermodynamics: Selected Papers of Kenneth S. Pitzer; World Scientific, 1993.
[http://dx.doi.org/10.1142/2063]
[129]
Balasubramanian, K.; Pitzer, K.S. Relativistic quantum chemistry. Adv. Chem. Phys., 1987, 67, 287-320.
[130]
Stevens, W.J.; Krauss, M.; Basch, H.; Jasien, P.G. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can. J. Chem., 1992, 70(2), 612-630.
[http://dx.doi.org/10.1139/v92-085]
[131]
Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys., 1985, 82(1), 270-283.
[http://dx.doi.org/10.1063/1.448799]
[132]
Mantri, Y.; Baik, M.H. Computational studies: cisplatin. In: Encyclopedia of Inorganic Chemistry; John Wiley & Sons: NY, 2011.
[http://dx.doi.org//10.1002/9781119951438.eibc0388]
[133]
Lippert, B., Ed.; Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug; John Wiley & Sons: Hoboken, 1999.
[http://dx.doi.org/10.1002/9783906390420]
[134]
McCarthy, S.L.; Hinde, R.J.; Miller, K.J.; Anderson, J.S.; Basch, H.; Krauss, M. Theoretical studies of cis-Pt(II)-diammine binding to duplex DNA. Biopolymers, 1990, 29(4-5), 823-836.
[http://dx.doi.org/10.1002/bip.360290416] [PMID: 2383646]
[135]
Miller, K.J.; McCarthy, S.L.; Krauss, M. Binding of cis(1,2-diaminocyclohexane)platinum(II) and its derivatives to duplex DNA. J. Med. Chem., 1990, 33(3), 1043-1046.
[http://dx.doi.org/10.1021/jm00165a025] [PMID: 2308136]
[136]
Miller, K.J.; Taylor, E.R.; Basch, H.; Krauss, M.; Stevens, W.J. A theoretical model for the binding of cis-Pt(NH3)2(+2) to DNA. J. Biomol. Struct. Dyn., 1985, 2(6), 1157-1171.
[http://dx.doi.org/10.1080/07391102.1985.10507630 PMID: 3916946]
[137]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320.
[http://dx.doi.org/10.1038/nrd1691] [PMID: 15789122]
[138]
Marques, M.P. Platinum and palladium polyamine complexes as anticancer agents: the structural factor. ISRN Spectroscopy, 2013, 287353, 1-29.
[http://dx.doi.org/10.1155/2013/287353]
[139]
Reedijk, J. New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3611-3616.
[http://dx.doi.org/10.1073/pnas.0737293100] [PMID: 12655051]
[140]
Kaufman, J.J.; Hariharan, P.C.; Koski, W.S.; Balasubramanian, K. Quantum chemical and other theoretical studies of carcinogens, their metabolic activation and attack on DNA constituents. Prog. Clin. Biol. Res., 1985, 172A, 263-275.
[PMID: 3991675]
[141]
Mitra, K.; Gautam, S.; Kondaiah, P.; Chakravarty, A.R. Platinum (II) complexes of curcumin showing photocytotoxicity in visible light. Eur. J. Inorg. Chem., 2017, 12, 1753-1763.
[http://dx.doi.org/10.1002/ejic.201601078]
[142]
Upadhyay, A.; Gautam, S.; Ramu, V.; Kondaiah, P.; Chakravarty, A.R. Photocytotoxic cancer cell-targeting platinum(ii) complexes of glucose-appended curcumin and biotinylated 1,10-phenanthroline. Dalton Trans., 2019, 48(47), 17556-17565.
[http://dx.doi.org/10.1039/C9DT03490K] [PMID: 31748772]
[143]
Hossein-nezhad, A.; Holick, M.F. Vitamin D for health: a global perspective. Mayo Clin. Proc., 2013, 88(7), 720-755.
[http://dx.doi.org/10.1016/j.mayocp.2013.05.011] [PMID: 23790560]
[144]
Ong, J.S.; Cuellar-Partida, G.; Lu, Y.; Fasching, P.A.; Hein, A.; Burghaus, S.; Beckmann, M.W.; Lambrechts, D.; Van Nieuwenhuysen, E.; Vergote, I.; Vanderstichele, A.; Anne Doherty, J.; Anne Rossing, M.; Chang-Claude, J.; Eilber, U.; Rudolph, A.; Wang-Gohrke, S.; Goodman, M.T.; Bogdanova, N.; Dörk, T.; Dürst, M.; Hillemanns, P.; Runnebaum, I.B.; Antonenkova, N.; Butzow, R.; Leminen, A.; Nevanlinna, H.; Pelttari, L.M.; Edwards, R.P.; Kelley, J.L.; Modugno, F.; Moysich, K.B.; Ness, R.B.; Cannioto, R.; Høgdall, E.; Høgdall, C.K.; Jensen, A.; Giles, G.G.; Bruinsma, F.; Kjaer, S.K.; Hildebrandt, M.A.; Liang, D.; Lu, K.H.; Wu, X.; Bisogna, M.; Dao, F.; Levine, D.A.; Cramer, D.W.; Terry, K.L.; Tworoger, S.S.; Stampfer, M.; Missmer, S.; Bjorge, L.; Salvesen, H.B.; Kopperud, R.K.; Bischof, K.; Aben, K.K.; Kiemeney, L.A.; Massuger, L.F.; Brooks-Wilson, A.; Olson, S.H.; McGuire, V.; Rothstein, J.H.; Sieh, W.; Whittemore, A.S.; Cook, L.S.; Le, N.D.; Gilks, C.B.; Gronwald, J.; Jakubowska, A.; Lubiński, J.; Kluz, T.; Song, H.; Tyrer, J.P.; Wentzensen, N.; Brinton, L.; Trabert, B.; Lissowska, J.; McLaughlin, J.R.; Narod, S.A.; Phelan, C.; Anton-Culver, H.; Ziogas, A.; Eccles, D.; Campbell, I.; Gayther, S.A.; Gentry-Maharaj, A.; Menon, U.; Ramus, S.J.; Wu, A.H.; Dansonka-Mieszkowska, A.; Kupryjanczyk, J.; Timorek, A.; Szafron, L.; Cunningham, J.M.; Fridley, B.L.; Winham, S.J.; Bandera, E.V.; Poole, E.M.; Morgan, T.K.; Risch, H.A.; Goode, E.L.; Schildkraut, J.M.; Pearce, C.L.; Berchuck, A.; Pharoah, P.D.; Chenevix-Trench, G.; Gharahkhani, P.; Neale, R.E.; Webb, P.M.; MacGregor, S. Australian Ovarian Cancer Study. Association of vitamin D levels and risk of ovarian cancer: a Mendelian randomization study. Int. J. Epidemiol., 2016, 45(5), 1619-1630.
[http://dx.doi.org/10.1093/ije/dyw207] [PMID: 27594614]
[145]
Keum, N.; Lee, D.H.; Greenwood, D.C.; Manson, J.E.; Giovannucci, E. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann. Oncol., 2019, 30(5), 733-743.
[http://dx.doi.org/10.1093/annonc/mdz059] [PMID: 30796437]
[146]
Deeb, K.K.; Trump, D.L.; Johnson, C.S. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat. Rev. Cancer, 2007, 7(9), 684-700.
[http://dx.doi.org/10.1038/nrc2196] [PMID: 17721433]
[147]
Peterlik, M.; Grant, W.B.; Cross, H.S. Calcium, vitamin D and cancer. Anticancer Res., 2009, 29(9), 3687-3698.
[PMID: 19667166]
[148]
Deuster, E.; Jeschke, U.; Ye, Y.; Mahner, S.; Czogalla, B. Vitamin D and VDR in gynecological cancers-a systematic review. Int. J. Mol. Sci., 2017, 18(11), 2328.
[http://dx.doi.org/10.3390/ijms18112328] [PMID: 29113037]
[149]
Zehnder, D.; Bland, R.; Williams, M.C.; McNinch, R.W.; Howie, A.J.; Stewart, P.M.; Hewison, M. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J. Clin. Endocrinol. Metab., 2001, 86(2), 888-894.
[PMID: 11158062]
[150]
Ritter, C.S.; Haughey, B.H.; Armbrecht, H.J.; Brown, A.J. Distribution and regulation of the 25-hydroxyvitamin D3 1α-hydroxylase in human parathyroid glands. J. Steroid Biochem. Mol. Biol., 2012, 130(1-2), 73-80.
[http://dx.doi.org/10.1016/j.jsbmb.2012.01.010] [PMID: 22326730]
[151]
Jiang, F.; Bao, J.; Li, P.; Nicosia, S.V.; Bai, W. Induction of ovarian cancer cell apoptosis by 1,25-dihydroxyvitamin D3 through the down-regulation of telomerase. J. Biol. Chem., 2004, 279(51), 53213-53221.
[http://dx.doi.org/10.1074/jbc.M410395200] [PMID: 15485861]
[152]
Li, P.; Li, C.; Zhao, X.; Zhang, X.; Nicosia, S.V.; Bai, W. p27(Kip1) stabilization and G(1) arrest by 1,25-dihydroxyvitamin D(3) in ovarian cancer cells mediated through down-regulation of cyclin E/cyclin-dependent kinase 2 and Skp1-Cullin-F-box protein/Skp2 ubiquitin ligase. J. Biol. Chem., 2004, 279(24), 25260-25267.
[http://dx.doi.org/10.1074/jbc.M311052200] [PMID: 15075339]
[153]
Guo, H.; Guo, J.; Xie, W.; Yuan, L.; Sheng, X. The role of vitamin D in ovarian cancer: epidemiology, molecular mechanism and prevention. J. Ovarian Res., 2018, 11(1), 71.
[http://dx.doi.org/10.1186/s13048-018-0443-7] [PMID: 30157901]
[154]
Shen, Z.; Zhang, X.; Tang, J.; Kasiappan, R.; Jinwal, U.; Li, P.; Hann, S.; Nicosia, S.V.; Wu, J.; Zhang, X.; Bai, W. The coupling of epidermal growth factor receptor down regulation by 1alpha,25-dihydroxyvitamin D3 to the hormone-induced cell cycle arrest at the G1-S checkpoint in ovarian cancer cells. Mol. Cell. Endocrinol., 2011, 338(1-2), 58-67.
[http://dx.doi.org/10.1016/j.mce.2011.02.023] [PMID: 21458521]
[155]
Dovnik, A.; Dovnik, N.F. Vitamin D and Ovarian Cancer: Systematic review of the literature with a focus on molecular mechanisms. Cells, 2020, 9(2), 335.
[http://dx.doi.org/10.3390/cells9020335] [PMID: 32024052]
[156]
Shang, L.; Xie, F.; Li, J.; Zhang, Y.; Liu, M.; Zhao, P.; Ma, X.; Lebaron, T.W. Therapeutic potential of molecular hydrogen in ovarian cancer. Transl. Cancer Res., 2018, 7(4), 988-995.
[http://dx.doi.org/10.21037/tcr.2018.07.09]
[157]
Wang, D.; Wang, L.; Zhang, Y.; Zhao, Y.; Chen, G. Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomed. Pharmacother., 2018, 104, 788-797.
[http://dx.doi.org/10.1016/j.biopha.2018.05.055] [PMID: 29852353]
[158]
Ford, D.; Easton, D.F.; Bishop, D.T.; Narod, S.A.; Goldgar, D.E. Breast Cancer Linkage Consortium. Risks of cancer in BRCA1- mutation carriers Lancet, 1994, 343(8899), 692-695.
[http://dx.doi.org/10.1016/S0140-6736(94)91578-4] [PMID: 7907678]
[159]
Katritzky, A.R.; Girgis, A.S.; Slavov, S.; Tala, S.R.; Stoyanova-Slavova, I. QSAR modeling, synthesis and bioassay of diverse leukemia RPMI-8226 cell line active agents. Eur. J. Med. Chem., 2010, 45(11), 5183-5199.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.033] [PMID: 20843586]
[160]
Basak, S.C.; Gute, B.D.; Witzmann, F. Information-theoretic biodescriptors for proteomics maps: Development and applications in predictive toxicology. WSEAS Trans. Inform. Sci. Applic., 2005, 2(7), 996-1001.
[161]
Balasubramanian, K.; Khokhani, K.; Basak, S.C. Complex graph matrix representations and characterizations of proteomic maps and chemically induced changes to proteomes. J. Proteome Res., 2006, 5(5), 1133-1142.
[http://dx.doi.org/10.1021/pr050445s] [PMID: 16674102]
[162]
Randić, M.; Vracko, M.; Nandy, A.; Basak, S.C. On 3-D graphical representation of DNA primary sequences and their numerical characterization. J. Chem. Inf. Comput. Sci., 2000, 40(5), 1235-1244.
[http://dx.doi.org/10.1021/ci000034q] [PMID: 11045819]
[163]
Bielińska-Wa, D.; Clark, T.; Wa, P.; Nowak, W.; Nandy, A. 2D-dynamic representation of DNA sequences. Chem. Phys. Lett., 2007, 442(1-3), 140-144.
[http://dx.doi.org/10.1016/j.cplett.2007.05.050]
[164]
Lu, H.; Arshad, M.; Thornton, A.; Avesani, G.; Cunnea, P.; Curry, E.; Kanavati, F.; Liang, J.; Nixon, K.; Williams, S.T.; Hassan, M.A.; Bowtell, D.D.L.; Gabra, H.; Fotopoulou, C.; Rockall, A.; Aboagye, E.O. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat. Commun., 2019, 10(1), 764.
[http://dx.doi.org/10.1038/s41467-019-08718-9] [PMID: 30770825]
[165]
Toss, A.; Tomasello, C.; Razzaboni, E.; Contu, G.; Grandi, G.; Cagnacci, A.; Schilder, R.J.; Cortesi, L. Hereditary ovarian cancer: not only BRCA 1 and 2 genes. BioMed Res. Int., 2015. In Press
[http://dx.doi.org/10.1155/2015/341723] [PMID: 26075229]
[166]
(a) Sellers, P.H. On the theory and computation of evolutionary distances SIAM J. Appl. Math.,, 1974,, 26(4), 787-793.
[http://dx.doi.org//10.1137/0126070]
(b) Sellers, P.H. An algorithm for the distance between two finite sequences J. Comb. Theory Ser. A,, 1974,, 16(2), 253-258.
[http://dx.doi.org//10.1016/0097-3165(74)90050-8]

© 2024 Bentham Science Publishers | Privacy Policy