Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Perspective Article

Common Issues Among Asthma, Epilepsy, and Schizophrenia: From Inflammation to Ca2+/cAMP Signalling

Author(s): Leandro Bueno Bergantin*

Volume 20, Issue 3, 2021

Published on: 10 November, 2020

Page: [229 - 232] Pages: 4

DOI: 10.2174/1871523019999201110192029

Abstract

Background: A large amount of evidence has described that asthma may be associated with a high epilepsy risk, and epilepsy may be linked with high asthma risk, especially among children and individuals in their 30s. Curiously, asthma has also been associated with an increased risk for schizophrenia. Most interestingly, a bidirectional link between schizophrenia and epilepsy has also been established and has been of interest for many years.

Objective: Bearing in mind the experience of our group in the field of Ca2+/cAMP signalling pathways, this article discussed, beyond inflammation, the role of these signalling pathways in this link among epilepsy, asthma, and schizophrenia.

Methods: Publications involving these signalling pathways, asthma, epilepsy, and schizophrenia (alone or combined) were collected by searching PubMed and EMBASE.

Results and Conclusion: There is a clear relationship between Ca2+ signalling, e.g. increased Ca2+ signals and inflammatory responses. In addition to Ca2+, cAMP regulates pro- and anti-inflammatory responses. Then, beyond inflammation, the comprehension of the link among epilepsy, asthma, and schizophrenia could improve the drug therapy.

Keywords: Epilepsy, asthma, schizophrenia, Ca2+/cAMP signalling, Ca2+ channel blockers, pharmacotherapy.

Next »
Graphical Abstract
[1]
Chiang, K.L.; Kuo, F.C.; Lee, J.Y.; Huang, C.Y. Association of epilepsy and asthma: a population-based retrospective cohort study. Peer J, 2018, 6, e4792.
[http://dx.doi.org/10.7717/peerj.4792] [PMID: 29796346]
[2]
Wang, W.C.; Lu, M.L.; Chen, V.C.; Ng, M.H.; Huang, K.Y.; Hsieh, M.H.; Hsieh, M.J.; McIntyre, R.S.; Lee, Y.; Lee, C.T. Asthma, corticosteroid use and schizophrenia: A nationwide population-based study in Taiwan. PLoS One, 2017, 12(3), e0173063.
[http://dx.doi.org/10.1371/journal.pone.0173063] [PMID: 28350822]
[3]
Chang, Y.T.; Chen, P.C.; Tsai, I.J.; Sung, F.C.; Chin, Z.N.; Kuo, H.T.; Tsai, C.H.; Chou, I.C. Bidirectional relation between schizophrenia and epilepsy: A population-based retrospective cohort study. Epilepsia, 2011, 52(11), 2036-2042.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03268.x] [PMID: 21929680]
[4]
Sama, D.M.; Norris, C.M. Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res. Rev., 2013, 12(4), 982-995.
[http://dx.doi.org/10.1016/j.arr.2013.05.008] [PMID: 23751484]
[5]
Park, K.M.; Yule, D.I.; Bowers, W.J. Tumor necrosis factor-alpha potentiates intraneuronal Ca2+ signaling via regulation of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem., 2008, 283(48), 33069-33079.
[http://dx.doi.org/10.1074/jbc.M802209200] [PMID: 18838384]
[6]
Pollock, J.; McFarlane, S.M.; Connell, M.C.; Zehavi, U.; Vandenabeele, P.; MacEwan, D.J.; Scott, R.H. TNF-alpha receptors simultaneously activate Ca2+ mobilisation and stress kinases in cultured sensory neurones. Neuropharmacology, 2002, 42(1), 93-106.
[http://dx.doi.org/10.1016/S0028-3908(01)00163-0] [PMID: 11750919]
[7]
Furukawa, K.; Mattson, M.P. The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J. Neurochem., 1998, 70(5), 1876-1886.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70051876.x] [PMID: 9572271]
[8]
Dalal, P.J.; Muller, W.A.; Sullivan, D.P. Endothelial Cell Calcium Signaling during Barrier Function and Inflammation. Am. J. Pathol., 2020, 190(3), 535-542.
[http://dx.doi.org/10.1016/j.ajpath.2019.11.004] [PMID: 31866349]
[9]
Murdoch, J.R.; Lloyd, C.M. Chronic inflammation and asthma. Mutat. Res., 2010, 690(1-2), 24-39.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.09.005] [PMID: 19769993]
[10]
Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178] [PMID: 21135885]
[11]
Khandaker, G.M.; Cousins, L.; Deakin, J.; Lennox, B.R.; Yolken, R.; Jones, P.B. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry, 2015, 2(3), 258-270.
[http://dx.doi.org/10.1016/S2215-0366(14)00122-9] [PMID: 26359903]
[12]
Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol. Psychiatry, 2011, 70(7), 663-671.
[http://dx.doi.org/10.1016/j.biopsych.2011.04.013] [PMID: 21641581]
[13]
Potvin, S.; Stip, E.; Sepehry, A.A.; Gendron, A.; Bah, R.; Kouassi, E. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol. Psychiatry, 2008, 63(8), 801-808.
[http://dx.doi.org/10.1016/j.biopsych.2007.09.024] [PMID: 18005941]
[14]
Upthegrove, R.; Manzanares-Teson, N.; Barnes, N.M. Cytokine function in medication-naive first episode psychosis: A systematic review and meta-analysis. Schizophr. Res., 2014, 155(1-3), 101-108.
[http://dx.doi.org/10.1016/j.schres.2014.03.005] [PMID: 24704219]
[15]
Ribeiro, C.M. The role of intracellular calcium signals in inflammatory responses of polarised cystic fibrosis human airway epithelia. Drugs R D., 2006, 7(1), 17-31.
[http://dx.doi.org/10.2165/00126839-200607010-00002] [PMID: 16620134]
[16]
Raker, V.K.; Becker, C.; Steinbrink, K. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases. Front. Immunol., 2016, 7, 123.
[http://dx.doi.org/10.3389/fimmu.2016.00123] [PMID: 27065076]
[17]
Mao, L.Y.; Ding, J.; Peng, W.F.; Ma, Y.; Zhang, Y.H.; Fan, W.; Wang, X. Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia, 2013, 54(9), e142-e145.
[http://dx.doi.org/10.1111/epi.12337] [PMID: 23944193]
[18]
Ganguli, R.; Rabin, B.S.; Kelly, R.H.; Lyte, M.; Ragu, U. Clinical and laboratory evidence of autoimmunity in acute schizophrenia. Ann. N. Y. Acad. Sci., 1987, 496, 676-685.
[http://dx.doi.org/10.1111/j.1749-6632.1987.tb35829.x] [PMID: 3474998]
[19]
Bergantin, L.B. The complex link between schizophrenia and dementia: Targeting Ca2+/cAMP signalling. Curr. Pharm. Des., 2020, 26(27), 3326-3331. Epub ahead of print
[http://dx.doi.org/10.2174/1381612826666200318144521] [PMID: 32186273]
[20]
Bergantin, L.B. The interplay between asthma and other diseases: Role of Ca2+/cAMP Signalling. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(3), 321-327.
[http://dx.doi.org/10.2174/1871530319666190828145854] [PMID: 31456527]
[21]
Bergantin, L.B.; Caricati-Neto, A. The “Calcium Paradox” and its Impact on Neurological and Psychiatric Diseases; Cambridge Scholars Publishing, 2018.
[22]
Bergantin, L.B. A link between brain insulin resistance and cognitive dysfunctions: targeting Ca2+/cAMP signalling. Cent. Nerv. Syst. Agents Med. Chem., 2020, 20(2), 103-109. Epub ahead of print
[http://dx.doi.org/10.2174/1871524920666200129121232] [PMID: 31995022]
[23]
Bergantin, L.B. Hypertension, Diabetes and Neurodegenerative Diseases: Is there a Clinical Link through the Ca2+/cAMP Signalling Interaction? Curr. Hypertens. Rev., 2019, 15(1), 32-39.
[http://dx.doi.org/10.2174/1573402114666180817113242] [PMID: 30117399]
[24]
Steinlein, O.K. Calcium signaling and epilepsy. Cell Tissue Res., 2014, 357(2), 385-393.
[http://dx.doi.org/10.1007/s00441-014-1849-1] [PMID: 24723228]
[25]
Garver, D.L.; Johnson, C.; Kanter, D.R. Schizophrenia and reduced cyclic AMP production: evidence for the role of receptor-linked events. Life Sci., 1982, 31(18), 1987-1992.
[http://dx.doi.org/10.1016/0024-3205(82)90037-6] [PMID: 6294425]
[26]
Muly, C. Signal transduction abnormalities in schizophrenia: The cAMP system. Psychopharmacol. Bull., 2002, 36(4), 92-105.
[PMID: 12858148]
[27]
Billington, C.K.; Ojo, O.O.; Penn, R.B.; Ito, S. cAMP regulation of airway smooth muscle function. Pulm. Pharmacol. Ther., 2013, 26(1), 112-120.
[http://dx.doi.org/10.1016/j.pupt.2012.05.007] [PMID: 22634112]
[28]
Ferrendelli, J.A.; Blank, A.C.; Gross, R.A. Relationships between seizure activity and cyclic nucleotide levels in brain. Brain Res., 1980, 200(1), 93-103.
[http://dx.doi.org/10.1016/0006-8993(80)91097-5] [PMID: 6251946]
[29]
Caricati-Neto, A.; García, A.G.; Bergantin, L.B. Pharmacological implications of the Ca(2+)/cAMP signaling interaction: from risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol. Res. Perspect., 2015, 3(5), e00181.
[http://dx.doi.org/10.1002/prp2.181] [PMID: 26516591]
[30]
Bergantin, L.B. Debating the “bidirectional link” between diabetes and depression through the Ca2+/cAMP signalling: Off-label effects of Ca2+ channel blockers. Pharmacol. Res., 2019, 141, 298-302.
[http://dx.doi.org/10.1016/j.phrs.2019.01.008] [PMID: 30639385]
[31]
Bergantin, L.B. Depression rises the risk of hypertension incidence: Discussing the link through the Ca2+/cAMP Signalling. Curr. Hypertens. Rev., 2020, 16(1), 73-78.
[http://dx.doi.org/10.2174/1573402115666190116095223] [PMID: 30648516]
[32]
Bergantin, L.B. A Hypothesis for the Relationship between Depression and Cancer: Role of Ca2+/cAMP Signalling. Anticancer. Agents Med. Chem., 2020, 20(7), 777-782. Epub ahead of print.
[http://dx.doi.org/10.2174/1871520620666200220113817] [PMID: 32077833]
[33]
Bergantin, L.B. The clinical link between depression and obesity: Role of Ca2+/cAMP signalling. Psychiatry Res., 2020, 291, 113167.
[http://dx.doi.org/10.1016/j.psychres.2020.113167] [PMID: 32562933]
[34]
Bergantin, L.B. The interactions between Alzheimer´s disease and major depression: Role of Ca2+ channel blockers and Ca2+/cAMP signalling. Curr. Drug Res. Rev., 2020, 12(2), 97-102.

© 2024 Bentham Science Publishers | Privacy Policy