Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Novel Antidiabetic Agents: Cardiovascular and Safety Outcomes

Author(s): Gerasimos Siasos*, Evanthia Bletsa, Panagiota K. Stampouloglou, Stavroula A. Paschou, Evangelos Oikonomou, Vasiliki Tsigkou, Alexios S. Antonopoulos, Manolis Vavuranakis and Dimitrios Tousoulis

Volume 26, Issue 46, 2020

Page: [5911 - 5932] Pages: 22

DOI: 10.2174/1381612826666201109110107

Price: $65

Abstract

Background: Concerns of elevated cardiovascular risk with some anti-diabetic medications warranted trials on the cardiovascular outcome to demonstrate cardiovascular safety of newly marketed anti-diabetic drugs. Although these trials were initially designed to evaluate safety, some of these demonstrated significant cardiovascular benefits.

Purpose of Review: We reviewed the cardiovascular and safety outcomes of novel antidiabetic agents in patients with type 2 diabetes and established cardiovascular disease or at high risk of it. We included the outcomes of safety trials, randomized controlled trials, meta-analysis, large cohort studies, and real-world data, which highlighted the cardiovascular profile of DPP-4is, GLP-1RAs and SGLT-2is.

Conclusion: Although DPP-4is demonstrated non-inferiority to placebo, gaining cardiovascular safety, as well market authorization, SGLT-2is and most of the GLP-1RAs have shown impressive cardiovascular benefits in patients with T2D and established CVD or at high risk of it. These favorable effects of novel antidiabetic agents on cardiovascular parameters provide novel therapeutic approaches in medical management, risk stratification and prevention.

Keywords: Antidiabetic agents, SGLT-2i, GLP1-RA, DPP-4i, cardiovascular disease, cardiovascular outcomes, cardiovascular safety, cardioprotection.

[1]
Salehi B, Ata A. V Anil Kumar N, et al Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019; 9(10): 551.
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[2]
Fras Z, Sahebkar A, Banach M. The Use of Aspirin in Contemporary Primary Prevention of Atherosclerotic Cardiovascular Diseases Revisited: The Increasing Need and Call for a Personalized Therapeutic Approach. Am J Cardiovasc Drugs 2020.
[http://dx.doi.org/10.1007/s40256-020-00424-y] [PMID: 32809173]
[3]
Kollia C, Antonopoulos AS, Siasos G, et al. Associations between Adiponectin Gene Variability, Proinflammatory and Angiogenetic Markers: Implications for Microvascular Disease Development in Type 2 Diabetes Mellitus? Curr Vasc Pharmacol 2019; 17(2): 204-8.
[http://dx.doi.org/10.2174/1570161116666180108113825] [PMID: 29308741]
[4]
Gouliopoulos N, Antonopoulos AS, Siasos G, et al. Macrovascular function indices for the prediction of diabetic retinopathy development in patients with type 2 diabetes. Eur J Prev Cardiol 2017; 24(13): 1405-7.
[http://dx.doi.org/10.1177/2047487317717823] [PMID: 28657342]
[5]
Siasos G, Paschou SA, Tousoulis D. Mitochondria and diabetes. Ann Transl Med 2020; 8(6): 262.
[http://dx.doi.org/10.21037/atm.2020.03.15] [PMID: 32355706]
[6]
Tentolouris A, Eleftheriadou I, Tzeravini E, et al. Endothelium as a Therapeutic Target in Diabetes Mellitus: From Basic Mechanisms to Clinical Practice. Curr Med Chem 2020; 27(7): 1089-131.
[http://dx.doi.org/10.2174/0929867326666190119154152] [PMID: 30663560]
[7]
Paschou SA, Siasos G, Bletsa E, et al. The Effect of Dipeptidyl Peptidase-4 Inhibitors (DPP-4i) on Endothelial Function and Arterial Stiffness in Patients with Type 2 Diabetes: a Systematic Review of Randomized Placebo-controlled Trials. Curr Pharm Des 2020. In press
[http://dx.doi.org/10.2174/1381612826666200417153241] [PMID: 32303166]
[8]
Antonopoulos AS, Siasos G, Tousoulis D. Microangiopathy, Arterial Stiffness, and Risk Stratification in Patients With Type 2 Diabetes. JAMA Cardiol 2017; 2(7): 820-1.
[http://dx.doi.org/10.1001/jamacardio.2017.0159] [PMID: 28297006]
[9]
Siasos G, Gouliopoulos N, Moschos MM, et al. Role of endothelial dysfunction and arterial stiffness in the development of diabetic retinopathy. Diabetes Care 2015; 38(1): e9-e10.
[http://dx.doi.org/10.2337/dc14-1741] [PMID: 25538324]
[10]
Ambrosini S, Mohammed SA, Lüscher TF, Costantino S, Paneni F. New Mechanisms of Vascular Dysfunction in Cardiometabolic Patients: Focus on Epigenetics. High Blood Press Cardiovasc Prev 2020; 27(5): 363-71.
[http://dx.doi.org/10.1007/s40292-020-00400-2] [PMID: 32740853]
[11]
Siasos G, Skotsimara G, Oikonomou E, et al. Antithrombotic Treatment in Diabetes Mellitus: A Review of the Literature about Antiplatelet and Anticoagulation Strategies Used for Diabetic Patients in Primary and Secondary Prevention. Curr Pharm Des 2020; 26(23): 2780-8.
[http://dx.doi.org/10.2174/1381612826666200417145605] [PMID: 32303164]
[12]
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359(15): 1577-89.
[http://dx.doi.org/10.1056/NEJMoa0806470] [PMID: 18784090]
[13]
Turnbull FM, Abraira C, Anderson RJ, et al. Control Group. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009; 52(11): 2288-98.
[http://dx.doi.org/10.1007/s00125-009-1470-0] [PMID: 19655124]
[14]
Gerstein HC, Miller ME. Action to control cardiovascular risk in diabetes Study Group, Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 2545-59.
[15]
Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356(24): 2457-71.
[http://dx.doi.org/10.1056/NEJMoa072761] [PMID: 17517853]
[17]
Guidance for industry Guidance for industry Diabetes mellitus - evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes Silver Spring, MD: Food and Drug Administration 2008.www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf
[18]
European Medicines Agency Guideline on the clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus 2012. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/06/WC500129256.pdf
[19]
Pareek M, Bhatt DL. Oral Antidiabetic agents and cardiovascular outcomes. Curr Probl Cardiol 2018; 43(3): 111-26.
[http://dx.doi.org/10.1016/j.cpcardiol.2017.07.003] [PMID: 28844525]
[20]
Nathan DM. Finding new treatments for diabetes-how many, how fast... how good? N Engl J Med 2007; 356(5): 437-40.
[http://dx.doi.org/10.1056/NEJMp068294] [PMID: 17267901]
[21]
Dicker D. DPP-4 inhibitors: impact on glycemic control and cardiovascular risk factors. Diabetes Care 2011; 34(Suppl. 2): S276-8.
[http://dx.doi.org/10.2337/dc11-s229] [PMID: 21525468]
[22]
Gupta A, Jelinek HF, Al-Aubaidy H. Glucagon like peptide-1 and its receptor agonists: Their roles in management of Type 2 diabetes mellitus. Diabetes Metab Syndr 2017; 11(3): 225-30.
[http://dx.doi.org/10.1016/j.dsx.2016.09.003] [PMID: 27884496]
[23]
Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 2014; 35(6): 992-1019.
[http://dx.doi.org/10.1210/er.2014-1035] [PMID: 25216328]
[24]
Anderluh M, Kocic G, Tomovic K, Kocic R, Deljanin-Ilic M, Smelcerovic A. Cross-talk between the dipeptidyl peptidase-4 and stromal cell-derived factor-1 in stem cell homing and myocardial repair: Potential impact of dipeptidyl peptidase-4 inhibitors. Pharmacol Ther 2016; 167: 100-7.
[http://dx.doi.org/10.1016/j.pharmthera.2016.07.009] [PMID: 27484974]
[25]
Zhong J, Maiseyeu A, Davis SN, Rajagopalan S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ Res 2015; 116(8): 1491-504.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305665] [PMID: 25858071]
[26]
Scirica BM, Bhatt DL, Braunwald E, et al. SAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369(14): 1317-26.
[http://dx.doi.org/10.1056/NEJMoa1307684] [PMID: 23992601]
[27]
Cavender MA, Scirica BM, Raz I, et al. Cardiovascular outcomes of patients in SAVOR-TIMI 53 by baseline hemoglobin A1c. Am J Med 2016; 129(3): 340.e1-8.
[http://dx.doi.org/10.1016/j.amjmed.2015.09.022] [PMID: 26524706]
[28]
White WB, Cannon CP, Heller SR, et al. EXAMINE Investigators. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369(14): 1327-35.
[http://dx.doi.org/10.1056/NEJMoa1305889] [PMID: 23992602]
[29]
Heller SR, Bergenstal RM, White WB, et al. EXAMINE Investigators. Relationship of glycated haemoglobin and reported hypoglycaemia to cardiovascular outcomes in patients with type 2 diabetes and recent acute coronary syndrome events: The EXAMINE trial. Diabetes Obes Metab 2017; 19(5): 664-71.
[http://dx.doi.org/10.1111/dom.12871] [PMID: 28058763]
[30]
Green JB, Bethel MA, Armstrong PW, et al. TECOS Study Group. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015; 373(3): 232-42.
[http://dx.doi.org/10.1056/NEJMoa1501352] [PMID: 26052984]
[31]
Rosenstock J, Perkovic V, Johansen OE, et al. CARMELINA Investigators. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA 2019; 321(1): 69-79.
[http://dx.doi.org/10.1001/jama.2018.18269] [PMID: 30418475]
[32]
Rosenstock J, Kahn SE, Johansen OE, et al. CAROLINA Investigators Effect of linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: the CAROLINA randomized clinical trial. JAMA 2019; 322: 1155-66.
[http://dx.doi.org/10.1001/jama.2019.13772] [PMID: 31536101]
[33]
Wu S, Cipriani A, Yang Z, et al. The cardiovascular effect of incretin-based therapies among type 2 diabetes: a systematic review and network meta-analysis. Expert Opin Drug Saf 2018; 17(3): 243-9.
[http://dx.doi.org/10.1080/14740338.2018.1424826] [PMID: 29320889]
[34]
Xu S, Zhang X, Tang L, Zhang F, Tong N. Cardiovascular effects of dipeptidyl peptidase-4 inhibitor in diabetic patients with and without established cardiovascular disease: a meta-analysis and systematic review. Postgrad Med 2017; 129(2): 205-15.
[http://dx.doi.org/10.1080/00325481.2017.1255537] [PMID: 27813442]
[35]
Mahmoud AN, Saad M, Mansoor H, et al. Cardiovascular safety of incretin-based therapy for type 2 diabetes: A meta-analysis of randomized trials. Int J Cardiol 2017; 230: 324-6.
[http://dx.doi.org/10.1016/j.ijcard.2016.12.113] [PMID: 28043676]
[36]
Abbas AS, Dehbi HM, Ray KK. Cardiovascular and non-cardiovascular safety of dipeptidyl peptidase-4 inhibition: a meta-analysis of randomized controlled cardiovascular outcome trials. Diabetes Obes Metab 2016; 18(3): 295-9.
[http://dx.doi.org/10.1111/dom.12595] [PMID: 26510994]
[37]
Lawrence L, Menon V, Kashyap S. Cardiovascular and renal outcomes of newer anti-diabetic medications in high-risk patients. Curr Cardiol Rep 2018; 20(8): 65.
[http://dx.doi.org/10.1007/s11886-018-1005-8] [PMID: 29926285]
[38]
Tkáč I, Raz I. Combined analysis of three large interventional trials with gliptins indicates increased incidence of acute pancreatitis in patients with Type 2 diabetes. Diabetes Care 2017; 40(2): 284-6.
[http://dx.doi.org/10.2337/dc15-1707] [PMID: 27659407]
[39]
Egan AG, Blind E, Dunder K, et al. Pancreatic safety of incretin-based drugs-FDA and EMA assessment. N Engl J Med 2014; 370(9): 794-7.
[http://dx.doi.org/10.1056/NEJMp1314078] [PMID: 24571751]
[40]
Pinto LC, Rados DV, Barkan SS, Leitão CB, Gross JL. Dipeptidyl peptidase-4 inhibitors, pancreatic cancer and acute pancreatitis: A meta-analysis with trial sequential analysis. Sci Rep 2018; 8(1): 782.
[http://dx.doi.org/10.1038/s41598-017-19055-6] [PMID: 29335646]
[41]
Zhang Z, Chen X, Lu P, et al. Incretin-based agents in type 2 diabetic patients at cardiovascular risk: compare the effect of GLP-1 agonists and DPP-4 inhibitors on cardiovascular and pancreatic outcomes. Cardiovasc Diabetol 2017; 16(1): 31.
[http://dx.doi.org/10.1186/s12933-017-0512-z] [PMID: 28249585]
[42]
Scirica BM, Braunwald E, Raz I, et al. SAVOR-TIMI 53 Steering Committee and Investigators*. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 2014; 130(18): 1579-88.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010389] [PMID: 25189213]
[43]
Leiter LA, Teoh H, Braunwald E, et al. SAVOR-TIMI 53 Steering Committee and Investigators Efficacy and safety of saxagliptin in older participants in the SAVOR-TIMI 53 trial. Diabetes Care 2015; 38(6): 1145-53.
[http://dx.doi.org/10.2337/dc14-2868] [PMID: 25758769]
[44]
Koyani CN, Kolesnik E, Wölkart G, et al. Dipeptidyl peptidase-4 independent cardiac dysfunction links saxagliptin to heart failure. Biochem Pharmacol 2017; 145: 64-80.
[http://dx.doi.org/10.1016/j.bcp.2017.08.021] [PMID: 28859968]
[45]
Zannad F, Cannon CP, Cushman WC, et al. EXAMINE Investigators. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet 2015; 385(9982): 2067-76.
[http://dx.doi.org/10.1016/S0140-6736(14)62225-X] [PMID: 25765696]
[46]
White WB, Kupfer S, Zannad F, et al. EXAMINE Investigators Cardiovascular mortality in patients with type 2 diabetes and recent acute coronary syndromes from the EXAMINE trial. Diabetes Care 2016; 39(7): 1267-73.
[http://dx.doi.org/10.2337/dc16-0303] [PMID: 27289121]
[47]
Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet 2015; 385(9982): 2107-17.
[http://dx.doi.org/10.1016/S0140-6736(14)61402-1] [PMID: 26009231]
[48]
Oikonomou E, Mourouzis K, Fountoulakis P, et al. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail Rev 2018; 23(3): 389-408.
[http://dx.doi.org/10.1007/s10741-018-9682-3] [PMID: 29453696]
[49]
McGuire DK, Van de Werf F, Armstrong PW, et al. Trial Evaluating Cardiovascular Outcomes With Sitagliptin (TECOS) Study Group Association between sitagliptin use and heart failure hospitalization and related outcomes in type 2 diabetes mellitus: Secondary analysis of a randomized clinical trial. JAMA Cardiol 2016; 1(2): 126-35.
[http://dx.doi.org/10.1001/jamacardio.2016.0103] [PMID: 27437883]
[50]
Filion KB, Azoulay L, Platt RW, et al. CNODES Investigators A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med 2016; 374(12): 1145-54.
[http://dx.doi.org/10.1056/NEJMoa1506115] [PMID: 27007958]
[51]
Li L, Li S, Deng K, et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies. BMJ 2016; 352: i610.
[http://dx.doi.org/10.1136/bmj.i610] [PMID: 26888822]
[52]
Kongwatcharapong J, Dilokthornsakul P, Nathisuwan S, Phrommintikul A, Chaiyakunapruk N. Effect of dipeptidyl peptidase-4 inhibitors on heart failure: A meta-analysis of randomized clinical trials. Int J Cardiol 2016; 211: 88-95.
[http://dx.doi.org/10.1016/j.ijcard.2016.02.146] [PMID: 26991555]
[53]
FDA Drug Safety Communication FDA adds warnings about heart failure risk to labels of type 2 diabetes medicines containing saxagliptin and alogliptin Available at: https://www.fda.gov/media/96895/download
[54]
Scheen AJ. Cardiovascular effects of gliptins. Nat Rev Cardiol 2013; 10(2): 73-84.
[http://dx.doi.org/10.1038/nrcardio.2012.183] [PMID: 23296071]
[55]
Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res 2014; 114(11): 1788-803.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.301958] [PMID: 24855202]
[56]
Scheen AJ. Safety of dipeptidyl peptidase-4 inhibitors for treating type 2 diabetes. Expert Opin Drug Saf 2015; 14(4): 505-24.
[http://dx.doi.org/10.1517/14740338.2015.1006625] [PMID: 25630605]
[57]
Konsola T, Siasos G, Antonopoulos AS, et al. The impact of T786C and G894T polymorphisms of eNOS on vascular endothelial growth factor serum levels in type 2 diabetes patients. Int J Cardiol 2016; 222: 155-6.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.238] [PMID: 27494728]
[58]
Tousoulis D, Papageorgiou N, Androulakis E, et al. Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic approaches. J Am Coll Cardiol 2013; 62(8): 667-76.
[http://dx.doi.org/10.1016/j.jacc.2013.03.089] [PMID: 23948511]
[59]
Papaoikonomou S, Tousoulis D, Tentolouris N, et al. Assessment of the effects of the A3872G polymorphism on the C-reactive protein gene in patients with diabetes mellitus type 2. Int J Cardiol 2011; 151(2): 243-5.
[http://dx.doi.org/10.1016/j.ijcard.2011.06.071] [PMID: 21741099]
[60]
Packer M. Have dipeptidyl peptidase-4 inhibitors ameliorated the vascular complications of type 2 diabetes in large-scale trials? The potential confounding effect of stem-cell chemokines. Cardiovasc Diabetol 2018; 17(1): 9.
[http://dx.doi.org/10.1186/s12933-017-0648-x] [PMID: 29310647]
[61]
Cimmaruta D, Maiorino MI, Scavone C, et al. Efficacy and safety of insulin-GLP-1 receptor agonists combination in type 2 diabetes mellitus: a systematic review Expert Opin Drug Saf 2016; 15(sup2): 77-83.
[http://dx.doi.org/10.1080/14740338.2016.1221402] [PMID: 27875915]
[62]
Bunck MC, Cornér A, Eliasson B, et al. Effects of exenatide on measures of β-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care 2011; 34(9): 2041-7.
[http://dx.doi.org/10.2337/dc11-0291] [PMID: 21868779]
[63]
Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 2008; 117(18): 2340-50.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.739938] [PMID: 18427132]
[64]
Del Olmo-Garcia MI, Merino-Torres JF. GLP-1 receptor agonists and cardiovascular disease in patients with type 2 diabetes. J Diabetes Res 2018.20184020492
[http://dx.doi.org/10.1155/2018/4020492] [PMID: 29805980]
[65]
Batzias K, Antonopoulos AS, Oikonomou E, et al. Effects of Newer Antidiabetic Drugs on Endothelial Function and Arterial Stiffness: A Systematic Review and Meta-Analysis. J Diabetes Res 2018.20181232583
[http://dx.doi.org/10.1155/2018/1232583] [PMID: 30622967]
[66]
von Scholten BJ, Lajer M, Goetze JP, Persson F, Rossing P. Time course and mechanisms of the anti-hypertensive and renal effects of liraglutide treatment. Diabet Med 2015; 32(3): 343-52.
[http://dx.doi.org/10.1111/dme.12594] [PMID: 25251901]
[67]
Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 2006; 12(9): 694-9.
[http://dx.doi.org/10.1016/j.cardfail.2006.08.211] [PMID: 17174230]
[68]
Chilton R, Wyatt J, Nandish S, Oliveros R, Lujan M. Cardiovascular comorbidities of type 2 diabetes mellitus: defining the potential of glucagonlike peptide-1-based therapies. Am J Med 2011; 124(1)(Suppl.): S35-53.
[http://dx.doi.org/10.1016/j.amjmed.2010.11.004] [PMID: 21194579]
[69]
Marso SP, Daniels GH, Brown-Frandsen K, et al. LEADER Steering Committee LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375(4): 311-22.
[http://dx.doi.org/10.1056/NEJMoa1603827] [PMID: 27295427]
[70]
Marso SP, Bain SC, Consoli A, et al. SUSTAIN-6 Investigators Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375(19): 1834-44.
[http://dx.doi.org/10.1056/NEJMoa1607141] [PMID: 27633186]
[71]
Husain M, Birkenfeld AL, Donsmark M, et al. PIONEER 6 Investigators. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2019; 381(9): 841-51.
[http://dx.doi.org/10.1056/NEJMoa1901118] [PMID: 31185157]
[72]
Pfeffer MA, Claggett B, Diaz R, et al. ELIXA Investigators Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 2015; 373(23): 2247-57.
[http://dx.doi.org/10.1056/NEJMoa1509225] [PMID: 26630143]
[73]
Holman RR, Bethel MA, Mentz RJ, et al. EXSCEL Study Group Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2017; 377(13): 1228-39.
[http://dx.doi.org/10.1056/NEJMoa1612917] [PMID: 28910237]
[74]
Hernandez AF, Green JB, Janmohamed S, et al. Harmony Outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 2018; 392(10157): 1519-29.
[http://dx.doi.org/10.1016/S0140-6736(18)32261-X] [PMID: 30291013]
[75]
Gerstein HC, Colhoun HM, Dagenais GR, et al. REWIND Investigators Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 2019; 394(10193): 121-30.
[http://dx.doi.org/10.1016/S0140-6736(19)31149-3] [PMID: 31189511]
[76]
Bethel MA, Patel RA, Merrill P, et al. EXSCEL Study Group Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol 2018; 6(2): 105-13.
[http://dx.doi.org/10.1016/S2213-8587(17)30412-6] [PMID: 29221659]
[77]
Zelniker TA, Wiviott SD, Raz I, et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation 2019; 139(17): 2022-31.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038868] [PMID: 30786725]
[78]
Bjerre Knudsen L, Madsen LW, Andersen S, et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010; 151(4): 1473-86.
[http://dx.doi.org/10.1210/en.2009-1272] [PMID: 20203154]
[79]
Vilsbøll T, Bain SC, Leiter LA, et al. Semaglutide, reduction in glycated haemoglobin and the risk of diabetic retinopathy. Diabetes Obes Metab 2018; 20(4): 889-97.
[http://dx.doi.org/10.1111/dom.13172] [PMID: 29178519]
[80]
Sattar N, Petrie MC, Zinman B, Januzzi JL Jr. Novel diabetes drugs and the cardiovascular specialist. J Am Coll Cardiol 2017; 69(21): 2646-56.
[http://dx.doi.org/10.1016/j.jacc.2017.04.014] [PMID: 28545639]
[81]
Margulies KB, Hernandez AF, Redfield MM, et al. NHLBI Heart Failure Clinical Research Network. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction a randomized clinical trial. JAMA 2016; 316(5): 500-8.
[http://dx.doi.org/10.1001/jama.2016.10260] [PMID: 27483064]
[82]
Baggio LL, Yusta B, Mulvihill EE, et al. GLP-1 receptor expression within the human heart. Endocrinology 2018; 159(4): 1570-84.
[http://dx.doi.org/10.1210/en.2018-00004] [PMID: 29444223]
[83]
Peer N, Lombard C, Steyn K, Levitt N. Elevated resting heart rate is associated with several cardiovascular disease risk factors in urban-dwelling black South Africans. Sci Rep 2020; 10(1): 4605.
[http://dx.doi.org/10.1038/s41598-020-61502-4] [PMID: 32165685]
[84]
Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol 2018; 17(1): 157.
[http://dx.doi.org/10.1186/s12933-018-0800-2] [PMID: 30545359]
[85]
Lim S, Kim KM, Nauck MA. Glucagon-like peptide-1 receptor agonists and cardiovascular events: class effects versus individual patterns. Trends Endocrinol Metab 2018; 29(4): 238-48.
[http://dx.doi.org/10.1016/j.tem.2018.01.011] [PMID: 29463450]
[86]
Anagnostis P, Athyros VG, Adamidou F, et al. Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabetes Obes Metab 2011; 13(4): 302-12.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01345.x] [PMID: 21205117]
[87]
Boyle JG, Livingstone R, Petrie JR. Cardiovascular benefits of GLP-1 agonists in type 2 diabetes: a comparative review. Clin Sci (Lond) 2018; 132(15): 1699-709.
[http://dx.doi.org/10.1042/CS20171299] [PMID: 30115742]
[88]
Jörgens V. The roots of SGLT inhibition: Laurent-Guillaume de Koninck, Jean Servais Stas and Freiherr Josef von Mering. Acta Diabetol 2019; 56(1): 29-31.
[http://dx.doi.org/10.1007/s00592-018-1206-z] [PMID: 30099672]
[89]
van Baar MJB, van Ruiten CC, Muskiet MHA, van Bloemendaal L, IJzerman RG, van Raalte DH. SGLT2 Inhibitors in combination therapy: from mechanisms to clinical considerations in type 2 diabetes management. Diabetes Care 2018; 41(8): 1543-56.
[http://dx.doi.org/10.2337/dc18-0588] [PMID: 30030256]
[90]
Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 2005; 54(12): 3427-34.
[http://dx.doi.org/10.2337/diabetes.54.12.3427] [PMID: 16306358]
[91]
Kalra S. Sodium glucose co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther 2014; 5(2): 355-66.
[http://dx.doi.org/10.1007/s13300-014-0089-4] [PMID: 25424969]
[92]
Sanchez RA, Sanabria H, de Los Santos C, Ramirez AJ. Incretins and selective renal sodium-glucose co-transporter 2 inhibitors in hypertension and coronary heart disease. World J Diabetes 2015; 6(11): 1186-97.
[http://dx.doi.org/10.4239/wjd.v6.i11.1186] [PMID: 26380062]
[93]
Schork A, Saynisch J, Vosseler A, et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol 2019; 18(1): 46.
[http://dx.doi.org/10.1186/s12933-019-0852-y] [PMID: 30953516]
[94]
Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 2018; 20(3): 479-87.
[http://dx.doi.org/10.1111/dom.13126] [PMID: 29024278]
[95]
Tanaka H, Takano K, Iijima H, et al. Factors affecting canagliflozin-induced transient urine volume increase in patients with type 2 diabetes mellitus. Adv Ther 2017; 34(2): 436-51.
[http://dx.doi.org/10.1007/s12325-016-0457-8] [PMID: 27981497]
[96]
Chirinos JA, Segers P, Hughes T, Townsend R. Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 74(9): 1237-63.
[http://dx.doi.org/10.1016/j.jacc.2019.07.012] [PMID: 31466622]
[97]
Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 2015; 17(12): 1180-93.
[http://dx.doi.org/10.1111/dom.12572] [PMID: 26343814]
[98]
Solini A, Giannini L, Seghieri M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol 2017; 16(1): 138.
[http://dx.doi.org/10.1186/s12933-017-0621-8] [PMID: 29061124]
[99]
Ferrannini G, Hach T, Crowe S, Sanghvi A, Hall KD, Ferrannini E. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care 2015; 38(9): 1730-5.
[http://dx.doi.org/10.2337/dc15-0355] [PMID: 26180105]
[100]
Garcia-Ropero A, Santos-Gallego CG, Zafar MU, Badimon JJ. Metabolism of the failing heart and the impact of SGLT2 inhibitors. Expert Opin Drug Metab Toxicol 2019; 15(4): 275-85.
[http://dx.doi.org/10.1080/17425255.2019.1588886] [PMID: 30822172]
[101]
Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013; 339(6116): 211-4.
[http://dx.doi.org/10.1126/science.1227166] [PMID: 23223453]
[102]
Santos-Gallego CG, Ibanez JA, San Antonio RS, et al. Empagliflozin induces a myocardial metabolic shift from glucose consumption to ketone metabolism that mitigates adverse cardiac remodeling and improves myocardial contractility. J Am Coll Cardiol 2018; 71: 674.
[http://dx.doi.org/10.1016/S0735-1097(18)31215-4]
[103]
Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium glucose cotransporter-2 inhibition in heart failure potential mechanisms, clinical applications, and summary of clinical trials. Circulation 2017; 136(17): 1643-58.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030012] [PMID: 29061576]
[104]
Baartscheer A, Schumacher CA, Wüst RC, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 2017; 60(3): 568-73.
[http://dx.doi.org/10.1007/s00125-016-4134-x] [PMID: 27752710]
[105]
Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018; 61(3): 722-6.
[http://dx.doi.org/10.1007/s00125-017-4509-7] [PMID: 29197997]
[106]
Packer M, Anker SD, Butler J, Filippatos G, Zannad F. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2017; 2(9): 1025-9.
[http://dx.doi.org/10.1001/jamacardio.2017.2275] [PMID: 28768320]
[107]
Zinman B, Wanner C, Lachin JM, et al. EMPA-REG OUTCOME Investigators Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[108]
Neal B, Perkovic V, Mahaffey KW, et al. CANVAS Program Collaborative Group Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[109]
Wiviott SD, Raz I, Bonaca MP, et al. DECLARE-TIMI 58 Investigators Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380(4): 347-57.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[110]
Bloomgarden Z. The kidney and cardiovascular outcome trials. J Diabetes 2018; 10(2): 88-9.
[http://dx.doi.org/10.1111/1753-0407.12616] [PMID: 29031006]
[111]
Kosiborod M, Cavender MA, Fu AZ, et al. CVD-REAL Investigators and Study Group*. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 2017; 136(3): 249-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029190] [PMID: 28522450]
[112]
Kosiborod M, Lam CSP, Kohsaka S, et al. CVD-REAL Investigators and Study Group Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol 2018; 71(23): 2628-39.
[http://dx.doi.org/10.1016/j.jacc.2018.03.009] [PMID: 29540325]
[113]
Saad M, Mahmoud AN, Elgendy IY, et al. Cardiovascular outcomes with sodium-glucose cotransporter-2 inhibitors in patients with type II diabetes mellitus: A meta-analysis of placebo-controlled randomized trials. Int J Cardiol 2017; 228: 352-8.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.181] [PMID: 27866027]
[114]
Wu JH, Foote C, Blomster J, et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2016; 4(5): 411-9.
[http://dx.doi.org/10.1016/S2213-8587(16)00052-8] [PMID: 27009625]
[115]
Geerlings S, Fonseca V, Castro-Diaz D, List J, Parikh S. Genital and urinary tract infections in diabetes: impact of pharmacologically-induced glucosuria. Diabetes Res Clin Pract 2014; 103(3): 373-81.
[http://dx.doi.org/10.1016/j.diabres.2013.12.052] [PMID: 24529566]
[116]
Food and Drug Administration US FDA warns about rare occurrences of a serious infection of the genital area with SGLT2 inhibitors for diabetes Available at: https://www.fda.gov/Drugs/DrugSafety/ucm617360.htm2019
[118]
U.S. Food and Drug Administration Drug safety communication: FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood. Available at: https://www.fda.gov/media/92185/download
[119]
European Medicines Agency. Review of diabetes medicines called SGLT2 inhibitors started: Risk of diabetic ketoacidosis to be examined. Available at: https://www.ema.europa.eu/en/documents/referral/sglt2inhibitorsarticle20procedurereviewstarted_en.pdf
[120]
Taylor SI, Blau JE, Rother KI. SGLT2 inhibitors may predispose to ketoacidosis. J Clin Endocrinol Metab 2015; 100(8): 2849-52.
[http://dx.doi.org/10.1210/jc.2015-1884] [PMID: 26086329]
[121]
Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol 2015; 3(1): 8-10.
[http://dx.doi.org/10.1016/S2213-8587(14)70227-X] [PMID: 25523498]
[122]
Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2016; 101(1): 157-66.
[http://dx.doi.org/10.1210/jc.2015-3167] [PMID: 26580237]
[123]
Antonopoulos AS, Siasos G, Konsola T, et al. Arterial Wall Elastic Properties and Endothelial Dysfunction in the Diabetic Foot Syndrome in Patients With Type 2 Diabetes. Diabetes Care 2015; 38(11): e180-1.
[http://dx.doi.org/10.2337/dc15-1042] [PMID: 26294663]
[124]
FDA Drug Safety Communication: FDA confirms increased risk of leg and foot amputations with the diabetes medicine canagliflozin (Invokana, Invokamet, Invokamet XR). Available at: https://www.fda.gov/Drugs/DrugSafety/ucm557507.htm?source=govdelivery&utm
[125]
Tentolouris A, Eleftheriadou I, Grigoropoulou P, et al. The association between pulse wave velocity and peripheral neuropathy in patients with type 2 diabetes mellitus. J Diabetes Complications 2017; 31(11): 1624-9.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.07.010] [PMID: 28893495]
[126]
European Medicines Agency. SGLT2 Inhibitors: Information on potential risk of toe amputation to be included in prescribing information. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Referral s_document/SGLT2_inhibitors_ Canagliflozin_20/European_Commission_final_decision/WC5002-27101.pdf
[127]
Yuan Z, DeFalco FJ, Ryan PB, et al. Risk of lower extremity amputations in people with type 2 diabetes mellitus treated with sodium-glucose co-transporter-2 inhibitors in the USA: A retrospective cohort study. Diabetes Obes Metab 2018; 20(3): 582-9.
[http://dx.doi.org/10.1111/dom.13115] [PMID: 28898514]
[128]
Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393(10166): 31-9.
[http://dx.doi.org/10.1016/S0140-6736(18)32590-X] [PMID: 30424892]
[129]
Fitchett D, Butler J, van de Borne P, et al. EMPA-REG OUTCOME® trial investigators. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur Heart J 2018; 39(5): 363-70.
[http://dx.doi.org/10.1093/eurheartj/ehx511] [PMID: 29020355]
[130]
Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 2016; 59(7): 1333-9.
[http://dx.doi.org/10.1007/s00125-016-3956-x] [PMID: 27112340]
[131]
Inzucchi SE, Zinman B, Fitchett D, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG-OUTCOME trial. Diabetes Care 2018; 41(2): 356-63.
[http://dx.doi.org/10.2337/dc17-1096] [PMID: 29203583]
[132]
American Diabetes Association 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020; 43(Suppl. 1): S111-34.
[http://dx.doi.org/10.2337/dc20-S010] [PMID: 31862753]
[133]
Cosentino F, Grant PJ, Aboyans V, et al. ESC Scientific Document Group 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41(2): 255-323.
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[134]
Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974; 34(1): 29-34.
[http://dx.doi.org/10.1016/0002-9149(74)90089-7] [PMID: 4835750]
[135]
Tousoulis D, Oikonomou E, Siasos G, Stefanadis C. Diabetes Mellitus and Heart Failure. Eur Cardiol 2014; 9(1): 37-42.
[http://dx.doi.org/10.15420/ecr.2014.9.1.37] [PMID: 30310483]
[136]
Frías JP, Guja C, Hardy E, et al. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol 2016; 4(12): 1004-16.
[http://dx.doi.org/10.1016/S2213-8587(16)30267-4] [PMID: 27651331]
[137]
Ludvik B, Frías JP, Tinahones FJ, et al. Dulaglutide as add-on therapy to SGLT2 inhibitors in patients with inadequately controlled type 2 diabetes (AWARD-10): a 24-week, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2018; 6(5): 370-81.
[http://dx.doi.org/10.1016/S2213-8587(18)30023-8] [PMID: 29483060]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy