Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Properties and Applications of Modified Bacterial Cellulose-Based Materials

Author(s): Munair Badshah, Hanif Ullah, Fazli Wahid and Taous Khan*

Volume 17, Issue 3, 2021

Published on: 06 November, 2020

Page: [351 - 364] Pages: 14

DOI: 10.2174/1573413716999201106145528

Price: $65

Abstract

Background: Bacterial cellulose (BC) is the purest form of cellulose as it is free from pectin, lignin, hemicellulose and other active constituents associated with cellulose derived from plant sources. High biocompatibility and easy molding into the desired shape make BC an ideal candidate for applications in the biomedical fields, such as tissue engineering, wound healing and bone regeneration. In addition to this, BC has been widely studied for applications in the delivery of proteins and drugs in various forms via different routes. However, BC lacks therapeutic properties and resistance to the free movement of small molecules, i.e., gases and solvents. Therefore, modification of BC is required to meet the research ad market demand.

Methods: We have searched the updated data relevant to as-synthesized and modified BC, properties and applications in various fields using Web of Science, Science direct, Google and PubMed.

Results: As-synthesized BC possesses properties such as high crystallinity, well organized fibrous network, higher degree of polymerization, and ability of being produced in swollen form. The large surface area with an abundance of free accessible hydroxyl groups makes BC an ideal candidate for carrying out surface functionalization to enhance its features. The various reported surface modification techniques including, but not limited to, are amination, methylation and acetylation.

Conclusion: In this review, we have highlighted various approaches made for BC surface modification. We have also reported enhancement in the properties of modified BC and potential applications in different fields ranging from biomedical science to drug delivery and paper-making to various electronic devices.

Keywords: Bacterial cellulose, bacterial nanocellulose, chemical modification, nanocomposites, surface functionalization, polymerization.

Graphical Abstract
[1]
Ullah, H.; Santos, H.A.; Khan, T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 2016, 23, 2291-2314.
[http://dx.doi.org/10.1007/s10570-016-0986-y]
[2]
Ullah, H.; Wahid, F.; Santos, H.A.; Khan, T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr. Polym., 2016, 150, 330-352.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.029] [PMID: 27312644]
[3]
Ullah, H. Evaluation of as-synthesized and regenerated bacterial cellulose for the fabrication of modified release capsule shells and microparticles., PhD Thesis, COMSATS University Islamabad, Pakistan. 2020.
[4]
Badshah, M.; Khan, T.; Ullah, H.; Wahid, F.; Ullah, M.W. Applications of nanofibrillar celluloses in drug delivery: from conventional tablet excipient to novel drug carrier. Nanocellulose synthesis, structure, properties, and applications; Yang, G.; Ullah, M.W.; Zhijun, S., Eds.; World Scientific (Europe). , 2021.
[5]
Czaja, W.K.; Young, D.J.; Kawecki, M.; Brown, R.M., Jr The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007, 8(1), 1-12.
[http://dx.doi.org/10.1021/bm060620d] [PMID: 17206781]
[6]
Gu, J.; Catchmark, J.M. Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr. Polym., 2012, 88, 547-557.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.040]
[7]
Hussain, Z.; Sajjad, W.; Khan, T.; Wahid, F. Production of bacterial cellulose from industrial wastes: a review. Cellulose, 2019, 26(5), 2895-2911.
[http://dx.doi.org/10.1007/s10570-019-02307-1]
[8]
Kamel, S.; Ali, N.; Jahangir, K.; Shah, S.; El-Gendy, A. Pharmaceutical significance of cellulose: a review. Express Polym. Lett., 2008, 2, 758-778.
[http://dx.doi.org/10.3144/expresspolymlett.2008.90]
[9]
Siró, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 2010, 17, 459-494.
[http://dx.doi.org/10.1007/s10570-010-9405-y]
[10]
Bielecki, S.; Krystynowicz, A.; Turkiewicz, M.; Kalinowska, H. Bacterial cellulose.Biotechnology of polymer: From synthesis to patents; Steinbuchel, A., Ed.; Wiley-VCH, Verlag GmbH: Munster, Germany, 2005, pp. 381-434..
[11]
Esa, F.; Tasirin, S.M.; Rahman, N.A. Overview of bacterial cellulose production and application. Agric. Agric. Sci. Procedia, 2014, 2, 113-119.
[http://dx.doi.org/10.1016/j.aaspro.2014.11.017]
[12]
Jeong, S.I.; Lee, S.E.; Yang, H.; Jin, Y.H.; Park, C.S.; Park, Y.S. Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol. Cell. Toxicol., 2010, 6, 370-377.
[http://dx.doi.org/10.1007/s13273-010-0049-7]
[13]
Römling, U.; Galperin, M.Y. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol., 2015, 23(9), 545-557.
[http://dx.doi.org/10.1016/j.tim.2015.05.005] [PMID: 26077867]
[14]
Sheykhnazari, S.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Golalipour, M. Bacterial synthesized cellulose nanofibres; effects of growth times and culture mediums on the structural characteristics. Carbohydr. Polym., 2011, 86, 1187-1191.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.011]
[15]
Sulaeva, I.; Henniges, U.; Rosenau, T.; Potthast, A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol. Adv., 2015, 33(8), 1547-1571.
[http://dx.doi.org/10.1016/j.biotechadv.2015.07.009] [PMID: 26253857]
[16]
Ebrahimi, E.; Babaeipour, V.; Khanchezar, S. Effect of down-stream processing parameters on the mechanical properties of bacterial cellulose. Iran. Polym. J., 2016, 25, 739-746.
[http://dx.doi.org/10.1007/s13726-016-0462-4]
[17]
Long, L.Y.; Weng, Y.X.; Wang, Y.Z. Cellulose aerogels: Synthesis, applications, and prospects. Polymers (Basel), 2018, 10(6), 623.
[http://dx.doi.org/10.3390/polym10060623] [PMID: 30966656]
[18]
Shi, Z.; Zhang, Y.; Phillips, G.O.; Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll., 2014, 35, 539-545.
[http://dx.doi.org/10.1016/j.foodhyd.2013.07.012]
[19]
Lin, D.; Li, R.; Lopez-Sanchez, P.; Li, Z. Physical properties of bacterial cellulose aqueous suspensions treated by high pressure homogenizer. Food Hydrocoll., 2015, 44, 435-442.
[http://dx.doi.org/10.1016/j.foodhyd.2014.10.019]
[20]
Lin, S.P.; Liu, C.T.; Hsu, K.D.; Hung, Y.T.; Shih, T.Y.; Cheng, K.C. Production of bacterial cellulose with various additives in a PCS rotating disk bioreactor and its material property analysis. Cellulose, 2016, 3, 367-377.
[http://dx.doi.org/10.1007/s10570-015-0855-0]
[21]
Carvalho, T.; Guedes, G.; Sousa, F.L.; Freire, C.S.R.; Santos, H.A. Latest advances on bacterial cellulose‐based materials for wound healing, delivery systems, and tissue engineering. Biotechnol. J., 2019, 14(12), 1900059.
[http://dx.doi.org/10.1002/biot.201900059] [PMID: 31468684]
[22]
Trovatti, E.; Freire, C.S.; Pinto, P.C.; Almeida, I.F.; Costa, P.; Silvestre, A.J.; Neto, C.P.; Rosado, C. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int. J. Pharm., 2012, 435(1), 83-87.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.002] [PMID: 22266531]
[23]
Trovatti, E.; Silva, N.H.; Duarte, I.F.; Rosado, C.F.; Almeida, I.F.; Costa, P.; Freire, C.S.; Silvestre, A.J.; Neto, C.P. Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules, 2011, 12(11), 4162-4168.
[http://dx.doi.org/10.1021/bm201303r] [PMID: 21999108]
[24]
Badshah, M.; Ullah, H.; Khan, S.A.; Park, J.K.; Khan, T. Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery. Cellulose, 2017, 24, 5041-5052.
[http://dx.doi.org/10.1007/s10570-017-1474-8]
[25]
Badshah, M.; Ullah, H.; Khan, A.R.; Khan, S.; Park, J.K.; Khan, T. Surface modification and evaluation of bacterial cellulose for drug delivery. Int. J. Biol. Macromol., 2018, 113, 526-533.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.135] [PMID: 29477541]
[26]
Ullah, H.; Badshah, M.; Mäkilä, E.; Salonen, J.; Shahbazi, M.A.; Santos, H.A.; Khan, T. Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose, 2017, 24, 1445-1454.
[http://dx.doi.org/10.1007/s10570-017-1202-4]
[27]
Tavakolian, M.; Jafari, S.M.; van de Ven, T.G. A Review on Surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett., 2020, 12(1), 73.
[http://dx.doi.org/10.1007/s40820-020-0408-4]
[28]
Coelho, F.; Cavicchioli, M.; Specian, S.S.; Scarel-Caminaga, R.M.; Penteado, L.A.; Medeiros, A.I.; Ribeiro, S.J.L.; Capote, T.S.O. Bacterial cellulose membrane functionalized with hydroxiapatite and anti-bone morphogenetic protein 2: A promising material for bone regeneration. PLoS One, 2019, 14(8), e0221286.
[http://dx.doi.org/10.1371/journal.pone.0221286] [PMID: 31425530]
[29]
Ashjaran, A.; Yazdanshenas, M.E.; Rashidi, A.; Khajavi, R.; Rezaee, A. Overview of bio nanofabric from bacterial cellulose. J. Textil. Inst., 2013, 104, 121-131.
[http://dx.doi.org/10.1080/00405000.2012.703796]
[30]
Gao, Q.; Shen, X.; Lu, X. Regenerated bacterial cellulose fibers prepared by the NMMO.H2O process. Carbohydr. Polym., 2011, 83, 1253-1256.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.029]
[31]
Pértile, R.A.; Moreira, S.; Gil da Costa, R.M.; Correia, A.; Guãrdao, L.; Gartner, F.; Vilanova, M.; Gama, M. Bacterial cellulose: long-term biocompatibility studies. J. Biomater. Sci. Polym. Ed., 2012, 23(10), 1339-1354.
[http://dx.doi.org/10.1163/092050611X581516] [PMID: 21722421]
[32]
Reddy, N.; Yang, Y. Bacterial cellulose fibres. Innovative Biofibers from Renewable Resources; Springer-Verlag Berlin Heidelberg, 2015, pp. 307-329.
[33]
Ul-Islam, M.; Khan, S.; Ullah, M.W.; Park, J.K. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol. J., 2015, 10(12), 1847-1861.
[http://dx.doi.org/10.1002/biot.201500106] [PMID: 26395011]
[34]
Khan, T. Hamayun, Seung, H.; Park, J.K. Production of glucuronan oligosaccharides using the waste of beer fermentation broth as a basal medium. Enzyme Microb. Technol., 2007, 42, 89-92.
[http://dx.doi.org/10.1016/j.enzmictec.2007.08.007]
[35]
Ul-Islam, M.; Khattak, W.A.; Ullah, M.W.; Khan, S.; Park, J.K. Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose, 2014, 21, 433-447.
[http://dx.doi.org/10.1007/s10570-013-0109-y]
[36]
Almeida, I.F.; Pereira, T.; Silva, N.H.; Gomes, F.P.; Silvestre, A.J.; Freire, C.S.; Sousa Lobo, J.M.; Costa, P.C. Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur. J. Pharm. Biopharm., 2014, 86(3), 332-336.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.008] [PMID: 23973717]
[37]
Simone, E.A.; Dziubla, T.D.; Muzykantov, V.R. Polymeric carriers: role of geometry in drug delivery. Expert Opin. Drug Deliv., 2008, 5(12), 1283-1300.
[http://dx.doi.org/10.1517/17425240802567846] [PMID: 19040392]
[38]
Ul-Islam, M.; Khan, T.; Park, J.K. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym., 2012, 88, 596-603.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.006]
[39]
Klemm, D.; Schumann, D.; Udhardt, U.; Marsch, S. Bacterial synthesized cellulose artificial blood vessels for microsurgery. Prog. Polym. Sci., 2001, 26, 1561-1603.
[http://dx.doi.org/10.1016/S0079-6700(01)00021-1]
[40]
Ruan, C.; Zhu, Y.; Zhou, X.; Abidi, N.; Hu, Y.; Catchmark, J.M. Effect of cellulose crystallinity on bacterial cellulose assembly. Cellulose, 2016, 23, 3417-3427.
[http://dx.doi.org/10.1007/s10570-016-1065-0]
[41]
Tsouko, E.; Kourmentza, C.; Ladakis, D.; Kopsahelis, N.; Mandala, I.; Papanikolaou, S.; Paloukis, F.; Alves, V.; Koutinas, A. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci., 2015, 16(7), 14832-14849.
[http://dx.doi.org/10.3390/ijms160714832] [PMID: 26140376]
[42]
Portela, R.; Leal, C.R.; Almeida, P.L.; Sobral, R.G. Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb. Biotechnol., 2019, 12(4), 586-610.
[http://dx.doi.org/10.1111/1751-7915.13392] [PMID: 30838788]
[43]
Costa, A.F.S.; Almeida, F.C.G.; Vinhas, G.M.; Sarubbo, L.A. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front. Microbiol., 2017, 8, 2027.
[http://dx.doi.org/10.3389/fmicb.2017.02027] [PMID: 29089941]
[44]
Gorgieva, S.; Trček, J. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials (Basel), 2019, 9(10), 1352.
[http://dx.doi.org/10.3390/nano9101352] [PMID: 31547134]
[45]
Tang, W.; Jia, S.; Jia, Y.; Yang, H. The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J. Microbiol. Biotechnol., 2010, 26(1), 125-131.
[http://dx.doi.org/10.1007/s11274-009-0151-y]
[46]
Krystynowicz, A.; Czaja, W.; Wiktorowska-Jezierska, A.; Gonçalves-Miśkiewicz, M.; Turkiewicz, M.; Bielecki, S. Factors affecting the yield and properties of bacterial cellulose. J. Ind. Microbiol. Biotechnol., 2002, 29(4), 189-195.
[http://dx.doi.org/10.1038/sj.jim.7000303] [PMID: 12355318]
[47]
Lin, S.P.; Calvar, I.L.; Catchmark, J.M.; Liu, J.R.; Demirci, A.; Cheng, K.C. Biosynthesis, production and applications of bacterial cellulose. Cellulose, 2013, 20, 2191-2219.
[http://dx.doi.org/10.1007/s10570-013-9994-3]
[48]
Petersen, N.; Gatenholm, P. Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl. Microbiol. Biotechnol., 2011, 91(5), 1277-1286.
[http://dx.doi.org/10.1007/s00253-011-3432-y] [PMID: 21744133]
[49]
Yadav, V.; Paniliatis, B.J.; Shi, H.; Lee, K.; Cebe, P.; Kaplan, D.L. Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl. Environ. Microbiol., 2010, 76(18), 6257-6265.
[http://dx.doi.org/10.1128/AEM.00698-10] [PMID: 20656868]
[50]
Millon, L.E.; Guhados, G.; Wan, W. Anisotropic polyvinyl alcohol-Bacterial cellulose nanocomposite for biomedical applications. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 86(2), 444-452.
[http://dx.doi.org/10.1002/jbm.b.31040] [PMID: 18288695]
[51]
Ruka, D.R.; Simon, G.P.; Dean, K.M. In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr. Polym., 2013, 92(2), 1717-1723.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.007] [PMID: 23399211]
[52]
Varshney, V.K.; Naithani, S. Chemical functionalization of cellulose derived from nonconventional sources. Cellulose Fibers: Bio- and Nano-Polymer Composites.; Kalia, S.; Kaith. B.; Kaur, I; Springer-Verlag Berlin Heidelberg, 2011, pp. 43-60.
[http://dx.doi.org/10.1007/978-3-642-17370-7_2]
[53]
Gonçalves, S.; Padrão, J.; Rodrigues, I.P.; Silva, J.P.; Sencadas, V.; Lanceros-Mendez, S.; Girão, H.; Dourado, F.; Rodrigues, L.R. Bacterial cellulose as a support for the growth of retinal pigment epithelium. Biomacromolecules, 2015, 16(4), 1341-1351.
[http://dx.doi.org/10.1021/acs.biomac.5b00129] [PMID: 25748276]
[54]
Shekaran, A.; Garcia, A.J. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. Biochim. Biophys. Acta, 2011, 1810(3), 350-360.
[http://dx.doi.org/10.1016/j.bbagen.2010.04.006] [PMID: 20435097]
[55]
Möller, T.; Amoroso, M.; Hägg, D.; Brantsing, C.; Rotter, N.; Apelgren, P.; Lindahl, A.; Kölby, L.; Gatenholm, P. In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs. Plast. Reconstr. Surg. Glob. Open, 2017, 5(2), e1227.
[http://dx.doi.org/10.1097/GOX.0000000000001227] [PMID: 28280669]
[56]
Ul-Islam, M.; Khan, S.; Khattak, W.A.; Ullah, M.W.; Park, J.K. Synthesis, chemistry, and medical application of bacterial cellulose nanocomposites. Eco-friendly Polymer Nanocomposites. Advanced Structured Materials; Thakur, V; Thakur, M., Ed.; Springer: New Delhi, 2015, Vol. 74, pp. 399-437.
[http://dx.doi.org/10.1007/978-81-322-2473-0_13]
[57]
Erbas Kiziltas, E.; Kiziltas, A.; Rhodes, K.; Emanetoglu, N.W.; Blumentritt, M.; Gardner, D.J. Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydr. Polym., 2016, 136, 1144-1151.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.004] [PMID: 26572457]
[58]
Ummartyotin, S.; Thiangtham, S.; Manuspiya, H. Strontium-modified bacterial cellulose and a polyvinylidene fluoride composite as an electroactive material. For. Prod. J., 2017, 67(3-4), 288-296.
[http://dx.doi.org/10.13073/FPJ-D-16-00041]
[59]
Mishra, R.K.; Sabu, A.; Tiwari, S.K. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. J. Saudi Chem. Soc., 2018, 22(8), 949-978.
[http://dx.doi.org/10.1016/j.jscs.2018.02.005]
[60]
Wang, F.; Jin, Z.; Zheng, S.; Li, H.; Cho, S.; Kim, H.J.; Kim, S.J.; Choi, E.; Park, J.O.; Park, S. High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose membrane. Sens. Actuators B Chem., 2017, 250, 402-411.
[http://dx.doi.org/10.1016/j.snb.2017.04.124]
[61]
Xiang, Z.; Liu, Q.; Chen, Y.; Lu, F. Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties. Cellulose, 2017, 24, 3513-3523.
[http://dx.doi.org/10.1007/s10570-017-1361-3]
[62]
Fang, J.Y.; Sung, K.C.; Wang, J.J.; Chu, C.C.; Chen, K.T. The effects of iontophoresis and electroporation on transdermal delivery of buprenorphine from solutions and hydrogels. J. Pharm. Pharmacol., 2002, 54(10), 1329-1337.
[http://dx.doi.org/10.1211/002235702760345392] [PMID: 12396293]
[63]
Guimard, N.K.; Gomez, N.; Schmidt, C.E. Conducting polymers in biomedical engineering. Prog. Polym. Sci., 2007, 32, 876-921.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.012]
[64]
Yoon, S.H.; Jin, H.J.; Kook, M-C.; Pyun, Y.R. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules, 2006, 7(4), 1280-1284.
[http://dx.doi.org/10.1021/bm050597g] [PMID: 16602750]
[65]
Basmaji, P.; de Olyveira, G.M.; dos Santos, M.L.; Guastaldi, A.C. Novel antimicrobial peptides bacterial cellulose obtained by symbioses culture between polyhexanide biguanide (phmb) and green tea. J. Biomater. Tissue Eng., 2014, 4, 59-64.
[http://dx.doi.org/10.1166/jbt.2014.1133]
[66]
Chen, S.; Huang, Y. Bacterial cellulose nanofibres decorated with phthalocyanine: Preparation, characterization and dye removal performance. Mater. Lett., 2015, 142, 235-237.
[http://dx.doi.org/10.1016/j.matlet.2014.12.036]
[67]
O-Rak. K.; Ummartyotin, S; Sain, M.; Manuspiya, H Covalently grafted carbon nanotube on bacterial cellulose composite for flexible touch screen application. Mater. Lett., 2013, 107, 247-250.
[http://dx.doi.org/10.1016/j.matlet.2013.05.126]
[68]
Shao, W.; Liu, H.; Liu, X.; Wang, S.; Zhang, R. Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Advances, 2015, 5, 4795-4803.
[http://dx.doi.org/10.1039/C4RA13057J]
[69]
Zhang, J.; Chang, P.; Zhang, C.; Xiong, G.; Luo, H.; Zhu, Y.; Ren, K.; Yao, F.; Wan, Y. Immobilization of lecithin on bacterial cellulose nanofibers for improved biological functions. React. Funct. Polym., 2015, 91, 100-107.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2015.05.001]
[70]
Moritz, S.; Wiegand, C.; Wesarg, F.; Hessler, N.; Müller, F.A.; Kralisch, D.; Hipler, U.C.; Fischer, D. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int. J. Pharm., 2014, 471(1-2), 45-55.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.062] [PMID: 24792978]
[71]
Wu, J.; Zheng, Y.; Wen, X.; Lin, Q.; Chen, X.; Wu, Z. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed. Mater., 2014, 9(3), 035005.
[http://dx.doi.org/10.1088/1748-6041/9/3/035005] [PMID: 24739469]
[72]
Figueiredo, A.R.; Figueiredo, A.G.; Silva, N.H.; Barros-Timmons, A.; Almeida, A.; Silvestre, A.J.; Freire, C.S. Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate. Carbohydr. Polym., 2015, 123, 443-453.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.063] [PMID: 25843878]
[73]
Fernandes, S.N.; Geng, Y.; Vignolini, S.; Glover, B.J.; Trindade, A.C.; Canejo, J.P.; Almeida, P.L.; Brogueira, P.; Godinho, M.H. Structural color and iridescence in transparent sheared cellulosic films. Macromol. Chem. Phys., 2013, 214, 25-32.
[http://dx.doi.org/10.1002/macp.201200351]
[74]
Dong, C.; Qian, L.Y.; Zhao, G.L.; He, B.H.; Xiao, H.N. Preparation of antimicrobial cellulose fibres by grafting β-cyclodextrin and inclusion with antibiotics. Mater. Lett., 2014, 124, 181-183.
[http://dx.doi.org/10.1016/j.matlet.2014.03.091]
[75]
Xiao, L.; Poudel, A.J.; Huang, L.; Wang, Y.; Abdalla, A.M.E.; Yang, G. Nanocellulose hyperfine network achieves sustained release of berberine hydrochloride solubilized with β-cyclodextrin for potential anti-infection oral administration. Int. J. Biol. Macromol., 2020, 153, 633-640.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.030] [PMID: 32147343]
[76]
Vilela, C.; Oliveira, H.; Almeida, A.; Silvestre, A.J.D.; Freire, C.S.R. Nanocellulose-based antifungal nanocomposites against the polymorphic fungus Candida albicans. Carbohydr. Polym., 2019, 217, 207-216.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.046] [PMID: 31079678]
[77]
Shi, X.; Zheng, Y.; Wang, G.; Lin, Q.; Fan, J. pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Advances, 2014, 4, 47056-47065.
[http://dx.doi.org/10.1039/C4RA09640A]
[78]
Amin, M.C.I.M.; Ahmad, N.; Halib, N.; Ahmad, I. Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr. Polym., 2012, 88, 465-473.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.022]
[79]
Juncu, G.; Stoica-Guzun, A.; Stroescu, M.; Isopencu, G.; Jinga, S.I. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. Int. J. Pharm., 2016, 510(2), 485-492.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.053] [PMID: 26688041]
[80]
Pavaloiu, R.D.; Stoica-Guzun, A.; Stroescu, M.; Jinga, S.I.; Dobre, T. Composite films of poly(vinyl alcohol)-chitosan-bacterial cellulose for drug controlled release. Int. J. Biol. Macromol., 2014, 68, 117-124.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.04.040] [PMID: 24769089]
[81]
Treesuppharat, W.; Rojanapanthu, P.; Siangsanoh, C.; Manuspiya, H.; Ummartyotin, S. Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol. Rep. (Amst.), 2017, 15, 84-91.
[http://dx.doi.org/10.1016/j.btre.2017.07.002] [PMID: 28736723]
[82]
Li, S.; Jasim, A.; Zhao, W.; Fu, L.; Ullah, M.W.; Shi, Z.; Yang, G. Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater. Manuf., 2018, 1, 41-49.
[http://dx.doi.org/10.30919/esmm5f120]
[83]
Chuah, C.; Wang, J.; Tavakoli, J.; Tang, Y. Novel bacterial cellulose-poly (acrylic acid) hybrid hydrogels with controllable antimicrobial ability as dressings for chronic wounds. Polymers (Basel), 2018, 10(12), 1323.
[http://dx.doi.org/10.3390/polym10121323] [PMID: 30961248]
[84]
Saïdi, L.; Vilela, C.; Oliveira, H.; Silvestre, A.J.D.; Freire, C.S.R. Poly(N-methacryloyl glycine)/nanocellulose composites as pH-sensitive systems for controlled release of diclofenac. Carbohydr. Polym., 2017, 169, 357-365.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.030] [PMID: 28504156]
[85]
Li, Z.; Zhou, X.; Pei, C. Synthesis and characterization of mps-g-pla copolymer and its application in surface modification of bacterial cellulose. Int. J. Polym. Anal. Charact., 2010, 15, 199-209.
[http://dx.doi.org/10.1080/10236661003681222]
[86]
Ifuku, S.; Nogi, M.; Abe, K.; Handa, K.; Nakatsubo, F.; Yano, H. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules, 2007, 8(6), 1973-1978.
[http://dx.doi.org/10.1021/bm070113b] [PMID: 17458936]
[87]
Faria, M.; Vilela, C.; Mohammadkazemi, F.; Silvestre, A.J.D.; Freire, C.S.R.; Cordeiro, N. Poly(glycidyl methacrylate)/bacterial cellulose nanocomposites: Preparation, characterization and post-modification. Int. J. Biol. Macromol., 2019, 127, 618-627.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.133] [PMID: 30695728]
[88]
Weyell, P.; Beekmann, U.; Küpper, C.; Dederichs, M.; Thamm, J.; Fischer, D.; Kralisch, D. Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydr. Polym., 2019, 207, 1-10.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.061] [PMID: 30599988]
[89]
Malik, N.N. Drug discovery: past, present and future. Drug Discov. Today, 2008, 13(21-22), 909-912.
[http://dx.doi.org/10.1016/j.drudis.2008.09.007] [PMID: 18852066]
[90]
Vermonden, T.; Censi, R.; Hennink, W.E. Hydrogels for protein delivery. Chem. Rev., 2012, 112(5), 2853-2888.
[http://dx.doi.org/10.1021/cr200157d] [PMID: 22360637]
[91]
Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv., 2013, 4(11), 1443-1467.
[http://dx.doi.org/10.4155/tde.13.104] [PMID: 24228993]
[92]
De Groot, A.S.; Martin, W. Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin. Immunol., 2009, 131(2), 189-201.
[http://dx.doi.org/10.1016/j.clim.2009.01.009] [PMID: 19269256]
[93]
Kaliyaperumal, A.; Jing, S. Immunogenicity assessment of therapeutic proteins and peptides. Curr. Pharm. Biotechnol., 2009, 10(4), 352-358.
[http://dx.doi.org/10.2174/138920109788488860] [PMID: 19519410]
[94]
Manning, M.C.; Patel, K.; Borchardt, R.T. Stability of protein pharmaceuticals. Pharm. Res., 1989, 6(11), 903-918.
[http://dx.doi.org/10.1023/A:1015929109894] [PMID: 2687836]
[95]
Manning, M.C.; Chou, D.K.; Murphy, B.M.; Payne, R.W.; Katayama, D.S. Stability of protein pharmaceuticals: an update. Pharm. Res., 2010, 27(4), 544-575.
[http://dx.doi.org/10.1007/s11095-009-0045-6] [PMID: 20143256]
[96]
Rathore, N.; Rajan, R.S. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol. Prog., 2008, 24(3), 504-514.
[http://dx.doi.org/10.1021/bp070462h]
[97]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221.
[http://dx.doi.org/10.1038/nrd1033] [PMID: 12612647]
[98]
Tang, L.; Persky, A.M.; Hochhaus, G.; Meibohm, B. Pharmacokinetic aspects of biotechnology products. J. Pharm. Sci., 2004, 93(9), 2184-2204.
[http://dx.doi.org/10.1002/jps.20125] [PMID: 15295780]
[99]
Peppas, N.A.; Wood, K.M.; Blanchette, J.O. Hydrogels for oral delivery of therapeutic proteins. Expert Opin. Biol. Ther., 2004, 4(6), 881-887.
[http://dx.doi.org/10.1517/14712598.4.6.881] [PMID: 15174970]
[100]
Pandey, M.; Mohamad, N.; Amin, M.C.I.M. Bacterial cellulose/acrylamide pH-sensitive smart hydrogel: development, characterization, and toxicity studies in ICR mice model. Mol. Pharm., 2014, 11(10), 3596-3608.
[http://dx.doi.org/10.1021/mp500337r] [PMID: 25157890]
[101]
Cacicedo, M.L.; Islan, G.A.; Drachemberg, M.F.; Alvarez, V.A.; Bartel, L.C.; Bolzán, A.D.; Castro, G.R. Hybrid bacterial cellulose-pectin films for delivery of bioactive molecules. New J. Chem., 2018, 42, 7457-7467.
[http://dx.doi.org/10.1039/C7NJ03973E]
[102]
Calcaterra, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal., 2018, 147, 323-340.
[http://dx.doi.org/10.1016/j.jpba.2017.07.008] [PMID: 28942107]
[103]
Bodhibukkana, C.; Srichana, T.; Kaewnopparat, S.; Tangthong, N.; Bouking, P.; Martin, G.P.; Suedee, R. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J. Control. Release, 2006, 113(1), 43-56.
[http://dx.doi.org/10.1016/j.jconrel.2006.03.007] [PMID: 16713005]
[104]
Tamahkar, E.; Bakhshpour, M.; Denizli, A. Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. J. Biomater. Sci. Polym. Ed., 2019, 30(6), 450-461.
[http://dx.doi.org/10.1080/09205063.2019.1580665] [PMID: 30773098]
[105]
Jantarat, C.; Attakitmongkol, K.; Nichsapa, S.; Sirathanarun, P.; Srivaro, S. Molecularly imprinted bacterial cellulose for sustained-release delivery of quercetin. J. Biomater. Sci. Polym. Ed., 2020, 31(15), 1961-1976.
[http://dx.doi.org/10.1080/09205063.2020.1787602] [PMID: 32586219]
[106]
Saylan, Y.; Tamahkar, E.; Denizli, A. Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers. J. Biomater. Sci. Polym. Ed., 2017, 28(16), 1950-1965.
[http://dx.doi.org/10.1080/09205063.2017.1364099] [PMID: 28784017]
[107]
Bakhshpour, M.; Tamahkar, E.; Andaç, M.; Denizli, A. Surface imprinted bacterial cellulose nanofibers for hemoglobin purification. Colloids Surf. B Biointerfaces, 2017, 158, 453-459.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.023] [PMID: 28728087]
[108]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[109]
Pandey, M.; Amin, M.C.I.M.; Ahmad, N.; Abeer, M.M. Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int. J. Polym. Sci., 2013, 2013, 905471.
[http://dx.doi.org/10.1155/2013/905471]
[110]
Hussain, M.A.; Badshah, M.; Iqbal, M.S.; Tahir, M.N.; Tremel, W.; Bhosale, S.V.; Sher, M.; Haseeb, M.T. HPMC‐salicylate conjugates as macromolecular prodrugs: design, characterization, and nano‐rods formation. J. Polym. Sci. A Polym. Chem., 2009, 47, 4202-4208.
[http://dx.doi.org/10.1002/pola.23463]
[111]
Peng, Y.S.; Lin, S.C.; Huang, S.J.; Wang, Y.M.; Lin, Y.J.; Wang, L.F.; Chen, J.S. Chondroitin sulfate-based anti-inflammatory macromolecular prodrugs. Eur. J. Pharm. Sci., 2006, 29(1), 60-69.
[http://dx.doi.org/10.1016/j.ejps.2006.05.010] [PMID: 16831535]
[112]
Radi, Z.A.; Khan, N.K. Effects of cyclooxygenase inhibition on the gastrointestinal tract. Exp. Toxicol. Pathol., 2006, 58(2-3), 163-173.
[http://dx.doi.org/10.1016/j.etp.2006.06.004] [PMID: 16859903]
[113]
Shah, K.; Gupta, J.K.; Chauhan, N.S.; Upmanyu, N.; Shrivastava, S.K.; Mishra, P. Prodrugs of NSAIDs: A review. Open Med. Chem. J., 2017, 11, 146-195.
[http://dx.doi.org/10.2174/1874104501711010146] [PMID: 29387273]
[114]
Stenstad, P.; Andresen, M.; Tanem, B.S.; Stenius, P. Chemical surface modifications of microfibrillated cellulose. Cellulose, 2008, 15, 35-45.
[http://dx.doi.org/10.1007/s10570-007-9143-y]
[115]
Shi, X.; Zheng, Y.; Zhang, W.; Zhang, Z.; Peng, Y. A novel drug carrier based on functional modified nanofiber cellulose and the control release behaviour. Fourth International Conference on Smart Materials and Nanotechnology in Engineering, 2013, pp. 879304-879306.
[http://dx.doi.org/10.1117/12.2027556]
[116]
Wiegand, C.; Moritz, S.; Hessler, N.; Kralisch, D.; Wesarg, F.; Müller, F.A.; Fischer, D.; Hipler, U.C. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine. J. Mater. Sci. Mater. Med., 2015, 26(10), 245.
[http://dx.doi.org/10.1007/s10856-015-5571-7] [PMID: 26411441]
[117]
Ye, S.; Jiang, L.; Wu, J.; Su, C.; Huang, C.; Liu, X.; Shao, W. Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: In-vitro and in vivo evaluation. ACS Appl. Mater. Interfaces, 2018, 10(6), 5862-5870.
[http://dx.doi.org/10.1021/acsami.7b16680] [PMID: 29345902]
[118]
Rouabhia, M.; Asselin, J.; Tazi, N.; Messaddeq, Y.; Levinson, D.; Zhang, Z. Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl. Mater. Interfaces, 2014, 6(3), 1439-1446.
[http://dx.doi.org/10.1021/am4027983] [PMID: 24422537]
[119]
Shokri, J.; Adibkia, K. Application of cellulose and cellulose derivatives in pharmaceutical industries.Cellulose-Medical, Pharmaceutical and Electronic Applications; Van De Ven, T.G.M., Ed.; InTech, 2013, pp. 47-66..
[http://dx.doi.org/10.5772/55178]
[120]
Wu, H.; Williams, G.R.; Wu, J.; Wu, J.; Niu, S.; Li, H.; Wang, H.; Zhu, L. Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydr. Polym., 2018, 180, 304-313.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.022] [PMID: 29103510]
[121]
Kirdponpattara, S.; Khamkeaw, A.; Sanchavanakit, N.; Pavasant, P.; Phisalaphong, M. Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Carbohydr. Polym., 2015, 132, 146-155.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.059] [PMID: 26256335]
[122]
Ramani, D.; Sastry, T.P. Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: A potential osteoinductive composite. Cellulose, 2014, 21, 3585-3595.
[http://dx.doi.org/10.1007/s10570-014-0313-4]
[123]
Khamrai, M.; Banerjee, S.L.; Kundu, P.P. Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application. Carbohydr. Polym., 2017, 174, 580-590.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.094] [PMID: 28821108]
[124]
Shao, W.; Wu, J.; Liu, H.; Ye, S.; Jiang, L.; Liu, X. Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohydr. Polym., 2017, 178, 270-276.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.045] [PMID: 29050594]
[125]
Wang, J.; Wan, Y.Z.; Luo, H.L.; Gao, C.; Huang, Y. Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique. Mater. Sci. Eng. C, 2012, 32, 536-541.
[http://dx.doi.org/10.1016/j.msec.2011.12.006]
[126]
Kirdponpattara, S.; Phisalaphong, M.; Kongruang, S. Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications. Carbohydr. Polym., 2017, 177, 361-368.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.094] [PMID: 28962780]
[127]
DeMello, J.A. Bacterial cellulose templates for nano-hydroxyapatite fibre synthesis., Master thesis, The University of Western Ontario. 2012.
[128]
Fang, B.; Wan, Y.Z.; Tang, T.T.; Gao, C.; Dai, K.R. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng. Part A, 2009, 15(5), 1091-1098.
[http://dx.doi.org/10.1089/ten.tea.2008.0110] [PMID: 19196148]
[129]
Wan, Y.Z.; Huang, Y.; Yuan, C.D.; Raman, S.; Zhu, Y.; Jiang, H.J.; He, F.; Gao, C. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater. Sci. Eng. C, 2007, 27, 855-864.
[http://dx.doi.org/10.1016/j.msec.2006.10.002]
[130]
Azuma, C.; Yasuda, K.; Tanabe, Y.; Taniguro, H.; Kanaya, F.; Nakayama, A.; Chen, Y.M.; Gong, J.P.; Osada, Y. Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J. Biomed. Mater. Res. A, 2007, 81(2), 373-380.
[http://dx.doi.org/10.1002/jbm.a.31043] [PMID: 17117467]
[131]
Millon, L.E.; Oates, C.J.; Wan, W. Compression properties of polyvinyl alcohol--bacterial cellulose nanocomposite. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90(2), 922-929.
[http://dx.doi.org/10.1002/jbm.b.31364] [PMID: 19360889]
[132]
Ullah, H.; Badshah, M.; Correia, A.; Wahid, F.; Santos, H.A.; Khan, T. Functionalized bacterial cellulose microparticles for drug delivery in biomedical applications. Curr. Pharm. Des., 2019, 25(34), 3692-3701.
[http://dx.doi.org/10.2174/1381612825666191011103851] [PMID: 31604410]
[133]
Jessop, Z.M.; Al-Himdani, S.; Clement, M.; Whitaker, I.S. The challenge for reconstructive surgeons in the twenty-first century: manufacturing tissue-engineered solutions. Front. Surg., 2015, 2, 52.
[http://dx.doi.org/10.3389/fsurg.2015.00052] [PMID: 26528481]
[134]
Bishop, E.S.; Mostafa, S.; Pakvasa, M.; Luu, H.H.; Lee, M.J.; Wolf, J.M.; Ameer, G.A.; He, T.C.; Reid, R.R. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis., 2017, 4(4), 185-195.
[http://dx.doi.org/10.1016/j.gendis.2017.10.002] [PMID: 29911158]
[135]
Gungor-Ozkerim, P.S.; Inci, I.; Zhang, Y.S.; Khademhosseini, A.; Dokmeci, M.R. Bioinks for 3D bioprinting: an overview. Biomater. Sci., 2018, 6(5), 915-946.
[http://dx.doi.org/10.1039/C7BM00765E] [PMID: 29492503]
[136]
Markstedt, K.; Mantas, A.; Tournier, I.; Martínez Ávila, H.; Hägg, D.; Gatenholm, P. 3D bioprinting human chondrocytes with nanocellulose-alginate bio-ink for cartilage tissue engineering applications. Biomacromolecules, 2015, 16(5), 1489-1496.
[http://dx.doi.org/10.1021/acs.biomac.5b00188] [PMID: 25806996]
[137]
Nguyen, D.; Hägg, D.A.; Forsman, A.; Ekholm, J.; Nimkingratana, P.; Brantsing, C.; Kalogeropoulos, T.; Zaunz, S.; Concaro, S.; Brittberg, M.; Lindahl, A.; Gatenholm, P.; Enejder, A.; Simonsson, S. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bio-ink. Sci. Rep., 2017, 7(1), 658.
[http://dx.doi.org/10.1038/s41598-017-00690-y] [PMID: 28386058]
[138]
Apelgren, P.; Amoroso, M.; Lindahl, A.; Brantsing, C.; Rotter, N.; Gatenholm, P.; Kölby, L. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS One, 2017, 12(12), e0189428.
[http://dx.doi.org/10.1371/journal.pone.0189428] [PMID: 29236765]
[139]
Markstedt, K.; Escalante, A.; Toriz, G.; Gatenholm, P. Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D printing. ACS Appl. Mater. Interfaces, 2017, 9(46), 40878-40886.
[http://dx.doi.org/10.1021/acsami.7b13400] [PMID: 29068193]
[140]
Mohamad, N.; Mohd Amin, M.C.; Pandey, M.; Ahmad, N.; Rajab, N.F. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr. Polym., 2014, 114, 312-320.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.025] [PMID: 25263896]
[141]
Zmejkoski, D.; Spasojević, D.; Orlovska, I.; Kozyrovska, N.; Soković, M.; Glamočlija, J.; Dmitrović, S.; Matović, B.; Tasić, N.; Maksimović, V.; Sosnin, M.; Radotić, K. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing., Int. J. Biol. Macromol., 2018, 118(Pt A), 494-503..
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.067] [PMID: 29909035]
[142]
Shao, W.; Liu, H.; Liu, X.; Wang, S.; Wu, J.; Zhang, R.; Min, H.; Huang, M. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr. Polym., 2015, 132, 351-358.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.057] [PMID: 26256359]
[143]
Gonçalves, S.; Rodrigues, I.P.; Padrão, J.; Silva, J.P.; Sencadas, V.; Lanceros-Mendez, S.; Girão, H.; Gama, F.M.; Dourado, F.; Rodrigues, L.R. Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids Surf. B Biointerfaces, 2016, 139, 1-9.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.051] [PMID: 26689643]
[144]
Kharaghani, D.; Khan, M.Q.; Kim, I.S. Application of nanofibers in ophthalmic tissue engineering. Handbook of Nanofibers; Barhoum, A.; Bechelany, M; Makhlouf, A.S.H., Ed.; Springer: Cham, Switzerland, 2019, pp. 649-664.
[http://dx.doi.org/10.1007/978-3-319-53655-2_56]
[145]
Vilela, C.; Martins, A.; Sousa, N.; Silvestre, A.; Figueiredo, F.; Freire, C. Poly(bis[2-(methacryloyloxy) ethyl]phosphate)/bacterial cellulose nanocomposites: Preparation, characterization and application as polymer electrolyte membranes. Appl. Sci. (Basel), 2018, 8, 1145.
[http://dx.doi.org/10.3390/app8071145]
[146]
Vilela, C.; Moreirinha, C.; Domingues, E.M.; Figueiredo, F.M.L.; Almeida, A.; Freire, C.S.R. Antimicrobial and conductive nanocellulose-based films for active and intelligent food packaging. Nanomaterials (Basel), 2019, 9(7), 980.
[http://dx.doi.org/10.3390/nano9070980] [PMID: 31284559]
[147]
Vilela, C.; Moreirinha, C.; Almeida, A.; Silvestre, A.J.D.; Freire, C.S.R. Zwitterionic Nanocellulose-based membranes for organic dye removal. Materials (Basel), 2019, 12(9), 1404.
[http://dx.doi.org/10.3390/ma12091404] [PMID: 31052184]
[148]
Nata, I.F.; Sureshkumar, M.; Lee, C.K. One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Advances, 2011, 1, 625-631.
[http://dx.doi.org/10.1039/c1ra00153a]
[149]
Derazshamshir, A.; Göktürk, I.; Tamahkar, E.; Yılmaz, F.; Sağlam, N.; Denizli, A. Phenol removal from wastewater by surface imprinted bacterial cellulose nanofibres. Environ. Technol., 2020, 41(24), 3134-3145.
[http://dx.doi.org/10.1080/09593330.2019.1600043] [PMID: 30919740]
[150]
Suratago, T.; Taokaew, S.; Kanjanamosit, N.; Kanjanaprapakul, K.; Burapatana, V.; Phisalaphong, M. Development of bacterial cellulose/alginate nanocomposite membrane for separation of ethanol-water mixtures. J. Ind. Eng. Chem., 2015, 32, 305-312.
[http://dx.doi.org/10.1016/j.jiec.2015.09.004]
[151]
Shoukat, A.; Wahid, F.; Khan, T.; Siddique, M.; Nasreen, S.; Yang, G.; Ullah, M.W.; Khan, R. Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution. Int. J. Biol. Macromol., 2019, 129, 965-971.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.032] [PMID: 30738165]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy