Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

An Eco-friendly and Economical Approach for Removal of Remazol Blue, Malachite Green and Rhodamine B Dyes from Wastewater using Bio-char Derived from Chlorella Vulgaris Biomass

Author(s): Arun Jayaseelan*, Gopinath Kannappan Panchamoorthy and Vinitha Nithianantharaj

Volume 18, Issue 3, 2022

Published on: 03 November, 2020

Page: [370 - 382] Pages: 13

DOI: 10.2174/1573411016999201103230445

Price: $65

Abstract

Background: Rapid urbanization and industrialization have led to the depletion of water resources and the generation of an enormous amount of wastewater. One among them is the textile industry, which discharges a huge amount of dye wastewater into the aquatic environment.

Methods: This study deals with adsorption of Remazol blue, Malachite green and Rhodamine B dyes into bio-char derived from Chlorella Vulgaris biomass cultivated from municipal wastewater. Column studies were performed to depict the industrial usage of bio-char for the treatment of a large quantity of wastewater. The effect of temperature, time, pH, dye concentration and adsorbent dosage on dye removal was studied in a batch process.

Results: The best batch adsorption conditions are temperature (25°C), time (60min), pH (7), dye concentration (100ppm) and adsorbent dosage (1g) with ± 5% for all three dyes. Dye removal percentage of bio-char increased with increase in adsorbent dosage to 94.5%, 88.2% and 90.1% for Remazol blue, Malachite green and Rhodamine B dyes at 1g/L adsorbent dosage. Freundlich isotherm exhibited correlation coefficient (R2) values of 0.99, 0.98 and 0.99 for Remazol blue, Malachite green and Rhodamine B dyes, respectively. Kinetic studies revealed that all three dyes followed the pseudo first-order model. An increase in column bed height resulted in increased dye removal percentage since the increase in bed height resulted in an increase in bio-char quantity with more number of surface area

Conclusion: From the study, it can be concluded that Bio-char was the economical and ecofriendly alternative adsorbent for the wastewater treatment process. Bio-char reusability study revealed that it could be used for 3-4 consecutive cycles.

Keywords: Bio-char, remazol blue, malachite green, rhodamine B, adsorption, wastewater.

Graphical Abstract
[1]
Tara, N.; Siddiqui, S.I.; Rathi, G.; Chaudhry, S.A.; Asiri, A.M. Nano-engineered Adsorbent for the removal of dyes from water: A review. Curr. Anal. Chem., 2020, 16, 14-40.
[http://dx.doi.org/10.2174/1573411015666190117124344]
[2]
Arun, J.; Monica, M.J.; Felix, V.; Gopinath, K.P. Immobilized Nanocatalysts for Degradation of Industrial Wastewater. Advanced Research in Nanosciences for Water Technology; Springer, 2019, pp. 133-145.
[http://dx.doi.org/10.1007/978-3-030-02381-2_6]
[3]
Isloor, A.M.; Nayak, M.C.; Prabhu, B.; Ismail, N.; Ismail, A.; Asiri, A.M. Novel polyphenylsulfone (PPSU)/nano tin oxide (SnO2) mixed matrix ultrafiltration hollow fiber membranes: Fabrication, characterization and toxic dyes removal from aqueous solutions. React. Funct. Polym., 2019, 139, 170-180.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.02.015]
[4]
Inamuddin. Fabrication and characterization of starch-cl-poly (lactic acid-g-acrylamide) nanohydrogel for adsorptive removal of Eriochrome Black-T from the aqueous medium. Desalination Water Treat., 2018, 116, 294-304.
[http://dx.doi.org/10.5004/dwt.2018.22484]
[5]
Ghodoosi, S.; Mofazzeli, F. Air-agitated dispersive liquid–liquid microextraction using organic solvents lighter than water for extraction of amitriptyline in water and urine samples. Curr. Anal. Chem., 2018, 14, 626-633.
[http://dx.doi.org/10.2174/1573411014666180125155250]
[6]
Peng, N.; Hu, D.; Zeng, J.; Li, Y.; Liang, L.; Chang, C. Superabsorbent cellulose–clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain. Chem.& Eng., 2016, 4, 7217-7224.
[http://dx.doi.org/10.1021/acssuschemeng.6b02178]
[7]
Ajmal, S.; Bibi, I.; Majid, F.; Ata, S.; Kamran, K.; Jilani, K.; Nouren, S.; Kamal, S.; Ali, A.; Iqbal, M. Effect of Fe and Bi doping on LaCoO3 structural, magnetic, electric and catalytic properties. J. Mat. Res. Technol., 2019, 8, 4831-4842.
[http://dx.doi.org/10.1016/j.jmrt.2019.08.029]
[8]
Iqbal, M.; Abbas, M.; Nisar, J.; Nazir, A.; Qamar, A. Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: A review. Chem. Int., 2019, 5, 1-80.
[9]
Sohail, I.; Bhatti, I.A.; Ashar, A.; Sarim, F.M.; Mohsin, M.; Naveed, R.; Yasir, M.; Iqbal, M.; Nazir, A. Polyamidoamine (PAMAM) dendrimers synthesis, characterization and adsorptive removal of nickel ions from aqueous solution. J. Mat. Res. Technol., 2020, 9, 498-506.
[http://dx.doi.org/10.1016/j.jmrt.2019.10.079]
[10]
Jamil, A.; Bokhari, T.H.; Javed, T.; Mustafa, R.; Sajid, M.; Noreen, S.; Zuber, M.; Nazir, A.; Iqbal, M.; Jilani, M.I. Photocatalytic degradation of disperse dye Violet-26 using TiO2 and ZnO nanomaterials and process variable optimization. J. Mat. Res. Technol., 2020, 9, 1119-1128.
[http://dx.doi.org/10.1016/j.jmrt.2019.11.035]
[11]
Aruna, J.; Sushmab, R.; Darshanb, B.; Pandimadevib, M. Chemically enhanced coffee husks as biosorbents for the removal of copper and nickel ions from aqueous solutions: Study on kinetic parameters. Desalination Water Treat., 2018, 121, 291-304.
[http://dx.doi.org/10.5004/dwt.2018.22510]
[12]
Alkherraz, A.M.; Ali, A.K.; Elsherif, K.M. Removal of Pb (II), Zn (II), Cu (II) and Cd (II) from aqueous solutions by adsorption onto olive branches activated carbon: Equilibrium and thermodynamic studies. Chem. Int., 2020, 6, 11-20.
[13]
Noreen, S.; Bhatti, H.N.; Iqbal, M.; Hussain, F.; Sarim, F.M. Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. Int. J. Biol. Macromol., 2020, 147, 439-452.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.257] [PMID: 31917212]
[14]
Alasadi, A.; Khaili, F.; Awwad, A. Adsorption of Cu (II), Ni (II) and Zn (II) ions by nano kaolinite: Thermodynamics and kinetics studies. Chem. Int., 2019, 5, 258-226.
[15]
Nouren, S.; Bhatti, H.N.; Iqbal, M.; Bibi, I.; Kamal, S.; Sadaf, S.; Sultan, M.; Kausar, A.; Safa, Y. By-product identification and phytotoxicity of biodegraded Direct Yellow 4 dye. Chemosphere, 2017, 169, 474-484.
[http://dx.doi.org/10.1016/j.chemosphere.2016.11.080] [PMID: 27889513]
[16]
Shokrollahi, A.; Behrooj Pili, H. Ultrasonic assisted cloud point extraction-scanometry, a new method for the simultaneous preconcentration and determination of two dyes; application for the determination of crystal violet and auramine O. Curr. Anal. Chem., 2017, 13, 340-348.
[http://dx.doi.org/10.2174/1573411012666160720155335]
[17]
Magnacca, G.; Allera, A.; Montoneri, E.; Celi, L.; Benito, D.E.; Gagliardi, L.G.; Gonzalez, M.C.; Màrtire, D.O.; Carlos, L. Novel magnetite nanoparticles coated with waste-sourced biobased substances as sustainable and renewable adsorbing materials. ACS Sustain. Chem.& Eng., 2014, 2, 1518-1524.
[http://dx.doi.org/10.1021/sc500213j]
[18]
Zhou, Y.; Gu, X.; Zhang, R.; Lu, J. Removal of aniline from aqueous solution using pine sawdust modified with citric acid and β-cyclodextrin. Ind. Eng. Chem. Res., 2014, 53, 887-894.
[http://dx.doi.org/10.1021/ie403829s]
[19]
SundarRajan, P.; Gopinath, K.P.; Arun, J. GracePavithra, K.; Pavendan, K.; AdithyaJoseph, A. An insight into carbon balance of product streams from hydrothermal liquefaction of Scenedesmus abundans biomass. Renew. Energy, 2020, 151, 79-87.
[http://dx.doi.org/10.1016/j.renene.2019.11.011]
[20]
Arun, J.; Varshini, P.; Prithvinath, P.K.; Priyadarshini, V.; Gopinath, K.P. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Bioresour. Technol., 2018, 261, 182-187.
[http://dx.doi.org/10.1016/j.biortech.2018.04.029] [PMID: 29660659]
[21]
Arun, J.; Gopinath, K.; Shreekanth, S.; Sahana, R.; Raghavi, M.; Gnanaprakash, D. Effects of process parameters on hydrothermal liquefaction of microalgae biomass grown in municipal wastewater. Petrol. Chem., 2019, 59, 194-200.
[http://dx.doi.org/10.1134/S0965544119020026]
[22]
Malik, R.; Ramteke, D.S.; Wate, S.R. Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag., 2007, 27(9), 1129-1138.
[http://dx.doi.org/10.1016/j.wasman.2006.06.009] [PMID: 17029775]
[23]
Marrakchi, F.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. Int. J. Biol. Macromol., 2017, 98, 233-239.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.119] [PMID: 28147233]
[24]
Sayğılı, H.; Güzel, F.; Önal, Y. Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. J. Clean. Prod., 2015, 93, 84-93.
[http://dx.doi.org/10.1016/j.jclepro.2015.01.009]
[25]
Olivera, S.; Venkatesh, K.; Santosh, M.S.; Leybo, D.; Kuznetsov, D.; Jayanna, B.K.; Asiri, A.; Alamry, K.; Muralidhara, H. Open ended tube like hollow bio-carbon derived from banana fibre for removal of anionic and cationic dyes. Desalination Water Treat., 2018, 132, 297-306.
[26]
Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater., 2020, 2020, 1-25.
[27]
Jiao, M.; Yao, Y.; Chen, C.; Jiang, B.; Pastel, G.; Lin, Z.; Wu, Q.; Cui, M.; He, S.; Hu, L. Highly Efficient Water Treatment via a Wood-Based and Reusable Filter. ACS Materials Letters, 2020, 2, 430-437.
[http://dx.doi.org/10.1021/acsmaterialslett.9b00488]
[28]
He, S.; Chen, C.; Chen, G.; Chen, F.; Dai, J.; Song, J.; Jiang, F.; Jia, C.; Xie, H.; Yao, Y. High-Performance, Scalable Wood-Based Filtration Device with a Reversed-Tree Design. Chem. Mater., 2020, 32, 1887-1895.
[http://dx.doi.org/10.1021/acs.chemmater.9b04516]
[29]
Arun, J.; Shreekanth, S.J.; Sahana, R.; Raghavi, M.S.; Gopinath, K.P.; Gnanaprakash, D. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater. Bioresour. Technol., 2017, 244(Pt 1), 963-968.
[http://dx.doi.org/10.1016/j.biortech.2017.08.048] [PMID: 28847087]
[30]
Tissera, N.D.; Wijesena, R.N.; Yasasri, H.; de Silva, K.N.; de Silva, R.M. Fibrous keratin protein bio micro structure for efficient removal of hazardous dye waste from water: Surface charge mediated interfaces for multiple adsorption desorption cycles. Mater. Chem. Phys., 2020, 246122790
[http://dx.doi.org/10.1016/j.matchemphys.2020.122790]
[31]
Choudhary, M.; Kumar, R.; Neogi, S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard. Mater., 2020, 392122441
[http://dx.doi.org/10.1016/j.jhazmat.2020.122441] [PMID: 32193109]
[32]
Özcan, A.S.; Tunali, S.; Akar, T.; Özcan, A. Biosorption of lead (II) ions onto waste biomass of Phaseolus vulgaris L.: Estimation of the equilibrium, kinetic and thermodynamic parameters. Desalination, 2009, 244, 188-198.
[http://dx.doi.org/10.1016/j.desal.2008.05.023]
[33]
Mubashar Hussain Gardazi, S.; Ali, M.; Rehman, S.; Ashfaq, T.; Bilal, M. Process optimization of hazardous malachite green (MG) adsorption onto white cedar waste: isotherms, kinetics and thermodynamic studies. Curr. Anal. Chem., 2017, 13, 305-316.
[http://dx.doi.org/10.2174/1573411012666160601170153]
[34]
S, S.; P, S.K.; A, S.; P, S.R.; C, R. Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis. Environ. Toxicol. Pharmacol., 2017, 50, 45-57.
[http://dx.doi.org/10.1016/j.etap.2017.01.014] [PMID: 28131076]
[35]
Wong, K.; Lee, C.; Low, K.; Haron, M. Removal of Cu and Pb from electroplating wastewater using tartaric acid modified rice husk. Process Biochem., 2003, 39, 437-445.
[http://dx.doi.org/10.1016/S0032-9592(03)00094-3]
[36]
Jothirani, R.; Kumar, P.S.; Saravanan, A.; Narayan, A.S.; Dutta, A. Ultrasonic modified corn pith for the sequestration of dye from aqueous solution. J. Ind. Eng. Chem., 2016, 39, 162-175.
[http://dx.doi.org/10.1016/j.jiec.2016.05.024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy