Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

4-Aryl-1,4-Dihydropyridines as Potential Enoyl-Acyl Carrier Protein Reductase Inhibitors: Antitubercular Activity and Molecular Docking Study

Author(s): Katharigatta N. Venugopala*, Pran Kishore Deb, Melendhran Pillay, Deepak Chopra, Sandeep Chandrashekharappa, Mohamed A. Morsy, Bandar E. Aldhubiab, Mahesh Attimarad, Anroop B. Nair, Nagaraja Sreeharsha, Mahmoud Kandeel, Rashmi Venugopala and Viresh Mohanlall

Volume 21, Issue 4, 2021

Published on: 02 November, 2020

Page: [295 - 306] Pages: 12

DOI: 10.2174/1568026620666201102121606

Price: $65

Abstract

Background: Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB).

Aims: Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis.

Materials and Methods: Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4- DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB.

Results and Discussion: Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having paratrifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5- positions of 1,4-dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski’s rule of five, thereby indicating their potential as drug-like molecules.

Conclusion: In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.

Keywords: Dihydropyridine, Mycobacterium tuberculosis, Anti-TB activity, Molecular docking, InhA, MTT assay.

Graphical Abstract
[1]
Shruthi, T.G.; Eswaran, S.; Shivarudraiah, P.; Narayanan, S.; Subramanian, S. Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety. Bioorg. Med. Chem. Lett., 2019, 29(1), 97-102.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.002] [PMID: 30448235]
[2]
Ambre, P.K.; Pissurlenkar, R.R.S.; Wavhale, R.D.; Shaikh, M.S.; Khedkar, V.M.; Wan, B.; Franzblau, S.G.; Coutinho, E.C. Design, synthesis, and evaluation of 4-(substituted)phenyl-2-thioxo-3,4-dihydro-1H-chromino[4,3-d]pyrimidin-5-one and 4-(substituted)phenyl-3,4-dihydro-1H-chromino[4,3-d]pyrimidine-2,5-dione analogs as antitubercular agents. Med. Chem. Res., 2013, 23(5)
[4]
Caminero, J.A.; Sotgiu, G.; Zumla, A.; Migliori, G.B. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect. Dis., 2010, 10(9), 621-629.
[http://dx.doi.org/10.1016/S1473-3099(10)70139-0] [PMID: 20797644]
[5]
Espinal, M.A. The global situation of MDR-TB. Tuberculosis (Edinb.), 2003, 83(1-3), 44-51.
[http://dx.doi.org/10.1016/S1472-9792(02)00058-6] [PMID: 12758188]
[6]
Cox, E.; Laessig, K. FDA approval of bedaquiline--the benefit-risk balance for drug-resistant tuberculosis. N. Engl. J. Med., 2014, 371(8), 689-691.
[http://dx.doi.org/10.1056/NEJMp1314385] [PMID: 25140952]
[7]
Barry, C.E., III Timing is everything for compassionate use of delamanid. Nat. Med., 2015, 21(3), 211-211.
[http://dx.doi.org/10.1038/nm.3823] [PMID: 25742452]
[8]
Keam, S.J. Pretomanid: First approval. Drugs, 2019, 79(16), 1797-1803.
[http://dx.doi.org/10.1007/s40265-019-01207-9] [PMID: 31583606]
[9]
FDA approves new drug for treatment-resistant forms of tuberculosis that affects the lungs 2020. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-resistant-forms-tuberculosis-affects-lungs
[10]
Tetali, S.R.; Kunapaeddi, E.; Mailavaram, R.P.; Singh, V.; Borah, P.; Deb, P.K.; Venugopala, K.N. Current advances in the clinical development of anti-tubercular agents Tuberculosis, 2020, 125101989
[11]
Singh, A.; Venugopala, K.N.; Khedr, M.A.; Pillay, M.; Nwaeze, K.U.; Coovadia, Y.; Shode, F.; Odhav, B. Antimycobacterial, docking and molecular dynamic studies of pentacyclic triterpenes from Buddleja saligna leaves. J. Biomol. Struct. Dyn., 2017, 35(12), 2654-2664.
[http://dx.doi.org/10.1080/07391102.2016.1227725] [PMID: 28278765]
[12]
Narayanaswamy, V.K.; Albericio, F.; Coovadia, Y.M.; Kruger, H.G.; Maguire, G.E.M.; Pillay, M.; Govender, T. Total synthesis of a depsidomycin analogue by convergent solid-phase peptide synthesis and macrolactonization strategy for antitubercular activity. J. Pept. Sci., 2011, 17(10), 683-689.
[http://dx.doi.org/10.1002/psc.1389] [PMID: 21766389]
[13]
Narayanaswamy, V.K.; Nayak, S.K.; Pillay, M.; Prasanna, R.; Coovadia, Y.M.; Odhav, B. Synthesis and antitubercular activity of 2-(substituted phenyl/benzyl-amino)-6-(4-chlorophenyl)-5-(methoxycarbonyl)-4-methyl-3,6-dihydropyrimidin-1-ium chlorides. Chem. Biol. Drug Des., 2013, 81(2), 219-227.
[http://dx.doi.org/10.1111/cbdd.12065] [PMID: 23150983]
[14]
Venugopala, K.N.; Dharma Rao, G.B.; Bhandary, S.; Pillay, M.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Harsha, S.; Mlisana, K. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2016, 10, 2681-2690.
[http://dx.doi.org/10.2147/DDDT.S109760] [PMID: 27601885]
[15]
Venugopala, K.N.; Chandrashekharappa, S.; Pillay, M.; Bhandary, S.; Kandeel, M.; Mahomoodally, F.M.; Morsy, M.A.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Harsha, S.; Mlisana, K.; Odhav, B. Synthesis and structural elucidation of novel benzothiazole derivatives as anti-tubercular agents: In-silico screening for possible target identification. Med. Chem., 2019, 15(3), 311-326.
[http://dx.doi.org/10.2174/1573406414666180703121815] [PMID: 29968540]
[16]
Venugopala, K.N.; Chandrashekharappa, S.; Pillay, M.; Abdallah, H.H.; Mahomoodally, F.M.; Bhandary, S.; Chopra, D.; Attimarad, M.; Aldhubiab, B.E.; Nair, A.B.; Sreeharsha, N.; Morsy, M.A.; Pottathil, S.; Venugopala, R.; Odhav, B.; Mlisana, K. Computational, crystallographic studies, cytotoxicity and anti-tubercular activity of substituted 7-methoxy-indolizine analogues. PLoS One, 2019, 14(6)e0217270
[http://dx.doi.org/10.1371/journal.pone.0217270] [PMID: 31163040]
[17]
Venugopala, K.N.; Tratrat, C.; Pillay, M.; Mahomoodally, F.M.; Bhandary, S.; Chopra, D.; Morsy, M.A.; Haroun, M.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; Venugopala, R.; Chandrashekharappa, S.; Alwassil, O.I.; Odhav, B. Anti-tubercular activity of substituted 7-methyl and 7-formylindolizines and in silico study for prospective molecular target identification. Antibiotics (Basel), 2019, 8(4), 1-16.
[http://dx.doi.org/10.3390/antibiotics8040247] [PMID: 31816928]
[18]
Khedr, M.A.; Pillay, M.; Chandrashekharappa, S.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Mlisana, K.; Odhav, B.; Venugopala, K.N. Molecular modeling studies and anti-TB activity of trisubstituted indolizine analogues; molecular docking and dynamic inputs. J. Biomol. Struct. Dyn., 2018, 36(8), 2163-2178.
[http://dx.doi.org/10.1080/07391102.2017.1345325] [PMID: 28657441]
[19]
Venugopala, K.N.; Kandeel, M.; Pillay, M.; Deb, P.K.; Abdallah, H.H.; Mahomoodally, M.F.; Chopra, D. Anti-tubercular properties of 4-amino-5-(4-fluoro-3- phenoxyphenyl)-4H-1,2,4-triazole-3-thiol and its schiff bases: computational input and molecular dynamics. Antibiotics (Basel), 2020, 9(9), 559.
[http://dx.doi.org/10.3390/antibiotics9090559] [PMID: 32878018]
[20]
Chandrashekharappa, S.; Venugopala, K.N.; Venugopala, R.; Padmashali, B. Qualitative anti-tubercular activity of synthetic ethyl 7-acetyl-2-substituted-3-(4-substituted benzoyl) indolizine-1-carboxylate analogues. J. Appl. Pharm. Sci., 2019, 9(02), 124-128.
[http://dx.doi.org/10.7324/JAPS.2019.90217]
[21]
Venugopala, K.N.; Khedr, M.A.; Pillay, M.; Nayak, S.K.; Chandrashekharappa, S.; Aldhubiab, B.E.; Harsha, S.; Attimard, M.; Odhav, B. Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics. J. Biomol. Struct. Dyn., 2019, 37(7), 1830-1842.
[http://dx.doi.org/10.1080/07391102.2018.1470035] [PMID: 29697293]
[22]
Venugopala, K.N.; Tratrat, C.; Pillay, M.; Chandrashekharappa, S.; Al-Attraqchi, O.H.A.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Nair, A.B.; Sreeharsha, N.; Venugopala, R.; Morsy, M.A.; Haroun, M.; Kumalo, H.M.; Odhav, B.; Mlisana, K. In silico design and synthesis of tetrahydropyrimidinones and tetrahydropyrimidinethiones as potential thymidylate kinase inhibitors exerting anti-TB activity against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2020, 14, 1027-1039.
[http://dx.doi.org/10.2147/DDDT.S228381] [PMID: 32214795]
[23]
Venugopala, K.N.; Uppar, V.; Chandrashekharappa, S.; Abdallah, H.H.; Pillay, M.; Deb, P.K.; Morsy, M.A.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; Tratrat, C.; Yousef Jaber, A.; Venugopala, R.; Mailavaram, R.P.; Al-Jaidi, B.A.; Kandeel, M.; Haroun, M.; Padmashali, B. Cytotoxicity and antimycobacterial properties of pyrrolo[1,2-a]quinoline derivatives: Molecular target identification and molecular docking studies. Antibiotics (Basel), 2020, 9(5), 1-14.
[http://dx.doi.org/10.3390/antibiotics9050233] [PMID: 32392709]
[24]
Chikhale, R.; Thorat, S.; Pant, A.; Jadhav, A.; Thatipamula, K.C.; Bansode, R.; Bhargavi, G.; Karodia, N.; Rajasekharan, M.V.; Paradkar, A.; Khedekar, P. Design, synthesis and pharmacological evaluation of pyrimidobenzothiazole-3-carboxylate derivatives as selective L-type calcium channel blockers. Bioorg. Med. Chem., 2015, 23(20), 6689-6713.
[http://dx.doi.org/10.1016/j.bmc.2015.09.009] [PMID: 26385444]
[25]
Emmet, J.C. Comprehensive Medicinal Chemistry; Pergamon Press: Oxford, 1990.
[26]
Tsuruo, T.; Iida, H.; Nojiri, M.; Tsukagoshi, S.; Sakurai, Y. Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res., 1983, 43(6), 2905-2910.
[PMID: 6850602]
[27]
Malaisse, W.J.; Mathias, P.C. Stimulation of insulin release by an organic calcium agonist. Diabetologia, 1985, 28(3), 153-156.
[PMID: 3888757]
[28]
Naicker, L.; Venugopala, K.; Shode, F.; Odhav, B. Antimicrobial and antioxidant activities of piperidine derivatives. Afr. J. Pharm. Pharmacol., 2015, 9(31), 783-792.
[http://dx.doi.org/10.5897/AJPP2015.4335]
[29]
Krauze, A.; Ģērmane, S. Eberlin; nE š.; Šturms, I.; Klusā, V.; Duburs, G., Derivatives of 3-cyano-6-phenyl-4-(3`-pyridyl)-pyridine-2(1H)-thione and their neurotropic activity. Eur. J. Med. Chem., 1999, 34(4), 301-310.
[http://dx.doi.org/10.1016/S0223-5234(99)80081-6]
[30]
Chapman, R.W.; Danko, G.; Siegel, M.I. Effect of extra- and intracellular calcium blockers on histamine and antigen-induced bronchospasms in guinea pigs and rats. Pharmacology, 1984, 29(5), 282-291.
[http://dx.doi.org/10.1159/000138024] [PMID: 6494237]
[31]
Poindexter, G.S.; Bruce, M.A.; Breitenbucher, J.G.; Higgins, M.A.; Sit, S.Y.; Romine, J.L.; Martin, S.W.; Ward, S.A.; McGovern, R.T.; Clarke, W.; Russell, J.; Antal-Zimanyi, I. Dihydropyridine neuropeptide Y Y1 receptor antagonists 2. bioisosteric urea replacements. Bioorg. Med. Chem., 2004, 12(2), 507-521.
[http://dx.doi.org/10.1016/j.bmc.2003.10.016] [PMID: 14723969]
[32]
Lecht, S.; Rotfeld, E.; Arien-Zakay, H.; Tabakman, R.; Matzner, H.; Yaka, R.; Lelkes, P.I.; Lazarovici, P. Neuroprotective effects of nimodipine and nifedipine in the NGF-differentiated PC12 cells exposed to oxygen-glucose deprivation or trophic withdrawal. Int. J. Dev. Neurosci., 2012, 30(6), 465-469.
[http://dx.doi.org/10.1016/j.ijdevneu.2012.05.007] [PMID: 22677442]
[33]
Bretzel, R.G.; Bollen, C.C.; Maeser, E.; Federlin, K.F. Nephroprotective effects of nitrendipine in hypertensive type I and type II diabetic patients. Am. J. Kidney Dis., 1993, 21(6)(Suppl. 3), 53-64.
[http://dx.doi.org/10.1016/0272-6386(93)70125-I] [PMID: 8503436]
[34]
Tasaka, S.; Ohmori, H.; Gomi, N.; Iino, M.; Machida, T.; Kiue, A.; Naito, S.; Kuwano, M. Synthesis and structure--activity analysis of novel dihydropyridine derivatives to overcome multidrug resistance. Bioorg. Med. Chem. Lett., 2001, 11(2), 275-277.
[http://dx.doi.org/10.1016/S0960-894X(00)00651-X] [PMID: 11206476]
[35]
Shekari, F.; Sadeghpour, H.; Javidnia, K.; Saso, L.; Nazari, F.; Firuzi, O.; Miri, R. Cytotoxic and multidrug resistance reversal activities of novel 1,4-dihydropyridines against human cancer cells. Eur. J. Pharmacol., 2015, 746, 233-244.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.058] [PMID: 25445037]
[36]
Mahammed, K.; Venugopala, K.; Arunachalam, P.; Raju, K.M. Synthesis, Spectral Studies and Anti-Bacterial Activity of Novel Substituted aryl/heteroaryl-(12-substituted phenyl-12H-7-oxa-8, 10-diazabenzo [a] anthracen-11-yl)-amine. Lett. Drug Des. Discov., 2009, 6(6), 451-455.
[http://dx.doi.org/10.2174/157018009789057616]
[37]
Venugopala, K.N.; Krishnappa, M.; Nayak, S.K.; Subrahmanya, B.K.; Vaderapura, J.P.; Chalannavar, R.K.; Gleiser, R.M.; Odhav, B. Synthesis and antimosquito properties of 2,6-substituted benzo[d]thiazole and 2,4-substituted benzo[d]thiazole analogues against Anopheles arabiensis. Eur. J. Med. Chem., 2013, 65, 295-303.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.061] [PMID: 23727539]
[38]
Narayanaswamy, V.K.; Gleiser, R.M.; Kasumbwe, K.; Aldhubiab, B.E.; Attimarad, M.V.; Odhav, B. Evaluation of halogenated coumarins for antimosquito properties. ScientificWorldJournal, 2014, 2014(189824)189824
[http://dx.doi.org/10.1155/2014/189824] [PMID: 25610898]
[39]
Narayanaswamy, V.K.; Gleiser, R.M.; Chalannavar, R.K.; Odhav, B. Antimosquito properties of 2-substituted phenyl/benzylamino-6-(4-chlorophenyl)-5-methoxycarbonyl-4-methyl-3,6-dihydropyrimidin--ium chlorides against Anopheles arabiensis. Med. Chem., 2014, 10(2), 211-219.
[http://dx.doi.org/10.2174/157340641002140131164945] [PMID: 24506684]
[40]
Sandeep, C.; Venugopala, K.N.; Gleiser, R.M.; Chetram, A.; Padmashali, B.; Kulkarni, R.S.; Venugopala, R.; Odhav, B. Greener synthesis of indolizine analogues using water as a base and solvent: study for larvicidal activity against Anopheles arabiensis. Chem. Biol. Drug Des., 2016, 88(6), 899-904.
[http://dx.doi.org/10.1111/cbdd.12823] [PMID: 27440719]
[41]
Chandrashekharappa, S.; Venugopala, K.N.; Nayak, S.K.M.; Gleiser, R.; García, D.A.; Kumalo, H.M.; Kulkarni, R.S.; Mahomoodally, F.M.; Venugopala, R.; Mohan, M.K.; Odhav, B. One-pot microwave assisted synthesis and structural elucidation of novel ethyl 3-substituted-7-methylindolizine-1-carboxylates with larvicidal activity against Anopheles arabiensis. J. Mol. Struct., 2018, 1156, 377-384.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.131]
[42]
Dharma Rao, B.D.; Bhandary, S.; Chopra, D.; Venugopala, K.N.; Gleiser, R.M.; Kasumbwe, K.; Odhav, B. Synthesis and characterization of a novel series of 1,4-dihydropyridine analogues for larvicidal activity against Anopheles arabiensis. Chem. Biol. Drug Des., 2017, 90(3), 397-405.
[http://dx.doi.org/10.1111/cbdd.12957] [PMID: 28135765]
[43]
Bairagi, K.M.; Venugopala, K.N.; Mondal, P.K.; Gleiser, R.M.; Chopra, D.; García, D.; Odhav, B.; Nayak, S.K. Larvicidal study of tetrahydropyrimidine scaffolds against Anopheles arabiensis and structural insight by single crystal X-ray studies. Chem. Biol. Drug Des., 2018, 92(6), 1924-1932.
[http://dx.doi.org/10.1111/cbdd.13351] [PMID: 29923688]
[44]
Uppar, V.; Chandrashekharappa, S.; Venugopala, K.N.; Deb, P.K.; Kar, S.; Alwassil, O.I.; Gleiser, R.M.; Garcia, D.; Odhav, B.; Mohan, M.K.; Venugopala, R.; Padmashali, B. Synthesis and characterization of pyrrolo[1,2-a]quinoline derivatives for their larvicidal activity against Anopheles arabiensis. Struct. Chem., 2020, 31, 1533-1543.
[http://dx.doi.org/10.1007/s11224-020-01516-w]
[45]
Venugopala, K.N.; Ramachandra, P.; Tratrat, C.; Gleiser, R.M.; Bhandary, S.; Chopra, D.; Morsy, M.A.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; Venugopala, R.; Deb, P.K.; Chandrashekharappa, S.; Khalil, H.E.; Alwassil, O.I.; Abed, S.N.; Bataineh, Y.A.; Palenge, R.; Haroun, M.; Pottathil, S.; Girish, M.B.; Akrawi, S.H.; Mohanlall, V. Larvicidal activities of 2-aryl-2, 3-dihydroquinazolin-4-ones against malaria vector Anopheles arabiensis, In Silico ADMET prediction and molecular target investigation. Molecules, 2020, 25(6), 1316.
[http://dx.doi.org/10.3390/molecules25061316] [PMID: 32183140]
[46]
Ingle, K.S.; Mohurle, S.A.; Bairagi, K.M.; Shaikh, T.R.; Venugopala, K.N.; Chandrashekharappa, S.; Gonnade, R.G.; Nayak, S.K. Synthesis, crystal structure and Hirshfeld surface analysis of the hydrated form of N′, N-(1, 4-phenylenebis (methanylylidene) di (iso-nicotinic hydrazide). Chemical Data Collections, 2020, 28100401
[47]
Chopra, D.; Venugopala, K.; Jayashree, B.; Row, T. 3-(2-anilino-1, 3-thiazol-4-yl)-2H-chromen-2-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2006, 62E19
[http://dx.doi.org/10.1107/S1600536806029047]
[48]
Maste, M.M.; Mahapatra, S.; Ramachandran, K.K.; Venugopala, K.N.; Bhat, A.R.N. -(2-Amino-3,5-dibromo-benz-yl)-N-methyl-cyclo-hexan-1-aminium p-toluenesulfonate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2011, 67(Pt 8), o2032-o2032.
[http://dx.doi.org/10.1107/S1600536811027358] [PMID: 22091060]
[49]
Chopra, D.; Venugopala, K.; Rao, G. (5S)-1, 4-Bis {[(1E)-4-methylbenzylidene] amino}-5-(thien-2-yl) pyrrolidin-2-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2007, 63(6), o2840-o2840.
[http://dx.doi.org/10.1107/S1600536807021587]
[50]
Bhandary, S.; Girish, Y.R.; Venugopala, K.N.; Chopra, D. Crystal structure analysis of [5-(4-meth-oxy-phen-yl)-2-methyl-2H-1,2,3-triazol-4-yl](thio-phen-2-yl)methanone. Acta Crystallogr. E Crystallogr. Commun., 2018, 74(Pt 8), 1178-1181.
[http://dx.doi.org/10.1107/S2056989018010654] [PMID: 30116588]
[51]
Bairagi, K.M.; Kumar, V.B.S.; Bhandary, S.; Venugopala, K.N.; Nayak, S.K. Structural analysis of 2-iodo-benzamide and 2-iodo-N-phenyl-benzamide. Acta Crystallogr. E Crystallogr. Commun., 2018, 74(Pt 8), 1130-1133.
[http://dx.doi.org/10.1107/S2056989018010162] [PMID: 30116577]
[52]
Jayashree, B.; Venugopala, K.; Chopra, D.; Guru Row, T. 3‐(2‐Anilino‐1, 3‐thiazol‐4‐yl)‐2H‐chromen‐2‐one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2006, 62(7), o2663-o2665.
[http://dx.doi.org/10.1107/S1600536806019994]
[53]
Panini, P.; Venugopala, K.N.; Odhav, B.; Chopra, D. Polymorphism in two biologically active dihydropyrimidinium hydrochloride derivatives: quantitative inputs towards the energetics associated with crystal packing. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2014, 70(Pt 4), 681-696.
[http://dx.doi.org/10.1107/S2052520614006209] [PMID: 25080247]
[54]
Venugopala, K.N.; Nayak, S.K.; Gleiser, R.M.; Sanchez-Borzone, M.E.; Garcia, D.A.; Odhav, B. Synthesis, Polymorphism, and Insecticidal Activity of Methyl 4-(4-chlorophenyl)-8-iodo-2-methyl-6-oxo-1,6-dihydro-4H-pyrimido[2,1-b]quinazoline-3-Carboxylate Against Anopheles arabiensis Mosquito. Chem. Biol. Drug Des., 2016, 88(1), 88-96.
[http://dx.doi.org/10.1111/cbdd.12736] [PMID: 26841246]
[55]
Munshi, P.; Venugopala, K.N.; Jayashree, B.S.; Guru Row, T.N. Concomitant polymorphism in 3-acetylcoumarin: Role of weak C−H···O and C−H···π interactions Cryst. Growth Des., 2004, 4(6), 1105-1107.
[http://dx.doi.org/10.1021/cg049948l]
[56]
Nayak, S.K.; Venugopala, K.N.; Chopra, D.; Row, T.N.G. Insights into conformational and packing features in a series of aryl substituted ethyl-6-methyl-4-phenyl-2-oxo-1,2,3,4-tetrahydropyri-midine-5-carboxylates. CrystEngComm, 2011, 13(2), 591-605.
[http://dx.doi.org/10.1039/C0CE00045K]
[57]
Iman, M.; Davood, A.; Dehqani, G.; Lotfinia, M.; Sardari, S.; Azerang, P.; Amini, M. Design, synthesis and evaluation of antitubercular activity of novel dihydropyridine containing imidazolyl substituent. Iran. J. Pharm. Res., 2015, 14(4), 1067-1075.
[PMID: 26664373]
[58]
Nandam, H.; Arun, M.I.; Ananda, K.; Tanya, P.; Joazaizulfazli, J.; Hazem, A.G.; Hoong-Kun, F. Antitubercular and antimicrobial activity of NH4VO3 promoted 1,4- dihydropyridine incorporated 1,3,4-trisubstituted pyrazole. Lett. Drug Des. Discov., 2017, 14(6), 699-711.
[59]
Lentz, F.; Reiling, N.; Spengler, G.; Kincses, A.; Csonka, A.; Molnár, J.; Hilgeroth, A. Dually acting nonclassical 1,4-dihydropyridines promote the anti-tuberculosis (tb) activities of clofazimine. Molecules, 2019, 24(16)E2873
[http://dx.doi.org/10.3390/molecules24162873] [PMID: 31398786]
[60]
Salgado-Moran, G.; Ramirez-Tagle, R.; Glossman-Mitnik, D.; Ruiz-Nieto, S.; Kishore-Deb, P.; Bunster, M.; Lobos-Gonzalez, F. Docking studies of binding of ethambutol to the C-Terminal domain of the arabinosyltransferase from Mycobacterium tuberculosis. J. Chem., 2013, 2013601270
[http://dx.doi.org/10.1155/2013/601270]
[61]
Zandhaghighi, M.; Hadizadeh, F.; Soleimanpour, S.; Meshkat, Z.; Rezaee, S.A.; Derakhshan, M.; Ghazvini, K. In vitro bactericidal activities of two novel dihydropyridine derivatives against Mycobacterium tuberculosis. J. Infect. Dev. Ctries., 2017, 11(6), 453-458.
[http://dx.doi.org/10.3855/jidc.7966] [PMID: 30951506]
[62]
Manvar, A.T.; Pissurlenkar, R.R.; Virsodia, V.R.; Upadhyay, K.D.; Manvar, D.R.; Mishra, A.K.; Acharya, H.D.; Parecha, A.R.; Dholakia, C.D.; Shah, A.K.; Coutinho, E.C. Synthesis, in vitro antitubercular activity and 3D-QSAR study of 1,4-dihydropyridines. Mol. Divers., 2010, 14(2), 285-305.
[http://dx.doi.org/10.1007/s11030-009-9162-8] [PMID: 19554465]
[63]
Kharkar, P.S.; Desai, B.; Gaveria, H.; Varu, B.; Loriya, R.; Naliapara, Y.; Shah, A.; Kulkarni, V.M. Three-dimensional quantitative structure-activity relationship of 1,4-dihydropyridines as antitubercular agents. J. Med. Chem., 2002, 45(22), 4858-4867.
[http://dx.doi.org/10.1021/jm020217z] [PMID: 12383011]
[64]
Desai, B.; Sureja, D.; Naliapara, Y.; Shah, A.; Saxena, A.K. Synthesis and QSAR studies of 4-substituted phenyl-2,6-dimethyl-3, 5-bis-N-(substituted phenyl)carbamoyl-1,4-dihydropyridines as potential antitubercular agents. Bioorg. Med. Chem., 2001, 9(8), 1993-1998.
[http://dx.doi.org/10.1016/S0968-0896(01)00141-9] [PMID: 11504636]
[65]
Kumar, B.R.P.; Yuvaraj, S.; Anil, S.; Vanitha, C.; Manju, Y.K.; Suresh, B.; Nanjan, M.J. CoMFA study, syntheses, antitubercular and anticancer activity of some novel 1,4-dihydropyridines. Lett. Drug Des. Discov., 2008, 5(1), 7-14.
[http://dx.doi.org/10.2174/157018008783406688]
[66]
Mahnam, K.; Sadeghi, A.; Mohammadpour, M.; Fassihi, A. Theoretical studies of 1,4-dihydropyridine-3,5-dicarboxamides as possible inhibitors of Mycobacterium tuberculosis enoyl reductase Monatshefte für Chemie - Chemical Monthly, 2012, 143(1), 19-27.
[67]
Rasouli, Y.; Davood, A. Hybrid docking-QSAR studies of 1, 4-dihydropyridine-3, 5-dicarboxamides as potential antitubercular agents. Curr Comput Aided Drug Des, 2018, 14(1), 35-53.
[http://dx.doi.org/10.2174/1573409913666170426154045] [PMID: 28462696]
[68]
Lentz, F.; Hemmer, M.; Reiling, N.; Hilgeroth, A. Discovery of novel N-phenyl 1,4-dihydropyridines with a dual mode of antimycobacterial activity. Bioorg. Med. Chem. Lett., 2016, 26(24), 5896-5898.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.010] [PMID: 27866817]
[69]
Rožman, K.; Sosič, I.; Fernandez, R.; Young, R.J.; Mendoza, A.; Gobec, S.; Encinas, L. A new ‘golden age’ for the antitubercular target InhA. Drug Discov. Today, 2017, 22(3), 492-502.
[http://dx.doi.org/10.1016/j.drudis.2016.09.009] [PMID: 27663094]
[70]
Manjunatha, U.H.; Rao, S. S.P.; Kondreddi, R.R.; Noble, C.G.; Camacho, L.R.; Tan, B.H.; Ng, S.H.; Ng, P.S.; Ma, N.L.; Lakshminarayana, S.B.; Herve, M.; Barnes, S.W.; Yu, W.; Kuhen, K.; Blasco, F.; Beer, D.; Walker, J.R.; Tonge, P.J.; Glynne, R.; Smith, P.W.; Diagana, T.T. Direct inhibitors of InhA are active against Mycobacterium tuberculosis. Sci. Transl. Med., 2015, 7(269)269ra3
[http://dx.doi.org//10.1126/scitranslmed.3010597] [PMID: 25568071]
[71]
Sacco, E.; Covarrubias, A.S.; O’Hare, H.M.; Carroll, P.; Eynard, N.; Jones, T.A.; Parish, T.; Daffé, M.; Bäckbro, K.; Quémard, A. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14628-14633.
[http://dx.doi.org/10.1073/pnas.0704132104] [PMID: 17804795]
[72]
Rawat, R.; Whitty, A.; Tonge, P.J. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 13881-13886.
[http://dx.doi.org/10.1073/pnas.2235848100] [PMID: 14623976]
[73]
Hazbón, M.H.; Brimacombe, M.; Bobadilla del Valle, M.; Cavatore, M.; Guerrero, M.I.; Varma-Basil, M.; Billman-Jacobe, H.; Lavender, C.; Fyfe, J.; García-García, L.; León, C.I.; Bose, M.; Chaves, F.; Murray, M.; Eisenach, K.D.; Sifuentes-Osornio, J.; Cave, M.D.; Ponce de León, A.; Alland, D. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2006, 50(8), 2640-2649.
[http://dx.doi.org/10.1128/AAC.00112-06] [PMID: 16870753]
[74]
Morlock, G.P.; Metchock, B.; Sikes, D.; Crawford, J.T.; Cooksey, R.C. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother., 2003, 47(12), 3799-3805.
[http://dx.doi.org/10.1128/AAC.47.12.3799-3805.2003] [PMID: 14638486]
[75]
Freundlich, J.S.; Wang, F.; Vilchèze, C.; Gulten, G.; Langley, R.; Schiehser, G.A.; Jacobus, D.P.; Jacobs, W.R., Jr; Sacchettini, J.C. Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem, 2009, 4(2), 241-248.
[http://dx.doi.org/10.1002/cmdc.200800261] [PMID: 19130456]
[76]
Martin, A.; Morcillo, N.; Lemus, D.; Montoro, E.; Telles, M.A.; Simboli, N.; Pontino, M.; Porras, T.; León, C.; Velasco, M.; Chacon, L.; Barrera, L.; Ritacco, V.; Portaels, F.; Palomino, J.C. Multicenter study of MTT and resazurin assays for testing susceptibility to first-line anti-tuberculosis drugs. Int. J. Tuberc. Lung Dis., 2005, 9(8), 901-906.
[PMID: 16104638]
[77]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[78]
Chandrashekharappa, S.; Venugopala, K.N.; Tratrat, C.; Mahomoodally, F.M.; Aldhubiab, B.E.; Haroun, M.; Venugopala, R.; Mohan, M.K.; Kulkarni, R.S.; Attimarad, M.V. Efficient synthesis and characterization of novel indolizines: exploration of in vitro COX-2 inhibitory activity and molecular modelling studies. New J. Chem., 2018, 42(7), 4893-4901.
[http://dx.doi.org/10.1039/C7NJ05010K]
[79]
Tratrat, C. Novel thiazole-based thiazolidinones as potent anti-infective agents: in silico pass and toxicity prediction, synthesis, biological evaluation and molecular modelling. Comb. Chem. High Throughput Screen., 2020, 23(2), 126-140.
[http://dx.doi.org/10.2174/1386207323666200127115238] [PMID: 31985370]
[80]
Schrödinger. QikProp v5.2; Schrödinger, LLC: New York, NY, 2017.
[81]
Deb, P.K.; Kaur, R.; Chandrasekaran, B.; Bala, M.; Gill, D.; Kaki, V.R.; Akkinepalli, R.R.; Mailavaram, R. Synthesis, anti-inflammatory evaluation, and docking studies of some new thiazole derivatives. Med. Chem. Res., 2014, 23(6), 2780-2792.
[http://dx.doi.org/10.1007/s00044-013-0861-4]
[82]
Dhingra, M.S.; Deb, P.K.; Chadha, R.; Singh, T.; Karan, M. Synthesis, evaluation, and molecular docking studies of cycloalkyl/aryl-3,4,5-trimethylgallates as potent non-ulcerogenic and gastroprotective anti-inflammatory agents. Med. Chem. Res., 2014, 23(1), 87-106.
[http://dx.doi.org/10.1007/s00044-013-0620-6]
[83]
Deb, P.K.; El-Rabie, D.; Ahmad, J.; Nalaiya, J.A.P.; Siong, L.C.; Kulasekar, A.L.K.; Pichika, M.R. In silico binding mode analysis (molecular docking studies), and ADME prediction of some novel inhibitors of aurora kinase a in clinical trials. Asian J. Chem., 2014, 26(18), 6221-6226.
[http://dx.doi.org/10.14233/ajchem.2014.17175]
[84]
Ramappa, V.; Aithal, G.P. Hepatotoxicity related to anti-tuberculosis drugs: mechanisms and management. J. Clin. Exp. Hepatol., 2013, 3(1), 37-49.
[http://dx.doi.org/10.1016/j.jceh.2012.12.001] [PMID: 25755470]
[85]
Chollet, A.; Maveyraud, L.; Lherbet, C.; Bernardes-Génisson, V. An overview on crystal structures of InhA protein: Apo-form, in complex with its natural ligands and inhibitors. Eur. J. Med. Chem., 2018, 146, 318-343.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.047] [PMID: 29407960]
[86]
Martínez-Hoyos, M.; Perez-Herran, E.; Gulten, G.; Encinas, L.; Álvarez-Gómez, D.; Alvarez, E.; Ferrer-Bazaga, S.; García-Pérez, A.; Ortega, F.; Angulo-Barturen, I.; Rullas-Trincado, J.; Blanco Ruano, D.; Torres, P.; Castañeda, P.; Huss, S.; Fernández Menéndez, R.; González Del Valle, S.; Ballell, L.; Barros, D.; Modha, S.; Dhar, N.; Signorino-Gelo, F.; McKinney, J.D.; García-Bustos, J.F.; Lavandera, J.L.; Sacchettini, J.C.; Jimenez, M.S.; Martín-Casabona, N.; Castro-Pichel, J.; Mendoza-Losana, A. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. EBioMedicine, 2016, 8, 291-301.
[http://dx.doi.org/10.1016/j.ebiom.2016.05.006] [PMID: 27428438]
[87]
Soutter, H.H.; Centrella, P.; Clark, M.A.; Cuozzo, J.W.; Dumelin, C.E.; Guie, M-A.; Habeshian, S.; Keefe, A.D.; Kennedy, K.M.; Sigel, E.A.; Troast, D.M.; Zhang, Y.; Ferguson, A.D.; Davies, G.; Stead, E.R.; Breed, J.; Madhavapeddi, P.; Read, J.A. Discovery of cofactor-specific, bactericidal Mycobacterium tuberculosis InhA inhibitors using DNA-encoded library technology. Proc. Natl. Acad. Sci. USA, 2016, 113(49), E7880-E7889.
[http://dx.doi.org/10.1073/pnas.1610978113] [PMID: 27864515]
[88]
Encinas, L.; O’Keefe, H.; Neu, M.; Remuiñán, M.J.; Patel, A.M.; Guardia, A.; Davie, C.P.; Pérez-Macías, N.; Yang, H.; Convery, M.A.; Messer, J.A.; Pérez-Herrán, E.; Centrella, P.A.; Alvarez-Gómez, D.; Clark, M.A.; Huss, S.; O’Donovan, G.K.; Ortega-Muro, F.; McDowell, W.; Castañeda, P.; Arico-Muendel, C.C.; Pajk, S.; Rullás, J.; Angulo-Barturen, I.; Alvarez-Ruíz, E.; Mendoza-Losana, A.; Ballell Pages, L.; Castro-Pichel, J.; Evindar, G. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA. J. Med. Chem., 2014, 57(4), 1276-1288.
[http://dx.doi.org/10.1021/jm401326j] [PMID: 24450589]
[89]
Shirude, P.S.; Madhavapeddi, P.; Naik, M.; Murugan, K.; Shinde, V.; Nandishaiah, R.; Bhat, J.; Kumar, A.; Hameed, S.; Holdgate, G.; Davies, G.; McMiken, H.; Hegde, N.; Ambady, A.; Venkatraman, J.; Panda, M.; Bandodkar, B.; Sambandamurthy, V.K.; Read, J.A. Methyl-thiazoles: a novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis. J. Med. Chem., 2013, 56(21), 8533-8542.
[http://dx.doi.org/10.1021/jm4012033] [PMID: 24107081]
[90]
Guardia, A.; Gulten, G.; Fernandez, R.; Gómez, J.; Wang, F.; Convery, M.; Blanco, D.; Martínez, M.; Pérez-Herrán, E.; Alonso, M.; Ortega, F.; Rullás, J.; Calvo, D.; Mata, L.; Young, R.; Sacchettini, J.C.; Mendoza-Losana, A.; Remuiñán, M.; Ballell Pages, L.; Castro-Pichel, J. N-Benzyl-4-((heteroaryl)methyl) benzamides: A new class of direct NADH-dependent 2-trans enoyl-acyl carrier protein reductase (InhA) inhibitors with antitubercular activity. ChemMedChem, 2016, 11(7), 687-701.
[http://dx.doi.org/10.1002/cmdc.201600020] [PMID: 26934341]
[91]
Deb, P.K.; Al-Attraqchi, O.; Al-Qattan, M.N.; Raghu Prasad, M.; Tekade, R.K. Dosage Form Design Parameters; Academic Press: Cambridge, 2018, pp. 665-703.
[http://dx.doi.org/10.1016/B978-0-12-814421-3.00019-1]
[92]
Deb, P.K.; Ahmad, J.; Dina, E.; Tan, Y.; Nasr, E.M.; Pichika, M.R. Molecular docking studies and comparative binding mode analysis of FDA approved HIV protease inhibitors. Asian J. Chem., 2014, 26, 6227-6232.
[http://dx.doi.org/10.14233/ajchem.2014.17195]
[93]
Venugopala, K.N.; Tratrat, C.; Chandrashekharappa, S.; Attimarad, M.; Sreeharsha, N.; Nair, A.B.; Pottathil, S.; Venugopala, R.; Al-Attraqchi, O.H.A.; Morsy, M.A.; Haroun, M.; Odhav, B. Anti-tubercular potency and computationally-assessed drug-likeness and toxicology of diversely substituted indolizines. IJPER, 2019, 53(3), 545-552.
[http://dx.doi.org/10.5530/ijper.53.3.87]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy