Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Vaccine Development Against SARS-CoV-2: From Virology to Vaccine Clinical Trials

Author(s): Kimia Kardani* and Azam Bolhassani

Volume 2, Issue 2, 2021

Published on: 26 October, 2020

Page: [159 - 171] Pages: 13

DOI: 10.2174/2666796701999201026205553

Abstract

An urgent vaccine development is required against the recent pandemic of a novel coronavirus. Currently, there is no approved vaccine against COVID-19. Vaccination is proved to be the most beneficial way to protect humans from infections. Several vaccine candidates have been conducted to different phases of clinical trials, and more vaccine candidates are on the way to enter the trials. Different vaccine types have developed, including inactivated virus vaccines, subunit-based vaccines, adenovirus- vector vaccines, DNA-based vaccines, DC-based vaccines, and mRNA-based vaccines. The mRNA- 1273 was the first vaccine candidate that started evaluating in the clinical trial. Also, AZD1222 is the first vaccine candidate that started phase II/III of clinical trials. Both of these vaccine candidates were considered as promising vaccine candidates against SARS-CoV-2. This review aims to overview and share various strategies to develop efficient therapeutic and preventive vaccines based on the origin, biology, structure, and immune-evasion of SARS-CoV-2.

Keywords: SARS-CoV-2, evolution, genome, life cycle, vaccine, clinical trials.

[1]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[2]
Zhu N, Zhang D, Wang W, et al. China Novel Coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[3]
World Health Organization Press Conference, The World Health Organization (WHO) has officially named the disease caused by the Novel Coronavirus as COVID-19. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[4]
Gorbalenya AE. Severe acute respiratory syndrome-related coronavirus–The species and its viruses, a statement of the Coronavirus study group. bioRxiv 2020; 2020: 1.
[http://dx.doi.org/10.1101/2020.02.07.937862]]
[5]
Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020; 14(1): 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[6]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[7]
Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 2020; 25(4): 668-88.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015] [PMID: 32006468]
[8]
World Health Organization. Coronavirus disease (COVID-19) advice for the public. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public2020.
[9]
National Health Commission, Ministry of Human Resources and Social Security. Ministry of Finance Measures to improve working conditions of and care for physical and mental health of healthcare workers. Available from: http://www.gov.cn/xinwen/2020-02/11/content_5477476.htm
[10]
Bhowmick GD, Dhar D, Nath D, et al. Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle. NPJ Clean Water 2020; 3(1): 1-8.
[http://dx.doi.org/10.1038/s41545-020-0079-1]
[11]
Cyranoski D. This scientist hopes to test coronavirus drugs on animals in locked-down Wuhan. Nature 2020; 577(7792): 607.
[http://dx.doi.org/10.1038/d41586-020-00190-6] [PMID: 31992886]
[12]
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4): 450-2.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[13]
Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[14]
Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013; 503(7477): 535-8.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[15]
Wu F, Zhao S, Yu B, et al. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. bioRxiv 2020; 2020: 1.
[http://dx.doi.org/10.1101/2020.01.24.919183]]
[16]
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res 2020; 7(1): 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[17]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[18]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[19]
Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of endemic human coronaviruses. Adv Virus Res 2018; 100: 163-88.
[http://dx.doi.org/10.1016/bs.aivir.2018.01.001]
[20]
Dhama K, Sharun K, Tiwari R, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human Vacc Immunother 2020; 16(6): 1232-8.
[http://dx.doi.org/10.1080/21645515.2020.1735227]
[21]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[22]
ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009]]
[23]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[24]
Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res 2011; 81: 85-164.
[http://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2] [PMID: 22094080]
[25]
de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. In: Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Cham: Springer 2017; pp. 1-42.
[26]
Xiong C, Jiang L, Chen Y, Jiang Q. Evolution and variation of 2019-novel coronavirus. bioRxiv 2020; 2020: 1.
[http://dx.doi.org/10.1101/2020.01.30.926477]]
[27]
Yu WB, Tang GD, Zhang L, Corlett RT. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zool Res 2020; 41(3): 247-57.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2020.022] [PMID: 32351056]
[28]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[29]
National Microbiology Data Center. Available from: http://nmdc.cn/coronavirus
[30]
Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol 2020; 41(5): 355-9.
[http://dx.doi.org/10.1016/j.it.2020.03.007]
[31]
Fung TS, Liu DX. Human coronavirus: host-pathogen interaction. Annu Rev Microbiol 2019; 73: 529-57.
[http://dx.doi.org/10.1146/annurev-micro-020518-115759] [PMID: 31226023]
[32]
Masters PS. The molecular biology of coronaviruses. Adv Virus Res 2006; 66: 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[33]
Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525(1): 135-40.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.071] [PMID: 32081428]
[34]
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. In: Coronaviruses. New York: Humana Press 2015; pp. 1-23.
[35]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-92.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[36]
Buchholz UJ, Bukreyev A, Yang L, et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci USA 2004; 101(26): 9804-9.
[http://dx.doi.org/10.1073/pnas.0403492101] [PMID: 15210961]
[37]
Kim MH, Kim HJ, Chang J. Superior immune responses induced by intranasal immunization with recombinant adenovirus-based vaccine expressing full-length Spike protein of Middle East respiratory syndrome coronavirus. PLoS One 2019; 14(7)e0220196
[http://dx.doi.org/10.1371/journal.pone.0220196] [PMID: 31329652]
[38]
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[39]
Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 2013; 11(12): 836-48.
[http://dx.doi.org/10.1038/nrmicro3143] [PMID: 24217413]
[40]
Bolhassani A, Mohit E, Rafati S. Different spectra of therapeutic vaccine development against HPV infections. Hum Vaccin 2009; 5(10): 671-89.
[http://dx.doi.org/10.4161/hv.5.10.9370] [PMID: 19684468]
[41]
Kadkhodayan S, Jafarzade BS, Sadat SM, Motevalli F, Agi E, Bolhassani A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett 2017; 188: 38-45.
[http://dx.doi.org/10.1016/j.imlet.2017.06.003] [PMID: 28602843]
[42]
Namvar A, Panahi HA, Agi E, Bolhassani A. Development of HPV16,18,31,45 E5 and E7 peptides-based vaccines predicted by immunoinformatics tools. Biotechnol Lett 2020; 42(3): 403-18.
[http://dx.doi.org/10.1007/s10529-020-02792-6] [PMID: 31915962]
[43]
Kardani K, Hashemi A, Bolhassani A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Mol Immunol 2020; 119: 106-22.
[http://dx.doi.org/10.1016/j.molimm.2020.01.013] [PMID: 32007753]
[44]
Munjal A, Khandia R, Dhama K, et al. Advances in developing therapies to combat Zika virus: current knowledge and future perspectives. Front Microbiol 2017; 8: 1469.
[http://dx.doi.org/10.3389/fmicb.2017.01469] [PMID: 28824594]
[45]
Dhama K, Karthik K, Khandia R, et al. Advances in designing and developing vaccines, drugs, and therapies to counter Ebola virus. Front Immunol 2018; 9: 1803.
[http://dx.doi.org/10.3389/fimmu.2018.01803] [PMID: 30147687]
[46]
Yang ZY, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004; 428(6982): 561-4.
[http://dx.doi.org/10.1038/nature02463] [PMID: 15024391]
[47]
Li E, Yan F, Huang P, et al. Characterization of the immune response of MERS-CoV vaccine candidates derived from two different vectors in mice. Viruses 2020; 12(1): 125.
[http://dx.doi.org/10.3390/v12010125] [PMID: 31968702]
[48]
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226-36.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[49]
Widjaja I, Wang C, van Haperen R, et al. Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerg Microbes Infect 2019; 8(1): 516-30.
[http://dx.doi.org/10.1080/22221751.2019.1597644] [PMID: 30938227]
[50]
Thi Nhu Thao T, Labroussaa F, Ebert N, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 2020; 582(7813): 561-5.
[http://dx.doi.org/10.1038/s41586-020-2294-9] [PMID: 32365353]
[51]
Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020; 583(7818): 830-3.
[http://dx.doi.org/10.1038/s41586-020-2312-y] [PMID: 32380511]
[52]
Ministry of National Defense of the People’s Republic of China. The military successfully developed a recombinant SARS-CoV-2 vaccine Available from: http://www.mod.gov.cn/topnews/2020-03/17/content_4862066.htm
[53]
American Moderna. Vaccine enters Clinical Trial Available from: https://www.modernatx.com/modernaswork-potential-vaccine-against-covid-19
[54]
Chen R, Fu J, Hu J, et al. Identification of the immunodominant neutralizing regions in the spike glycoprotein of porcine deltacoronavirus. Virus Res 2020; 276197834
[http://dx.doi.org/10.1016/j.virusres.2019.197834] [PMID: 31816342]
[55]
Jiang S, He Y, Liu S. SARS vaccine development. Emerg Infect Dis 2005; 11(7): 1016-20.
[http://dx.doi.org/10.3201/1107.050219] [PMID: 16022774]
[56]
Jiang S, Du L, Shi Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerg Microbes Infect 2020; 9(1): 275-7.
[http://dx.doi.org/10.1080/22221751.2020.1723441] [PMID: 32005086]
[57]
Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan. China. Microbes Infect 2020; 22(2): 74-9.
[http://dx.doi.org/10.1016/j.micinf.2020.01.003]
[58]
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem 2020; 21(5): 730-8.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[59]
Veljkovic V, Vergara-Alert J, Segalés J, Paessler S. Use of the informational spectrum methodology for rapid biological analysis of the novel coronavirus 2019-nCoV: prediction of potential receptor, natural reservoir, tropism and therapeutic/vaccine target. F1000 Res 2020; 9: 52.
[http://dx.doi.org/10.12688/f1000research.22149.3] [PMID: 32419926]
[60]
Gao W, Tamin A, Soloff A, et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 2003; 362(9399): 1895-6.
[http://dx.doi.org/10.1016/S0140-6736(03)14962-8] [PMID: 14667748]
[61]
He Y, Zhou Y, Liu S, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun 2004; 324(2): 773-81.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.106] [PMID: 15474494]
[62]
Roper RL, Rehm KE. SARS vaccines: where are we? Expert Rev Vaccines 2009; 8(7): 887-98.
[http://dx.doi.org/10.1586/erv.09.43] [PMID: 19538115]
[63]
Weingartl H, Czub M, Czub S, et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol 2004; 78(22): 12672-6.
[http://dx.doi.org/10.1128/JVI.78.22.12672-12676.2004] [PMID: 15507655]
[64]
Bolles M, Deming D, Long K, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol 2011; 85(23): 12201-15.
[http://dx.doi.org/10.1128/JVI.06048-11] [PMID: 21937658]
[65]
Tseng CT, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One 2012; 7(4)e35421
[http://dx.doi.org/10.1371/journal.pone.0035421] [PMID: 22536382]
[66]
Wang Q, Zhang L, Kuwahara K, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect Dis 2016; 2(5): 361-76.
[http://dx.doi.org/10.1021/acsinfecdis.6b00006] [PMID: 27627203]
[67]
ter Meulen J, van den Brink EN, Poon LL, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med 2006; 3(7)e237
[http://dx.doi.org/10.1371/journal.pmed.0030237] [PMID: 16796401]
[68]
Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020; 9(1): 382-5.
[http://dx.doi.org/10.1080/22221751.2020.1729069] [PMID: 32065055]
[69]
Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity 2020; 52(4): 583-9.
[http://dx.doi.org/10.1016/j.immuni.2020.03.007] [PMID: 32259480]
[70]
Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opin Virol 2015; 13: 123-9.
[http://dx.doi.org/10.1016/j.coviro.2015.06.009] [PMID: 26184451]
[71]
Roberts A, Lamirande EW, Vogel L, et al. Animal models and vaccines for SARS-CoV infection. Virus Res 2008; 133(1): 20-32.
[http://dx.doi.org/10.1016/j.virusres.2007.03.025] [PMID: 17499378]
[72]
Roberts A, Wood J, Subbarao K, Ferguson M, Wood D, Cherian T. Animal models and antibody assays for evaluating candidate SARS vaccines: summary of a technical meeting 25-26 August 2005, London, UK. Vaccine 2006; 24(49-50): 7056-65.
[http://dx.doi.org/10.1016/j.vaccine.2006.07.009] [PMID: 16930781]
[73]
Yang XH, Deng W, Tong Z, et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med 2007; 57(5): 450-9.
[PMID: 17974127]
[74]
Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS. Recent advances in the vaccine development against middle east respiratory syndrome-coronavirus. Front Microbiol 2019; 10: 1781.
[http://dx.doi.org/10.3389/fmicb.2019.01781] [PMID: 31428074]
[75]
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38(1): 1-9.
[PMID: 32105090]
[76]
Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS-CoV-2 and COVID-19: the most important research questions. Cell Biosci 2020; 10(1): 40.
[http://dx.doi.org/10.1186/s13578-020-00404-4] [PMID: 32190290]
[77]
Cascella M, Rajnik M, Cuomo A, Dulebohn SC, di Napoli R. Features, evaluation and treatment coronavirus (COVID-19) In: Statpearls StatPearls Publishing. 2020.
[78]
Lim B, Lee K. Stability of the osmoregulated promoter-derived proP mRNA is posttranscriptionally regulated by RNase III in Escherichia coli. J Bacteriol 2015; 197(7): 1297-305.
[http://dx.doi.org/10.1128/JB.02460-14] [PMID: 25645556]
[79]
Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci 2019; 76(2): 301-28.
[http://dx.doi.org/10.1007/s00018-018-2935-4] [PMID: 30334070]
[80]
Pardi N, Weissman D. Nucleoside modified mRNA vaccines for infectious diseases. In: RNA Vaccines. New York: Humana Press 2017; pp. 109-21.
[81]
Ohto T, Konishi M, Tanaka H, et al. Inhibition of the inflammatory pathway enhances both the in vitro and in vivo transfection activity of exogenous in vitro-transcribed mRNAs delivered by lipid nanoparticles. Biol Pharm Bull 2019; 42(2): 299-302.
[http://dx.doi.org/10.1248/bpb.b18-00783] [PMID: 30713260]
[82]
Zarghampoor F, Azarpira N, Khatami SR, Behzad-Behbahani A, Foroughmand AM. Improved translation efficiency of therapeutic mRNA. Gene 2019; 707: 231-8.
[http://dx.doi.org/10.1016/j.gene.2019.05.008] [PMID: 31063797]
[83]
Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit 2020; 26: e924700-1.
[PMID: 32366816]
[84]
Mullard A. COVID-19 vaccine development pipeline gears up. Lancet 2020; 395(10239): 1751-2.
[http://dx.doi.org/10.1016/S0140-6736(20)31252-6] [PMID: 32505245]
[85]
Lu S. Timely development of vaccines against SARS-CoV-2. Emerg Microbes Infect 2020; 9(1): 542-4.
[http://dx.doi.org/10.1080/22221751.2020.1737580] [PMID: 32148172]
[86]
Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine 2016; 34(4): 413-23.
[http://dx.doi.org/10.1016/j.vaccine.2015.11.062] [PMID: 26691569]
[87]
Bolhassani A, Kardani K, Vahabpour R, et al. Prime/boost immunization with HIV-1 MPER-V3 fusion construct enhances humoral and cellular immune responses. Immunol Lett 2015; 168(2): 366-73.
[http://dx.doi.org/10.1016/j.imlet.2015.10.012] [PMID: 26518142]
[88]
Fan W, Wan Y, Li Q. Interleukin-21 enhances the antibody avidity elicited by DNA prime and MVA boost vaccine. Cytokine 2020; 125154814
[http://dx.doi.org/10.1016/j.cyto.2019.154814] [PMID: 31450102]
[89]
Kardani K, Milani A. H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16(11): 1227-58.
[http://dx.doi.org/10.1080/17425247.2019.1676720] [PMID: 31583914]
[90]
Kardani K, Hashemi A, Bolhassani A. Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS One 2019; 14(10)e0223844
[http://dx.doi.org/10.1371/journal.pone.0223844] [PMID: 31671105]
[91]
Kardani K, Bolhassani A, Agi E, Hashemi A. B1 protein: a novel cell penetrating protein for in vitro and in vivo delivery of HIV-1 multi-epitope DNA constructs. Biotechnol Lett 2020; 42(10): 1847-63.
[http://dx.doi.org/10.1007/s10529-020-02918-w] [PMID: 32449070]
[92]
Yang J, Luo Y, Shibu MA, Toth I, Skwarczynskia M. Cell-penetrating peptides: Efficient vectors for vaccine delivery. Curr Drug Deliv 2019; 16(5): 430-43.
[http://dx.doi.org/10.2174/1567201816666190123120915] [PMID: 30760185]
[93]
Khairkhah N, Namvar A, Kardani K, Bolhassani A. Prediction of cross-clade HIV-1 T-cell epitopes using immunoinformatics analysis. Proteins 2018; 86(12): 1284-93.
[http://dx.doi.org/10.1002/prot.25609] [PMID: 30260061]
[94]
Kesherwani V, Tarang S. An immunoinformatic approach to universal therapeutic vaccine design against BK virus. Vaccine 2019; 37(26): 3457-63.
[http://dx.doi.org/10.1016/j.vaccine.2019.04.096] [PMID: 31097352]
[95]
Namvar A, Bolhassani A, Javadi G, Noormohammadi Z. In silico/In vivo analysis of high-risk papillomavirus L1 and L2 conserved sequences for development of cross-subtype prophylactic vaccine. Sci Rep 2019; 9(1): 15225.
[http://dx.doi.org/10.1038/s41598-019-51679-8] [PMID: 31645650]
[96]
De Groot AS, Moise L, McMurry JA, Martin W. Epitope-based Immunome-derived vaccines: a strategy for improved design and safety. Clin App Immun 2009; 2: 39-69.
[http://dx.doi.org/10.1007/978-0-387-79208-8_3]
[97]
von Delft A, Donnison TA, Lourenço J, et al. The generation of a simian adenoviral vectored HCV vaccine encoding genetically conserved gene segments to target multiple HCV genotypes. Vaccine 2018; 36(2): 313-21.
[http://dx.doi.org/10.1016/j.vaccine.2017.10.079] [PMID: 29203182]
[98]
Ramírez-Salinas GL, García-Machorro J, Rojas-Hernández S, et al. Bioinformatics design and experimental validation of influenza A virus multi-epitopes that induce neutralizing antibodies. Arch Virol 2020; 165(4): 891-911.
[http://dx.doi.org/10.1007/s00705-020-04537-2] [PMID: 32060794]
[99]
De Groot AS, Levitz L, Ardito MT, et al. Further progress on defining highly conserved immunogenic epitopes for a global HIV vaccine: HLA-A3-restricted GAIA vaccine epitopes. Hum Vaccin Immunother 2012; 8(7): 987-1000.
[http://dx.doi.org/10.4161/hv.20528] [PMID: 22777092]
[100]
Chakraborty S, Chakravorty R, Ahmed M, et al. A computational approach for identification of epitopes in dengue virus envelope protein: a step towards designing a universal dengue vaccine targeting endemic regions. Silico Biol 2010; 10: 235-46.
[http://dx.doi.org/10.3233/ISB-2010-0435]
[101]
Bhattacharya M, Sharma AR, Patra P, et al. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): immunoinformatics approach. J Med Virol 2020; 92(6): 618-31.
[http://dx.doi.org/10.1002/jmv.25736] [PMID: 32108359]
[102]
Rehman A, Ashfaq UA, Awan MQ, et al. Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: immunoinformatics and in silico approaches. bioRxiv 2020; 2020: 1.
[http://dx.doi.org/10.1371/journal.pone.0244176]]
[103]
Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol 2020; 92(5): 495-500.
[http://dx.doi.org/10.1002/jmv.25698] [PMID: 32022276]
[104]
Shi J, Zhang J, Li S, et al. Epitope-based vaccine target screening against highly pathogenic MERS-CoV: an in silico approach applied to emerging infectious diseases. PLoS One 2015; 10(12)e0144475
[http://dx.doi.org/10.1371/journal.pone.0144475] [PMID: 26641892]
[105]
Xie Q, He X, Yang F, et al. Analysis of the genome sequence and prediction of B-cell epitopes of the envelope protein of Middle East respiratory syndrome-coronavirus. IEEE/ACM Trans Comput Biol Bioinform 2018; 15(4): 1344-50.
[http://dx.doi.org/10.1109/TCBB.2017.2702588] [PMID: 28574363]
[106]
Patiyal S, Kaur D, Kaur H, et al. A web-based platform on COVID-19 to maintain predicted diagnostic, drug and vaccine candidates. Monoclon Antib Immunodiagn Immunother 2020; 39(6): 204-16.
[http://dx.doi.org/10.1089/mab.2020.0035]
[107]
Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020; 17(6): 613-20.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[108]
Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog 2011; 7(12)e1002433
[http://dx.doi.org/10.1371/journal.ppat.1002433] [PMID: 22174690]
[109]
Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Matsuura Y. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J Virol 2012; 86(20): 11128-37.
[http://dx.doi.org/10.1128/JVI.01700-12] [PMID: 22855488]
[110]
Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: the role of the nsp2 and nsp3 in its pathogenesis. J Med Virol 2020; 92(6): 584-8.
[http://dx.doi.org/10.1002/jmv.25719] [PMID: 32083328]
[111]
Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antiviral Res 2018; 149: 58-74.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.001] [PMID: 29128390]
[112]
Serrano P, Johnson MA, Chatterjee A, et al. Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3. J Virol 2009; 83(24): 12998-3008.
[http://dx.doi.org/10.1128/JVI.01253-09] [PMID: 19828617]
[113]
Beachboard DC, Anderson-Daniels JM, Denison MR. Mutations across murine hepatitis virus nsp4 alter virus fitness and membrane modifications. J Virol 2015; 89(4): 2080-9.
[http://dx.doi.org/10.1128/JVI.02776-14] [PMID: 25473044]
[114]
Gadlage MJ, Sparks JS, Beachboard DC, et al. Murine hepatitis virus nonstructural protein 4 regulates virus-induced membrane modifications and replication complex function. J Virol 2010; 84(1): 280-90.
[http://dx.doi.org/10.1128/JVI.01772-09] [PMID: 19846526]
[115]
Stobart CC, Sexton NR, Munjal H, et al. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J Virol 2013; 87(23): 12611-8.
[http://dx.doi.org/10.1128/JVI.02050-13] [PMID: 24027335]
[116]
Zhu X, Fang L, Wang D, et al. Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO. Virology 2017; 502: 33-8.
[http://dx.doi.org/10.1016/j.virol.2016.12.005] [PMID: 27984784]
[117]
Zhu X, Wang D, Zhou J, et al. Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2. J Virol 2017; 91(10): e00003-17.
[http://dx.doi.org/10.1128/JVI.00003-17] [PMID: 28250121]
[118]
Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio 2013; 4(4): e00524-13.
[http://dx.doi.org/10.1128/mBio.00524-13] [PMID: 23943763]
[119]
Cottam EM, Whelband MC, Wileman T. Coronavirus NSP6 restricts autophagosome expansion. Autophagy 2014; 10(8): 1426-41.
[http://dx.doi.org/10.4161/auto.29309] [PMID: 24991833]
[120]
Kirchdoerfer RN, Ward AB. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 2019; 10(1): 2342.
[http://dx.doi.org/10.1038/s41467-019-10280-3] [PMID: 31138817]
[121]
Zhai Y, Sun F, Li X, et al. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol 2005; 12(11): 980-6.
[http://dx.doi.org/10.1038/nsmb999] [PMID: 16228002]
[122]
te Velthuis AJ, van den Worm SH, Snijder EJ. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 2012; 40(4): 1737-47.
[http://dx.doi.org/10.1093/nar/gkr893] [PMID: 22039154]
[123]
Egloff MP, Ferron F, Campanacci V, et al. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci USA 2004; 101(11): 3792-6.
[http://dx.doi.org/10.1073/pnas.0307877101] [PMID: 15007178]
[124]
Zeng Z, Deng F, Shi K, et al. Dimerization of coronavirus nsp9 with diverse modes enhances its nucleic acid binding affinity. J Virol 2018; 92(17): e00692-18.
[http://dx.doi.org/10.1128/JVI.00692-18] [PMID: 29925659]
[125]
Bouvet M, Lugari A, Posthuma CC, et al. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J Biol Chem 2014; 289(37): 25783-96.
[http://dx.doi.org/10.1074/jbc.M114.577353] [PMID: 25074927]
[126]
Ma Y, Wu L, Shaw N, et al. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci USA 2015; 112(30): 9436-41.
[http://dx.doi.org/10.1073/pnas.1508686112] [PMID: 26159422]
[127]
Chen Y, Su C, Ke M, et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog 2011; 7(10)e1002294
[http://dx.doi.org/10.1371/journal.ppat.1002294] [PMID: 22022266]
[128]
Decroly E, Debarnot C, Ferron F, et al. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 2011; 7(5)e1002059
[http://dx.doi.org/10.1371/journal.ppat.1002059] [PMID: 21637813]
[129]
te Velthuis AJ, Arnold JJ, Cameron CE, van den Worm SH, Snijder EJ. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 2010; 38(1): 203-14.
[http://dx.doi.org/10.1093/nar/gkp904] [PMID: 19875418]
[130]
Ahn DG, Choi JK, Taylor DR, Oh JW. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch Virol 2012; 157(11): 2095-104.
[http://dx.doi.org/10.1007/s00705-012-1404-x] [PMID: 22791111]
[131]
Jia Z, Yan L, Ren Z, et al. Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res 2019; 47(12): 6538-50.
[http://dx.doi.org/10.1093/nar/gkz409] [PMID: 31131400]
[132]
Adedeji AO, Lazarus H. Biochemical characterization of middle east respiratory syndrome coronavirus helicase. MSphere 2016; 1(5): e00235-16.
[http://dx.doi.org/10.1128/mSphere.00235-16] [PMID: 27631026]
[133]
Hao W, Wojdyla JA, Zhao R, et al. Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS Pathog 2017; 13(6)e1006474
[http://dx.doi.org/10.1371/journal.ppat.1006474] [PMID: 28651017]
[134]
Eckerle LD, Becker MM, Halpin RA, et al. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog 2010; 6(5)e1000896
[http://dx.doi.org/10.1371/journal.ppat.1000896] [PMID: 20463816]
[135]
Minskaia E, Hertzig T, Gorbalenya AE, et al. Discovery of an RNA virus 3′->5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA 2006; 103(13): 5108-13.
[http://dx.doi.org/10.1073/pnas.0508200103] [PMID: 16549795]
[136]
Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci USA 2012; 109(24): 9372-7.
[http://dx.doi.org/10.1073/pnas.1201130109] [PMID: 22635272]
[137]
Chen Y, Cai H, Pan J, et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci USA 2009; 106(9): 3484-9.
[http://dx.doi.org/10.1073/pnas.0808790106] [PMID: 19208801]
[138]
Deng X, Hackbart M, Mettelman RC, et al. Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc Natl Acad Sci USA 2017; 114(21): E4251-60.
[http://dx.doi.org/10.1073/pnas.1618310114] [PMID: 28484023]
[139]
Zhang L, Li L, Yan L, et al. Structural and biochemical characterization of endoribonuclease Nsp15 encoded by Middle East respiratory syndrome coronavirus. J Virol 2018; 92(22): e00893-18.
[http://dx.doi.org/10.1128/JVI.00893-18] [PMID: 30135128]
[140]
Bhardwaj K, Sun J, Holzenburg A, Guarino LA, Kao CC. RNA recognition and cleavage by the SARS coronavirus endoribonuclease. J Mol Biol 2006; 361(2): 243-56.
[http://dx.doi.org/10.1016/j.jmb.2006.06.021] [PMID: 16828802]
[141]
Shi P, Su Y, Li R, Liang Z, Dong S, Huang J. PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Res 2019; 265: 57-66.
[http://dx.doi.org/10.1016/j.virusres.2019.03.005] [PMID: 30849413]

© 2024 Bentham Science Publishers | Privacy Policy