Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Advances in the Development of Reactivators for the Treatment of Organophosphorus Inhibited Cholinesterase

Author(s): Ashima Thakur, Pooja Patil, Abha Sharma* and S.J.S. Flora*

Volume 24, Issue 24, 2020

Page: [2845 - 2864] Pages: 20

DOI: 10.2174/1385272824999201020203544

Price: $65

Abstract

Organophosphorus Compounds (OPCs) are used as pesticides to control pest, as chemical weapons in military conflict and unfortunately in the terrorist attack. These compounds are irreversible inhibitors of acetylcholinesterase, resulting in the accumulation of acetylcholine that leads to severe health complications which may be ended with the death of the victim. Current antidotes used for reactivation of organophosphorus inhibited acetylcholinesterase (OP-AChE) are not able to cross the blood-brain barrier efficiently, therefore being incapable to reactivate OP-AChE of the central nervous system. Due to limitations with current antidotes, there is an urgent need for new effective antidotes that could be included in the treatment regimen of OP poisoning. In this direction, comprehensive work has been done to improve the permeability of existing antidotes using a variety of strategies that include synthesis of oxime bonded to peripheral site binding moiety via an alkyl, aryl, or heteroatom-containing linker, synthesis of sugar oximes, and prodrug of 2-PAM, incorporating fluorine and chlorine in the structure of charged oximes. Other classes of compounds such as the mannich base, N-substituted hydroxyimino acetamide, alkylating agents, have been investigated for reactivation of OP-AChE. This review comprises the development of various classes of reactivators with the aim of either enhancing blood-brain permeability of existing antidotes or discovering a new class of reactivators.

Keywords: Acetylcholinestrase, organophosphorus compounds, nerve agents, pesticides, oximes, blood-brain barrier, reactivation.

Graphical Abstract
[1]
Gupta, R.C. Handbook of Toxicology of Chemical Warfare Agents; Academic Press, 2015.
[2]
Delfino, R.T.; Ribeiro, T.S.; Figueroa-Villar, J.D. Organophosphorus compounds as chemical warfare agents: a review. J. Braz. Chem. Soc., 2009, 20(3), 407-428.
[http://dx.doi.org/10.1590/S0103-50532009000300003]
[3]
Bolognesi, C. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat. Res. Rev. Mutat. Res., 2003, 543(3), 251-272.
[http://dx.doi.org/10.1016/S1383-5742(03)00015-2] [PMID: 12787816]
[4]
Alavanja, M.C. Introduction: pesticides use and exposure extensive worldwide. Rev. Environ. Health, 2009, 24(4), 303-309.
[http://dx.doi.org/10.1515/REVEH.2009.24.4.303] [PMID: 20384038]
[5]
Bronstein, A.; Spyker, D.; Cantilena, L.; Green, J.; Rumack, B.; Giffin, S. Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 26th Annual Report. Clin. Toxicol., 2008, 46(10), 927-1057.
[http://dx.doi.org/10.1080/15563650802559632]
[6]
Eddleston, M.; Buckley, N.A.; Eyer, P.; Dawson, A.H. Management of acute organophosphorus pesticide poisoning. Lancet, 2008, 371(9612), 597-607.
[http://dx.doi.org/10.1016/S0140-6736(07)61202-1] [PMID: 17706760]
[7]
Saxena, A.; Singh, B.; Sharma, A.; Dubey, V.; Semwal, R.P.; Suryanarayana, M.V.S.; Rao, V.K.; Sekhar, K. Adsorption of dimethyl methylphosphonate on metal impregnated carbons under static conditions. J. Hazard. Mater., 2006, 134(1-3), 104-111.
[http://dx.doi.org/10.1016/j.jhazmat.2005.10.038] [PMID: 16343758]
[8]
Sharma, A.; Singh, B.; Saxena, A. Polyoxometalate impregnated carbon systems for the in situ degradation of sulphur mustard. Carbon, 2009, 47(8), 1911-1915.
[http://dx.doi.org/10.1016/j.carbon.2009.03.034]
[9]
Sharma, A.; Saxena, A.; Singh, B. In-situ degradation of sulphur mustard using (1R)-(-)-(camphorylsulphonyl) oxaziridine impregnated adsorbents. J. Hazard. Mater., 2009, 172(2-3), 650-653.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.046] [PMID: 19674836]
[10]
Peplow, M. Nerve agent attack on spy used ‘Novichok’poison. Chem. Eng. News, 2018, 96(3), 1.
[11]
Marrs, T.C. Organophosphate poisoning. Pharmacol. Ther., 1993, 58(1), 51-66.
[http://dx.doi.org/10.1016/0163-7258(93)90066-M] [PMID: 8415873]
[12]
Gorecki, L.; Korabecny, J.; Musilek, K.; Malinak, D.; Nepovimova, E.; Dolezal, R.; Jun, D.; Soukup, O.; Kuca, K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol., 2016, 90(12), 2831-2859.
[http://dx.doi.org/10.1007/s00204-016-1827-3] [PMID: 27582056]
[13]
Johnson, G.; Moore, S.W. The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Curr. Pharm. Des., 2006, 12(2), 217-225.
[http://dx.doi.org/10.2174/138161206775193127] [PMID: 16454738]
[14]
Bajgar, J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem., 2004, 38(1), 151-216.
[http://dx.doi.org/10.1016/S0065-2423(04)38006-6] [PMID: 15521192]
[15]
Masson, P.; Nachon, F.; Lockridge, O. Structural approach to the aging of phosphylated cholinesterases. Chem. Biol. Interact., 2010, 187(1-3), 157-162.
[http://dx.doi.org/10.1016/j.cbi.2010.03.027] [PMID: 20338153]
[16]
Jokanović, M.; Segrt, Z.; Stojilijković, M.; Ristić, D.; Kovać, B. Organophosphate-induced delayed polyneuropathy in man: clinical presentation, mechanisms and treatment. AJRDDT, 2019, 2, 8-11.
[17]
Worek, F.; Thiermann, H.; Wille, T. Organophosphorus compounds and oximes: a critical review. Arch. Toxicol., 2020, 94(7), 2275-2292.
[http://dx.doi.org/10.1007/s00204-020-02797-0] [PMID: 32506210]
[18]
Figueiredo, T.H.; Apland, J.P.; Braga, M.F.M.; Marini, A.M. Acute and long-term consequences of exposure to organophosphate nerve agents in humans. Epilepsia, 2018, 59(Suppl. 2), 92-99.
[http://dx.doi.org/10.1111/epi.14500] [PMID: 30159887]
[19]
Wilson, I. Molecular complementarity and antidotes for alkylphosphate poisoning In: Federation Proceedings; Federation of American Societies for Experimental Biology,; , 1959, Vol. 18, p. 752.
[20]
Wilson, I.B.; Ginsburg, B. A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim. Biophys. Acta, 1955, 18(1), 168-170.
[http://dx.doi.org/10.1016/0006-3002(55)90040-8] [PMID: 13260275]
[21]
Musil, K.; Florianova, V.; Bucek, P.; Dohnal, V.; Kuca, K.; Musilek, K. Development and validation of a FIA/UV-vis method for pKa determination of oxime based acetylcholinesterase reactivators. J. Pharm. Biomed. Anal., 2016, 117, 240-246.
[http://dx.doi.org/10.1016/j.jpba.2015.09.010] [PMID: 26386953]
[22]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[23]
Wilson, I.B.; Meislich, E.K. Reactivation of acetylcholinesterase1 inhibited by alkylphosphates. J. Am. Chem. Soc., 1953, 75(18), 4628-4629.
[http://dx.doi.org/10.1021/ja01114a546]
[24]
Wilson, I.B.; Acetylcholinesterase, X. Reversibility of tetraethyl pyrophosphate inhibition. J. Biol. Chem., 1951, 190(1), 111-117.
[PMID: 14841157]
[25]
de Jong, L.P.; Verhagen, M.A.; Langenberg, J.P.; Hagedorn, I.; Löffler, M. The bispyridinium-dioxime HLö-7. A potent reactivator for acetylcholinesterase inhibited by the stereoisomers of tabun and soman. Biochem. Pharmacol., 1989, 38(4), 633-640.
[http://dx.doi.org/10.1016/0006-2952(89)90209-8] [PMID: 2917018]
[26]
Worek, F.; Thiermann, H.; Szinicz, L.; Eyer, P. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem. Pharmacol., 2004, 68(11), 2237-2248.
[http://dx.doi.org/10.1016/j.bcp.2004.07.038] [PMID: 15498514]
[27]
Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P-Y. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc. Chem. Res., 2012, 45(5), 756-766.
[http://dx.doi.org/10.1021/ar2002864] [PMID: 22360473]
[28]
Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science, 2007, 317(5846), 1881-1886.
[http://dx.doi.org/10.1126/science.1131943] [PMID: 17901324]
[29]
Jeong, H.C.; Kang, N.S.; Park, N-J.; Yum, E.K.; Jung, Y-S. Reactivation potency of fluorinated pyridinium oximes for acetylcholinesterases inhibited by paraoxon organophosphorus agent. Bioorg. Med. Chem. Lett., 2009, 19(4), 1214-1217.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.070] [PMID: 19124241]
[30]
Demar, J.C.; Clarkson, E.D.; Ratcliffe, R.H.; Campbell, A.J.; Thangavelu, S.G.; Herdman, C.A.; Leader, H.; Schulz, S.M.; Marek, E.; Medynets, M.A.; Ku, T.C.; Evans, S.A.; Khan, F.A.; Owens, R.R.; Nambiar, M.P.; Gordon, R.K. Pro-2-PAM therapy for central and peripheral cholinesterases. Chem. Biol. Interact., 2010, 187(1-3), 191-198.
[http://dx.doi.org/10.1016/j.cbi.2010.02.015] [PMID: 20156430]
[31]
Wilson, I.B.; Ginsburg, S. Reactivation of alkylphosphate inhibited acetylcholinesterase by bis quaternary derivatives of 2-PAM and 4-PAM. Biochem. Pharmacol., 1959, 1(3), 200-206.
[http://dx.doi.org/10.1016/0006-2952(59)90099-1]
[32]
Hagedorn, I.; Gündel, W.H.; Schoene, K. Reactivation of phosphorylated acetylcholine esterase with oximes: contribution to the study of the reaction course. Arzneimittelforschung, 1969, 19(4), 603-606.
[PMID: 5819160]
[33]
Luettringhaus, A.; Hagedorn, I. Quaternary hydroxyiminomethylpyridinium salts. The dischloride of bis-(4-hydroxyiminomethyl-1-pyridinium-methyl)-ether (lueh6), a new reactivator of acetylcholinesterase inhibited by organic phosphoric acid esters. Arzneimittelforschung, 1964, 14, 1-5.
[PMID: 14223684]
[34]
Worek, F.; Eyer, P.; Aurbek, N.; Szinicz, L.; Thiermann, H. Recent advances in evaluation of oxime efficacy in nerve agent poisoning by in vitro analysis. Toxicol. Appl. Pharmacol., 2007, 219(2-3), 226-234.
[http://dx.doi.org/10.1016/j.taap.2006.10.001] [PMID: 17112559]
[35]
Segall, Y.; Waysbort, D.; Barak, D.; Ariel, N.; Doctor, B.P.; Grunwald, J.; Ashani, Y. Direct observation and elucidation of the structures of aged and nonaged phosphorylated cholinesterases by 31P NMR spectroscopy. Biochemistry, 1993, 32(49), 13441-13450.
[http://dx.doi.org/10.1021/bi00212a009] [PMID: 8257680]
[36]
Kassa, J.; Cabal, J. A comparison of the efficacy of acetylcholinesterase reactivators against cyclohexyl methylphosphonofluoridate (GF agent) by in vitro and in vivo methods. Pharmacol. Toxicol., 1999, 84(1), 41-45.
[http://dx.doi.org/10.1111/j.1600-0773.1999.tb02109.x] [PMID: 9974189]
[37]
Kassa, J.; Cabal, J. A comparison of the efficacy of a new asymmetric bispyridinium oxime BI-6 with currently available oximes and H oximes against soman by in vitro and in vivo methods. Toxicology, 1999, 132(2-3), 111-118.
[http://dx.doi.org/10.1016/S0300-483X(98)00146-2] [PMID: 10433374]
[38]
Kassa, J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. J. Toxicol. Clin. Toxicol., 2002, 40(6), 803-816.
[http://dx.doi.org/10.1081/CLT-120015840] [PMID: 12475193]
[39]
dos Santos, A.A.; dos Santos, D.B.; Dafre, A.L.; de Bem, A.F.; Souza, D.O.; da Rocha, J.B.T.; Kuca, K.; Farina, M. In vitro reactivating effects of standard and newly developed oximes on malaoxon-inhibited mouse brain acetylcholinesterase. Basic Clin. Pharmacol. Toxicol., 2010, 107(3), 768-773.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00576.x] [PMID: 20406208]
[40]
Katalinić, M.; Šinko, G.; Maček Hrvat, N.; Zorbaz, T.; Bosak, A.; Kovarik, Z. Oxime-assisted reactivation of tabun-inhibited acetylcholinesterase analysed by active site mutations. Toxicology, 2018, 406-407, 104-113.
[41]
Lorke, D.E.; Petroianu, G.A. The experimental oxime K027-A promising protector from organophosphate pesticide poisoning. a review comparing K027, K048, pralidoxime, and obidoxime. Front. Neurosci., 2019, 13, 427.
[http://dx.doi.org/10.3389/fnins.2019.00427] [PMID: 31191210]
[42]
Artursson, E.; Akfur, C.; Hörnberg, A.; Worek, F.; Ekström, F. Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis. Toxicology, 2009, 265(3), 108-114.
[http://dx.doi.org/10.1016/j.tox.2009.09.002] [PMID: 19761810]
[43]
Ekström, F.; Pang, Y-P.; Boman, M.; Artursson, E.; Akfur, C.; Börjegren, S. Crystal structures of acetylcholinesterase in complex with HI-6, Ortho-7 and obidoxime: structural basis for differences in the ability to reactivate tabun conjugates. Biochem. Pharmacol., 2006, 72(5), 597-607.
[http://dx.doi.org/10.1016/j.bcp.2006.05.027] [PMID: 16876764]
[44]
Kassa, J.; Kuca, K.; Karasova, J.; Musilek, K. The development of new oximes and the evaluation of their reactivating, therapeutic and neuroprotective efficacy against tabun. Mini Rev. Med. Chem., 2008, 8(11), 1134-1143.
[http://dx.doi.org/10.2174/138955708785909871] [PMID: 18855728]
[45]
Musilek, K.; Holas, O.; Misik, J.; Pohanka, M.; Novotny, L.; Dohnal, V.; Opletalova, V.; Kuca, K. Monooxime‐monocarbamoyl bispyridinium xylene‐linked reactivators of acetylcholinesterase-synthesis, in vitro and toxicity evaluation, and docking studies. ChemMedChem, 2010, 5(2), 247-254.
[http://dx.doi.org/10.1002/cmdc.200900455] [PMID: 20058292]
[46]
Mercey, G.; Verdelet, T.; Saint-André, G.; Gillon, E.; Wagner, A.; Baati, R.; Jean, L.; Nachon, F.; Renard, P-Y. First efficient uncharged reactivators for the dephosphylation of poisoned human acetylcholinesterase. Chem. Commun. (Camb.), 2011, 47(18), 5295-5297.
[http://dx.doi.org/10.1039/c1cc10787a] [PMID: 21451868]
[47]
Acharya, J.; Dubey, D.K.; Srivastava, A.K.; Raza, S.K. In vitro reactivation of sarin-inhibited human acetylcholinesterase (AChE) by bis-pyridinium oximes connected by xylene linkers. Toxicol. In Vitro, 2011, 25(1), 251-256.
[http://dx.doi.org/10.1016/j.tiv.2010.07.024] [PMID: 20688148]
[48]
Okumura, T.; Hisaoka, T.; Yamada, A.; Naito, T.; Isonuma, H.; Okumura, S.; Miura, K.; Sakurada, M.; Maekawa, H.; Ishimatsu, S.; Takasu, N.; Suzuki, K. The Tokyo subway sarin attack-lessons learned. Toxicol. Appl. Pharmacol., 2005, 207(2), 471-476.
[http://dx.doi.org/10.1016/j.taap.2005.02.032] [PMID: 15979676]
[49]
Korabecny, J.; Soukup, O.; Dolezal, R.; Spilovska, K.; Nepovimova, E.; Andrs, M.; Nguyen, T.D.; Jun, D.; Musilek, K.; Kucerova-Chlupacova, M.; Kuca, K. From pyridinium-based to centrally active acetylcholinesterase reactivators. Mini Rev. Med. Chem., 2014, 14(3), 215-221.
[http://dx.doi.org/10.2174/1389557514666140219103138] [PMID: 24552265]
[50]
Sakurada, K.; Matsubara, K.; Shimizu, K.; Shiono, H.; Seto, Y.; Tsuge, K.; Yoshino, M.; Sakai, I.; Mukoyama, H.; Takatori, T. Pralidoxime iodide (2-pAM) penetrates across the blood-brain barrier. Neurochem. Res., 2003, 28(9), 1401-1407.
[http://dx.doi.org/10.1023/A:1024960819430] [PMID: 12938863]
[51]
Bajgar, J.; Fusek, J.; Kuca, K.; Bartosova, L.; Jun, D. Treatment of organophosphate intoxication using cholinesterase reactivators: facts and fiction. Mini Rev. Med. Chem., 2007, 7(5), 461-466.
[http://dx.doi.org/10.2174/138955707780619581] [PMID: 17504181]
[52]
Karasova, J.Z.; Chladek, J.; Hroch, M.; Josef, F.; Hnidkova, D.; Kuca, K. Pharmacokinetic study of two acetylcholinesterase reactivators, trimedoxime and newly synthesized oxime K027, in rat plasma. J. Appl. Toxicol., 2013, 33(1), 18-23.
[http://dx.doi.org/10.1002/jat.1699] [PMID: 21717485]
[53]
Santoni, G.; de Sousa, J.; de la Mora, E.; Dias, J.; Jean, L.; Sussman, J.L.; Silman, I.; Renard, P-Y.; Brown, R.C.D.; Weik, M.; Baati, R.; Nachon, F. Structure-based optimization of nonquaternary reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. J. Med. Chem., 2018, 61(17), 7630-7639.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00592] [PMID: 30125110]
[54]
Franjesevic, A.J.; Sillart, S.B.; Beck, J.M.; Vyas, S.; Callam, C.S.; Hadad, C.M. Resurrection and reactivation of acetylcholinesterase and butyrylcholinesterase. Chemistry, 2019, 25(21), 5337-5371.
[http://dx.doi.org/10.1002/chem.201805075] [PMID: 30444932]
[55]
Wandhammer, M.; de Koning, M.; van Grol, M.; Loiodice, M.; Saurel, L.; Noort, D.; Goeldner, M.; Nachon, F. A step toward the reactivation of aged cholinesterases--crystal structure of ligands binding to aged human butyrylcholinesterase. Chem. Biol. Interact., 2013, 203(1), 19-23.
[http://dx.doi.org/10.1016/j.cbi.2012.08.005] [PMID: 22922115]
[56]
Bedford, C.D.; Howd, R.A.; Dailey, O.D.; Miller, A.; Nolen, H.W., III; Kenley, R.A.; Kern, J.R.; Winterle, J.S. Nonquaternary cholinesterase reactivators. 3. 3(5)-Substituted 1,2,4-oxadiazol-5(3)-aldoximes and 1,2,4-oxadiazole-5(3)-thiocarbohydroximates as reactivators of organophosphonate-inhibited eel and human acetylcholinesterase in vitro. J. Med. Chem., 1986, 29(11), 2174-2183.
[http://dx.doi.org/10.1021/jm00161a008] [PMID: 3783578]
[57]
Okuno, S.; Sakurada, K.; Ohta, H.; Ikegaya, H.; Kazui, Y.; Akutsu, T.; Takatori, T.; Iwadate, K. Blood-brain barrier penetration of novel pyridinealdoxime methiodide (PAM)-type oximes examined by brain microdialysis with LC-MS/MS. Toxicol. Appl. Pharmacol., 2008, 227(1), 8-15.
[http://dx.doi.org/10.1016/j.taap.2007.09.021] [PMID: 17964625]
[58]
Skovira, J.W.; O’Donnell, J.C.; Koplovitz, I.; Kan, R.K.; McDonough, J.H.; Shih, T-M. Reactivation of brain acetylcholinesterase by monoisonitrosoacetone increases the therapeutic efficacy against nerve agents in guinea pigs. Chem. Biol. Interact., 2010, 187(1-3), 318-324.
[http://dx.doi.org/10.1016/j.cbi.2010.03.010] [PMID: 20230808]
[59]
Radić, Z.; Sit, R.K.; Kovarik, Z.; Berend, S.; Garcia, E.; Zhang, L.; Amitai, G.; Green, C.; Radić, B.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. J. Biol. Chem., 2012, 287(15), 11798-11809.
[http://dx.doi.org/10.1074/jbc.M111.333732] [PMID: 22343626]
[60]
Sit, R.K.; Radić, Z.; Gerardi, V.; Zhang, L.; Garcia, E.; Katalinić, M.; Amitai, G.; Kovarik, Z.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. J. Biol. Chem., 2011, 286(22), 19422-19430.
[http://dx.doi.org/10.1074/jbc.M111.230656] [PMID: 21464125]
[61]
Cadieux, C.L.; Wang, H.; Zhang, Y.; Koenig, J.A.; Shih, T-M.; McDonough, J.; Koh, J.; Cerasoli, D. Probing the activity of a non-oxime reactivator for acetylcholinesterase inhibited by organophosphorus nerve agents.Chem. Biol. Interact.,, 2016, 259(Pt B), 133-141.
[http://dx.doi.org/10.1016/j.cbi.2016.04.002] [PMID: 27062893]
[62]
Kassa, J.; Kuca, K.; Bartosova, L.; Kunesova, G. The development of new structural analogues of oximes for the antidotal treatment of poisoning by nerve agents and the comparison of their reactivating and therapeutic efficacy with currently available oximes. Curr. Org. Chem., 2007, 11(3), 267-283.
[http://dx.doi.org/10.2174/138527207779940874]
[63]
Ohta, H.; Ohmori, T.; Suzuki, S.; Ikegaya, H.; Sakurada, K.; Takatori, T. New safe method for preparation of sarin-exposed human erythrocytes acetylcholinesterase using non-toxic and stable sarin analogue isopropyl p-nitrophenyl methylphosphonate and its application to evaluation of nerve agent antidotes. Pharm. Res., 2006, 23(12), 2827-2833.
[http://dx.doi.org/10.1007/s11095-006-9123-1] [PMID: 17096183]
[64]
Meek, E.C.; Chambers, H.W.; Coban, A.; Funck, K.E.; Pringle, R.B.; Ross, M.K.; Chambers, J.E. Synthesis and in vitro and in vivo inhibition potencies of highly relevant nerve agent surrogates. Toxicol. Sci., 2012, 126(2), 525-533.
[http://dx.doi.org/10.1093/toxsci/kfs013] [PMID: 22247004]
[65]
Chambers, J.E.; Meek, E.C.; Bennett, J.P.; Bennett, W.S.; Chambers, H.W.; Leach, C.A.; Pringle, R.B.; Wills, R.W. Novel substituted phenoxyalkyl pyridinium oximes enhance survival and attenuate seizure-like behavior of rats receiving lethal levels of nerve agent surrogates. Toxicology, 2016, 339, 51-57.
[http://dx.doi.org/10.1016/j.tox.2015.12.001] [PMID: 26705700]
[66]
Garcia, G.E.; Campbell, A.J.; Olson, J.; Moorad-Doctor, D.; Morthole, V.I. Novel oximes as blood-brain barrier penetrating cholinesterase reactivators. Chem. Biol. Interact., 2010, 187(1-3), 199-206.
[http://dx.doi.org/10.1016/j.cbi.2010.02.033] [PMID: 20227398]
[67]
Rachaman, E.S.; Ashani, Y.; Leader, H.; Granoth, I.; Edery, H.; Porath, G. Sugar-oximes, new potential antidotes against organophosphorus poisoning. Arzneimittelforschung, 1979, 29(6), 875-876.
[PMID: 582776]
[68]
Heldman, E.; Ashani, Y.; Raveh, L.; Rachaman, E.S. Sugar conjugates of pyridinium aldoximes as antidotes against organophosphate poisoning. Carbohydr. Res., 1986, 151, 337-347.
[http://dx.doi.org/10.1016/S0008-6215(00)90353-7] [PMID: 3768897]
[69]
Valiveti, A.K.; Bhalerao, U.M.; Acharya, J.; Karade, H.N.; Acharya, B.N.; Raviraju, G.; Halve, A.K.; Kaushik, M.P. Synthesis and in vitro kinetic evaluation of N-thiazolylacetamido monoquaternary pyridinium oximes as reactivators of sarin, O-ethylsarin and VX inhibited human acetylcholinesterase (hAChE). Bioorg. Med. Chem., 2015, 23(15), 4899-4910.
[http://dx.doi.org/10.1016/j.bmc.2015.05.027] [PMID: 26043948]
[70]
Valiveti, A.K.; Bhalerao, U.M.; Acharya, J.; Karade, H.N.; Gundapu, R.; Halve, A.K.; Kaushik, M.P. Synthesis and in vitro kinetic study of novel mono-pyridinium oximes as reactivators of organophosphorus (OP) inhibited human acetylcholinesterase (hAChE). Chem. Biol. Interact., 2015, 237, 125-132.
[http://dx.doi.org/10.1016/j.cbi.2015.06.007] [PMID: 26070418]
[71]
Tiwari, A.K.; Rathore, V.S.; Sinha, D.; Datta, A.; Sehgal, N.; Chuttani, K.; Mishra, A.K. Design and docking studies of [Diethylenetriaminepentaacetic Acid–(Amino Acid) 2] with acetylcholine receptor as a molecular imaging agent for single-photon emission computed tomographic application. Mol. Imag, 2012, 11(3), 240-250.
[http://dx.doi.org/10.2310/7290.2011.00044]
[72]
Chadha, N.; Tiwari, A.K.; Kumar, V.; Lal, S.; Milton, M.D.; Mishra, A.K. Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis. J. Biomol. Struct. Dyn., 2015, 33(5), 978-990.
[http://dx.doi.org/10.1080/07391102.2014.921793] [PMID: 24805972]
[73]
Kwon, Y.E.; Park, J.Y.; No, K.T.; Shin, J.H.; Lee, S.K.; Eun, J.S.; Yang, J.H.; Shin, T.Y.; Kim, D.K.; Chae, B.S.; Leem, J.Y.; Kim, K.H. Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer’s disease therapeutics. Bioorg. Med. Chem., 2007, 15(20), 6596-6607.
[http://dx.doi.org/10.1016/j.bmc.2007.07.003] [PMID: 17681794]
[74]
Shih, T-M.; Skovira, J.W.; McDonough, J.H. Effects of 4-pyridine aldoxime on nerve agent-inhibited acetylcholinesterase activity in guinea pigs. Arch. Toxicol., 2009, 83(12), 1083-1089.
[http://dx.doi.org/10.1007/s00204-009-0465-4] [PMID: 19763542]
[75]
de Koning, M.C.; Joosen, M.J.; Noort, D.; van Zuylen, A.; Tromp, M.C. Peripheral site ligand-oxime conjugates: a novel concept towards reactivation of nerve agent-inhibited human acetylcholinesterase. Bioorg. Med. Chem., 2011, 19(1), 588-594.
[http://dx.doi.org/10.1016/j.bmc.2010.10.059] [PMID: 21112787]
[76]
Zorbaz, T.; Malinak, D.; Maraković, N.; Maček Hrvat, N.; Zandona, A.; Novotny, M.; Skarka, A.; Andrys, R.; Benkova, M.; Soukup, O.; Katalinić, M.; Kuca, K.; Kovarik, Z.; Musilek, K. Pyridinium oximes with ortho-positioned chlorine moiety exhibit improved physicochemical properties and efficient reactivation of human acetylcholinesterase inhibited by several nerve agents. J. Med. Chem., 2018, 61(23), 10753-10766.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01398] [PMID: 30383374]
[77]
Chambers, J.E.; Meek, E.C. Novel centrally active oxime reactivators of acetylcholinesterase inhibited by surrogates of sarin and VX. Neurobiol. Dis., 2020.133104487
[http://dx.doi.org/10.1016/j.nbd.2019.104487] [PMID: 31158460]
[78]
Malinak, D.; Dolezal, R.; Hepnarova, V.; Hozova, M.; Andrys, R.; Bzonek, P.; Racakova, V.; Korabecny, J.; Gorecki, L.; Mezeiova, E.; Psotka, M.; Jun, D.; Kuca, K.; Musilek, K. Synthesis, in vitro screening and molecular docking of isoquinolinium-5-carbaldoximes as acetylcholinesterase and butyrylcholinesterase reactivators. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 478-488.
[http://dx.doi.org/10.1080/14756366.2019.1710501] [PMID: 31910701]
[79]
Krasiński, A.; Radić, Z.; Manetsch, R.; Raushel, J.; Taylor, P.; Sharpless, K.B.; Kolb, H.C. In situ selection of lead compounds by Click chemistry: target-guided optimization of acetylcholinesterase inhibitors. J. Am. Chem. Soc., 2005, 127(18), 6686-6692.
[http://dx.doi.org/10.1021/ja043031t] [PMID: 15869290]
[80]
Saint-André, G.; Kliachyna, M.; Kodepelly, S.; Louise-Leriche, L.; Gillon, E.; Renard, P-Y.; Nachon, F.; Baati, R.; Wagner, A. Design, synthesis and evaluation of new α-nucleophiles for the hydrolysis of organophosphorus nerve agents: application to the reactivation of phosphorylated acetylcholinesterase. Tetrahedron, 2011, 67(34), 6352-6361.
[http://dx.doi.org/10.1016/j.tet.2011.05.130]
[81]
Mercey, G.; Renou, J.; Verdelet, T.; Kliachyna, M.; Baati, R.; Gillon, E.; Arboléas, M.; Loiodice, M.; Nachon, F.; Jean, L.; Renard, P.Y. Phenyltetrahydroisoquinoline-pyridinaldoxime conjugates as efficient uncharged reactivators for the dephosphylation of inhibited human acetylcholinesterase. J. Med. Chem., 2012, 55(23), 10791-10795.
[http://dx.doi.org/10.1021/jm3015519] [PMID: 23148598]
[82]
Muñoz-Ruiz, P.; Rubio, L.; García-Palomero, E.; Dorronsoro, I.; del Monte-Millán, M.; Valenzuela, R.; Usán, P.; de Austria, C.; Bartolini, M.; Andrisano, V.; Bidon-Chanal, A.; Orozco, M.; Luque, F.J.; Medina, M.; Martínez, A. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J. Med. Chem., 2005, 48(23), 7223-7233.
[http://dx.doi.org/10.1021/jm0503289] [PMID: 16279781]
[83]
Alonso, D.; Dorronsoro, I.; Rubio, L.; Muñoz, P.; García-Palomero, E.; Del Monte, M.; Bidon-Chanal, A.; Orozco, M.; Luque, F.J.; Castro, A.; Medina, M.; Martínez, A. Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg. Med. Chem., 2005, 13(24), 6588-6597.
[http://dx.doi.org/10.1016/j.bmc.2005.09.029] [PMID: 16230018]
[84]
Khorana, N.; Changwichit, K.; Ingkaninan, K.; Utsintong, M. Prospective acetylcholinesterase inhibitory activity of indole and its analogs. Bioorg. Med. Chem. Lett., 2012, 22(8), 2885-2888.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.057] [PMID: 22425563]
[85]
Renou, J.; Mercey, G.; Verdelet, T.; Păunescu, E.; Gillon, E.; Arboléas, M.; Loiodice, M.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.Y. Syntheses and in vitro evaluations of uncharged reactivators for human acetylcholinesterase inhibited by organophosphorus nerve agents. Chem. Biol. Interact., 2013, 203(1), 81-84.
[http://dx.doi.org/10.1016/j.cbi.2012.09.023] [PMID: 23111374]
[86]
Costagli, C.; Galli, A. Inhibition of cholinesterase-associated aryl acylamidase activity by anticholinesterase agents: focus on drugs potentially effective in Alzheimer’s disease. Biochem. Pharmacol., 1998, 55(10), 1733-1737.
[http://dx.doi.org/10.1016/S0006-2952(97)00676-X] [PMID: 9634011]
[87]
Renou, J.; Loiodice, M.; Arboléas, M.; Baati, R.; Jean, L.; Nachon, F.; Renard, P-Y. Tryptoline-3-hydroxypyridinaldoxime conjugates as efficient reactivators of phosphylated human acetyl and butyrylcholinesterases. Chem. Commun. (Camb.), 2014, 50(30), 3947-3950.
[http://dx.doi.org/10.1039/C4CC00561A]] [PMID: 24599312 ]
[88]
Colletier, J.P.; Sanson, B.; Nachon, F.; Gabellieri, E.; Fattorusso, C.; Campiani, G.; Weik, M. Conformational flexibility in the peripheral site of Torpedo californica acetylcholinesterase revealed by the complex structure with a bifunctional inhibitor. J. Am. Chem. Soc., 2006, 128(14), 4526-4527.
[http://dx.doi.org/10.1021/ja058683b] [PMID: 16594661]
[89]
Rydberg, E.H.; Brumshtein, B.; Greenblatt, H.M.; Wong, D.M.; Shaya, D.; Williams, L.D.; Carlier, P.R.; Pang, Y-P.; Silman, I.; Sussman, J.L. Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge. J. Med. Chem., 2006, 49(18), 5491-5500.
[http://dx.doi.org/10.1021/jm060164b] [PMID: 16942022]
[90]
Kliachyna, M.; Santoni, G.; Nussbaum, V.; Renou, J.; Sanson, B.; Colletier, J-P.; Arboléas, M.; Loiodice, M.; Weik, M.; Jean, L.; Renard, P-Y.; Nachon, F.; Baati, R. Design, synthesis and biological evaluation of novel tetrahydroacridine pyridine- Aldoxime and -Amidoxime hybrids as efficient uncharged reactivators of nerve agent-Inhibited human acetylcholinesterase. Eur. J. Med. Chem., 2014, 78C, 455-467.
[91]
de Koning, M.C.; van Grol, M.; Noort, D. Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicol. Lett., 2011, 206(1), 54-59.
[http://dx.doi.org/10.1016/j.toxlet.2011.04.004] [PMID: 21504785]
[92]
McHardy, S.F.; Bohmann, J.A.; Corbett, M.R.; Campos, B.; Tidwell, M.W.; Thompson, P.M.; Bemben, C.J.; Menchaca, T.A.; Reeves, T.E.; Cantrell, W.R., Jr; Bauta, W.E.; Lopez, A.; Maxwell, D.M.; Brecht, K.M.; Sweeney, R.E.; McDonough, J. Design, synthesis, and characterization of novel, nonquaternary reactivators of GF-inhibited human acetylcholinesterase. Bioorg. Med. Chem. Lett., 2014, 24(7), 1711-1714.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.049] [PMID: 24630558]
[93]
Maraković, N.; Knežević, A.; Vinković, V.; Kovarik, Z.; Šinko, G. Design and synthesis of N-substituted-2-hydroxyiminoacetamides and interactions with cholinesterases. Chem. Biol. Interact 2016, 259(Pt B), 122-132.
[http://dx.doi.org/10.1016/j.cbi.2016.05.035] [PMID: 27238725]
[94]
Renou, J.; Dias, J.; Mercey, G.; Verdelet, T.; Rousseau, C.; Gastellier, A-J.; Arboléas, M.; Touvrey-Loiodice, M.; Baati, R.; Jean, L. Synthesis and in vitro evaluation of donepezil-based reactivators and analogues for nerve agent-inhibited human acetylcholinesterase. RSC Adv, 2016, 6(22), 17929-17940.
[http://dx.doi.org/10.1039/C5RA25477A]
[95]
Wei, Z.; Liu, Y.Q.; Wang, Y.A.; Li, W.H.; Zhou, X.B.; Zhao, J.; Huang, C.Q.; Li, X.Z.; Liu, J.; Zheng, Z.B.; Li, S. Novel nonquaternary reactivators showing reactivation efficiency for soman-inhibited human acetylcholinesterase. Toxicol. Lett., 2016, 246, 1-6.
[http://dx.doi.org/10.1016/j.toxlet.2016.01.015] [PMID: 26809136]
[96]
Wei, Z.; Liu, Y.Q.; Wang, S.Z.; Yao, L.; Nie, H.F.; Wang, Y.A.; Liu, X-Y.; Zheng, Z.B.; Li, S. Conjugates of salicylaldoximes and peripheral site ligands: Novel efficient nonquaternary reactivators for nerve agent-inhibited acetylcholinesterase. Bioorg. Med. Chem., 2017, 25(16), 4497-4505.
[http://dx.doi.org/10.1016/j.bmc.2017.06.041] [PMID: 28684009]
[97]
Kliachyna, M.; Santoni, G.; Nussbaum, V.; Renou, J.; Sanson, B.; Colletier, J-P.; Arboléas, M.; Loiodice, M.; Weik, M.; Jean, L.; Renard, P.Y.; Nachon, F.; Baati, R. Design, synthesis and biological evaluation of novel tetrahydroacridine pyridine- aldoxime and -amidoxime hybrids as efficient uncharged reactivators of nerve agent-inhibited human acetylcholinesterase. Eur. J. Med. Chem., 2014, 78, 455-467.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.044] [PMID: 24704618]
[98]
de Koning, M.C.; Joosen, M.J.A.; Worek, F.; Nachon, F.; van Grol, M.; Klaassen, S.D.; Alkema, D.P.W.; Wille, T.; de Bruijn, H.M. Application of the ugi multicomponent reaction in the synthesis of reactivators of nerve agent inhibited acetylcholinesterase. J. Med. Chem., 2017, 60(22), 9376-9392.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01083] [PMID: 29091431]
[99]
Semenov, V.E.; Zueva, I.V.; Lushchekina, S.V.; Lenina, O.A.; Gubaidullina, L.M.; Saifina, L.F.; Shulaeva, M.M.; Kayumova, R.M.; Saifina, A.F.; Gubaidullin, A.T.; Kondrashova, S.A.; Latypov, S.K.; Masson, P.; Petrov, K.A. 6-Methyluracil derivatives as peripheral site ligand-hydroxamic acid conjugates: Reactivation for paraoxon-inhibited acetylcholinesterase. Eur. J. Med. Chem., 2020, 185111787
[http://dx.doi.org/10.1016/j.ejmech.2019.111787] [PMID: 31675511]
[100]
Zorbaz, T.; Mišetić, P.; Probst, N.; Žunec, S.; Zandona, A.; Mendaš, G.; Micek, V.; Maček Hrvat, N.; Katalinić, M.; Braïki, A.; Jean, L.; Renard, P.Y.; Gabelica Marković, V.; Kovarik, Z. Pharmacokinetic evaluation of brain penetrating morpholine-3-hydroxy-2-pyridine oxime as an antidote for nerve agent poisoning. ACS Chem. Neurosci., 2020, 11(7), 1072-1084.
[http://dx.doi.org/10.1021/acschemneuro.0c00032] [PMID: 32105443]
[101]
Sharma, R.; Upadhyaya, K.; Gupta, B.; Ghosh, K.K.; Tripathi, R.P.; Musilek, K.; Kuca, K. Glycosylated-imidazole aldoximes as reactivators of pesticides inhibited AChE: Synthesis and in-vitro reactivation study. Environ. Toxicol. Pharmacol., 2020, 80103454
[http://dx.doi.org/10.1016/j.etap.2020.103454] [PMID: 32645360]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy