Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Separation of Indole-3-acetic Acid from Tryptophan by Bulk Liquid Membrane

Author(s): Ioana Diaconu, Hassan Y. Aboul-Enein*, Cristina Orbeci, Andrei A. Bunaciu, Ecaterina A. Serban and Elena Ruse

Volume 17, Issue 6, 2021

Published on: 15 October, 2020

Page: [883 - 891] Pages: 9

DOI: 10.2174/1573411016999201015143000

Price: $65

Abstract

Background: Indole-3-acetic acid (IAA) is an important growth hormone for plants obtained by biosynthesis from tryptophan.

Aim: In this paper was studied the competitive transport of two biologically active compounds, indole-3-acetic acid (IAA) and tryptophan (TRP), through a liquid membrane.

Methods: The separation of the two compounds was obtained using a hybrid liquid membrane system having trioctylphosphine oxide (TOPO) as a carrier.

Results: The most important operational parameters of the system, and pH influence on the efficiency of the transport process, in correlation with the speciation diagrams of the two compounds: TRP and IAA, were studied. The evaluation of the transport process was performed by calculating the composition of the phases at the end of the transport process and the organic substrate flow at the membranes exit.

Conclusion: Due to the transport efficiency of over 90% in the case of IAA and the high selectivity at the transport between IAA and TRP, the procedure can be applied for the preparation of a sample containing these analytes.

Keywords: Bulk liquid membranes, indole-3-acetic acid, tryptophan, membrane separations, biosynthesis, trioctylphosphine oxide.

« Previous
Graphical Abstract
[1]
Pollmann, S.; Düchting, P.; Weiler, E.W. Tryptophan-dependent indole-3-acetic acid biosynthesis by ‘IAA-synthase’ proceeds via indole-3-acetamide. Phytochemistry, 2009, 70(4), 523-531.
[http://dx.doi.org/10.1016/j.phytochem.2009.01.021] [PMID: 19268331]
[2]
Xi, Z.; Zhang, Z.; Sun, Y.; Shi, Z.; Tian, W. Determination of indole-3-acetic acid and indole-3-butyric acid in mung bean sprouts using high performance liquid chromatography with immobilized Ru(bpy)3(2+)-KMnO4 chemiluminescence detection. Talanta, 2009, 79(2), 216-221.
[http://dx.doi.org/10.1016/j.talanta.2009.03.031] [PMID: 19559868]
[3]
Davies, P.J. Plant Hormones: Physiology, Biochemistry and Molecular Biology. 2nd ed; Davies, P.J., Ed.; Kluwer: Dordrecht, Netherlands, 1995., 1-12.
[http://dx.doi.org/10.1007/978-94-011-0473-9]
[4]
Campanella, B.; Pulidori, E.; Onor, M.; Passaglia, E.; Tegli, S. García, Izquierdo, C.; Bramanti, E.; New polymeric sorbent for the solid-phase extraction of indole-3-acetic acid from plants followed by liquid chromatography - Fluorescence detector. Microchem. J., 2016, 128, 68-74.
[http://dx.doi.org/10.1016/j.microc.2016.04.014]
[5]
Gómez-Cadenas, A.; Mehouachi, J.; Tadeo, F.R.; Primo-Millo, E.; Talon, M. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta, 2000, 210(4), 636-643.
[http://dx.doi.org/10.1007/s004250050054] [PMID: 10787058]
[6]
Kessler, S.; Sinha, N. Shaping up: the genetic control of leaf shape. Curr. Opin. Plant Biol., 2004, 7(1), 65-72.
[http://dx.doi.org/10.1016/j.pbi.2003.11.002] [PMID: 14732443]
[7]
Ludwig-Müller, J. Bacteria and fungi controlling plant growth by manipulating auxin: Balance between development and defense. J. Plant Physiol., 2015, 172, 4-12.
[http://dx.doi.org/10.1016/j.jplph.2014.01.002] [PMID: 25456606]
[8]
O’Donnell, P.J.; Schmelz, E.; Block, A.; Miersch, O.; Wasternack, C.; Jones, J.B.; Klee, H.J. Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiol., 2003, 133(3), 1181-1189.
[http://dx.doi.org/10.1104/pp.103.030379] [PMID: 14551324]
[9]
Qamar, M.; Muneer, M. Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide. J. Hazard. Mater., 2005, 120(1-3), 219-227.
[http://dx.doi.org/10.1016/j.jhazmat.2005.01.005] [PMID: 15811684]
[10]
Ma, Z.; Ge, L.; Lee, A.S.Y.; Yong, J.W.H.; Tan, S.N.; Ong, E.S. Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry after solid-phase extraction. Anal. Chim. Acta, 2008, 610(2), 274-281.
[http://dx.doi.org/10.1016/j.aca.2008.01.045] [PMID: 18291140]
[11]
Liu, S.; Chen, W.; Qu, L.; Gai, Y.; Jiang, X. Simultaneous determination of 24 or more acidic and alkaline phytohormones in femtomole quantities of plant tissues by high-performance liquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal. Bioanal. Chem., 2013, 405(4), 1257-1266.
[http://dx.doi.org/10.1007/s00216-012-6509-2] [PMID: 23128908]
[12]
Campanella, B.; Pulidori, E.; Onor, M.; Passaglia, E.; Tegli, S. García, Izquierdo, C.; Bramant, E.; New polymeric sorbent for the solid-phase extraction of indole-3-acetic acid from plants followed by liquid chromatography-Fluorescence detector. Microchem. J., 2016, 128, 68-74.
[http://dx.doi.org/10.1016/j.microc.2016.04.014]
[13]
Liu, X.; Barkawi, L.; Gardner, G.; Cohen, J.D. Transport of indole-3-butyric acid and indole-3-acetic acid in Arabidopsis hypocotyls using stable isotope labeling. Plant Physiol., 2012, 158(4), 1988-2000.
[http://dx.doi.org/10.1104/pp.111.191288] [PMID: 22323783]
[14]
Barea, J.M.; Brown, M.E. Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J. Appl. Bacteriol., 1974, 37(4), 583-593.
[http://dx.doi.org/10.1111/j.1365-2672.1974.tb00483.x] [PMID: 4611996]
[15]
Brown, M.E. Role of Azotobacter paspali in Association with Paspalum notatum. J. Appl. Bacteriol., 1976, 40, 341-348.
[http://dx.doi.org/10.1111/j.1365-2672.1976.tb04182.x]
[16]
Tien, T.M.; Gaskins, M.H.; Hubbell, D.H. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of Pearl Millet (Pennisetum americanum L.). Appl. Environ. Microbiol., 1979, 37(5), 1016-1024.
[http://dx.doi.org/10.1128/AEM.37.5.1016-1024.1979] [PMID: 16345372]
[17]
Won, C.; Shen, X.; Mashiguchi, K.; Zheng, Z.; Dai, X.; Cheng, Y.; Kasahara, H.; Kamiya, Y.; Chory, J.; Zhao, Y. Conversion of tryptophan to indole-3-acetic acid by Tryptophan aminotransferases of arabidopsis and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2011, 108(45), 18518-18523.
[http://dx.doi.org/10.1073/pnas.1108436108] [PMID: 22025721]
[18]
Nonhebel, H.M. Tryptophan-independent indole-3-acetic acid synthesis: Critical evaluation of the evidence. Plant Physiol., 2015, 169(2), 1001-1005.
[http://dx.doi.org/10.1104/pp.15.01091] [PMID: 26251310]
[19]
Koga, J.; Adachi, T.; Hidaka, H. IAA Biosynthetic pathway from tryptophan via indole-3-pyruvic Acid in Enterobacter cloacae. Agric. Biol. Chem., 1991, 55, 701-706.
[http://dx.doi.org/10.1271/bbb1961.55.701]
[20]
Lehmann, T.; Hoffmann, M.; Hentrich, M.; Pollmann, S. Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur. J. Cell Biol., 2010, 89(12), 895-905.
[http://dx.doi.org/10.1016/j.ejcb.2010.06.021] [PMID: 20701997]
[21]
Zhao, Y. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol., 2010, 61, 49-64.
[http://dx.doi.org/10.1146/annurev-arplant-042809-112308] [PMID: 20192736]
[22]
Cheng, Y.; Dai, X.; Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev., 2006, 20(13), 1790-1799.
[http://dx.doi.org/10.1101/gad.1415106] [PMID: 16818609]
[23]
Zhao, Y.; Christensen, S.K.; Fankhauser, C.; Cashman, J.R.; Cohen, J.D.; Weigel, D.; Chory, J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 2001, 291(5502), 306-309.
[http://dx.doi.org/10.1126/science.291.5502.306] [PMID: 11209081]
[24]
Abbass, Z.; Okon, Y. Plant growth promotion by Azotobacter paspali in the rhizosphere. Soil Biol. Biochem., 1993, 25, 1075-1083.
[http://dx.doi.org/10.1016/0038-0717(93)90156-6]
[25]
Brown, M.E. Role of Azotobacterpaspali in association with Paspalumnotatum. J. Appl. Bacteriol., 1976, 40(3), 341-348.
[http://dx.doi.org/10.1111/j.1365-2672.1976.tb04182.x]
[26]
Brown, M.E.; Burlingham, S.K. Production of plant growth substances by Azotobacter chroococcum. J. Gen. Microbiol., 1968, 53(1), 135-144.
[http://dx.doi.org/10.1099/00221287-53-1-135] [PMID: 5677977]
[27]
Stancu, A-D.; Hillebrand, M.; Tablet, C.; Mutihac, L. β-Cyclodextrin derivative as chiral carrier in membrane transport of some aromatic amino acids. J. Incl. Phenom. Macrocycl. Chem., 2014, 78, 71-76.
[http://dx.doi.org/10.1007/s10847-012-0271-0]
[28]
Cucolea, E.I.; Buschmann, H-J.; Mutihac, L. Hemicucurbiturils as receptors in extraction and transport of some amino acids. Supramol. Chem., 2016, 28(9-10), 727-732.
[http://dx.doi.org/10.1080/10610278.2015.1121267]
[29]
Mutihac, L. Extraction and Transport. Atwood, J. L., (ed.) Comprehensive supramolecular chemistry II;, 2017, 2, 369-379.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12505-3]
[30]
Mirea, C.M.; Diaconu, I.; Serban, E.A.; Ruse, E. Speciation studies of iron aqueous media using the bulk liquid membranes techniques. Rev. Chim., 2016, 67(7), 1244-1248.
[31]
Diaconu, I.; Serban, E.A.; Badea, G.I.; Ruse, E. Transport of indole 3-acetic acid through bulk liquid membrane. Influence of carrier in the diffusion process. Rev. Chim, 2019, 70(8), 2716-2719.
[http://dx.doi.org/10.37358/RC.19.8.7414]
[32]
Diaconu, I.; Aboul-Enein, H.Y.; Al-Omar, M.A.; Nechifor, G.; Ruse, E.; Bunaciu, A.A. Eftimie, Totu, E.; Separation nitrophenols. Equilibriums in bi- and tri-phasic systems. Arab. J. Chem., 2011, 4(1), 99-103.
[http://dx.doi.org/10.1016/j.arabjc.2010.06.025]
[33]
Diaconu, I.; Mirea, C.M.; Serban, E.A.; Ruse, E.; Nechifor, G. Pertraction of acetaminophen through bulk liquid membranes. Kinetic aspects. Rev. Chim, 2015, 66(7), 926-929.
[34]
Serban, E.A.; Diaconu, I.; Ruse, E.; Badea, G.I.; Cuciureanu, A.; Nechifor, G. Evaluation of kinetic parameters at the transport of indole-3-acetic acid through bulk liquid membranes. Rev. Chim., 2017, 68(5), 903-907.
[http://dx.doi.org/10.37358/RC.17.5.5577]
[35]
Serban, E.A.; Diaconu, I.; Ruse, E. Eftimie, Totu, E.; Nechifor, G.; Studies on the transport of indole-3-acetic acid through bulk liquid membranes. Rev. Roum. Chim., 2017, 62(6-7), 505-509.
[36]
Han, A.; Zhang, H.; Sun, J.; Chuah, G.K.; Jaenicke, S. Investigation into bulk liquid membranes for removal of chromium (VI) from simulated wastewater. J. Water Process Eng., 2017, 17, 63-69.
[http://dx.doi.org/10.1016/j.jwpe.2017.01.011]
[37]
Sabbar, H.A.; Wasan, O.N.; Ahmed, S.N. Dye removal by membrane technology for wastewater treatment using a cationic carrier. Pertanika J. Sci. Technol., 2020, 28(1), 353-397.
[38]
Zaharia, I.; Diaconu, I.; Ruse, E.; Nechifor, G. The Separation of salicylic acid from 5-aminosalicylic acid through bulk liquid membranes. Rev. Chim, 2015, 66(2), 169-172.
[39]
Diaconu, I.; Aboul-Enein, H.Y.; Bunaciu, A.A.; Ruse, E.; Mirea, C.M.; Nechifor, G. Selective separation of acetaminophen from pharmaceutical formulations through membrane techniques. Rev. Roum. Chim., 2015, 60(5-6), 521-525.
[40]
Granado-Castro, M.D.; Díaz-de-Alba, M.; Chinchilla-Real, I.; Galindo-Riaño, M.D.; García-Vargas, M.; Casanueva-Marenco, M.J. Coupling liquid membrane and flow-injection technique as an analytical strategy for copper analysis in saline water. Talanta, 2019, 192, 374-379.
[http://dx.doi.org/10.1016/j.talanta.2018.09.040] [PMID: 30348405]
[41]
Zaharia, I.; Aboul-Enein, H.Y.; Diaconu, I.; Ruse, E.; Bunaciu, A.A.; Nechifor, G. Facilitated transport of 5-aminosalicylic acid through bulk liquid membrane. J. Iran. Chem. Soc., 2013, 10(6), 1129-1136.
[http://dx.doi.org/10.1007/s13738-013-0245-1]
[42]
Kislik, V. Bulk Hybrid Liquid membrane with organic water-immiscible carriers: Application to chemical, biochemical, pharmaceutical, and gas separations. Liquid membranes; Kislik, V., Ed.; Elsevier, 2010, pp. 201-275.
[http://dx.doi.org/10.1016/B978-0-444-53218-3.00005-2]
[43]
Szczepanski, P.; Diaconu, I. Transport of p-nitrophenol through an agitated bulk liquid membrane. Sep. Sci. Technol., 2012, 47(12), 1725-1732.
[http://dx.doi.org/10.1080/01496395.2012.659316]
[44]
Anchaliya, D.; Sharma, U. Selective bulk liquid membrane carrier facilitated transport of Mg2 + over Li+, Na+, K+ and Ca2 + metal ions using naphthaquinone derived redox-switchable ionophores. Main Group Met. Chem., 2017, 40(1-2), 27-33.
[http://dx.doi.org/10.1515/mgmc-2016-0037]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy