Review Article

CRISPR/Cas9 Genome Editing Tool: A Promising Tool for Therapeutic Applications on Respiratory Diseases

Author(s): Sadiya Bi Shaikh and Yashodhar Prabhakar Bhandary*

Volume 20, Issue 5, 2020

Page: [333 - 346] Pages: 14

DOI: 10.2174/1566523220666201012145731

Price: $65

Abstract

Respiratory diseases are one of the prime topics of concern in the current era due to improper diagnostics tools. Gene-editing therapy, like Clustered regularly interspaced palindromic repeats- associated nuclease 9 (CRISPR/Cas9), is gaining popularity in pulmonary research, opening up doors to invaluable insights on underlying mechanisms. CRISPR/Cas9 can be considered as a potential gene-editing tool with a scientific community that is helping in the advancement of knowledge in respiratory health and therapy. As an appealing therapeutic tool, we hereby explore the advanced research on the application of CRISPR/Cas9 tools in chronic respiratory diseases such as lung cancer, Acute respiratory distress syndrome (ARDS) and cystic fibrosis (CF). We also address the urgent need to establish this gene-editing tool in various other lung diseases such as asthma, Chronic obstructive pulmonary disease (COPD) and Idiopathic pulmonary fibrosis (IPF). The present review introduces CRISPR/Cas9 as a worthy application in targeting epithelial-mesenchymal transition and fibrinolytic system via editing specific genes. Thereby, based on the efficiency of CRISPR/Cas9, it can be considered as a promising therapeutic tool in respiratory health research.

Keywords: CRISPR/Cas9, respiratory diseases, gene editing, gene therapy, lungs-related diseases, pulmonary disease.

Graphical Abstract
[1]
Reynolds JE III, Rommel SA. Thorax and abdomen, anatomy.encyclopedia of marine mammals. Academic Press 2018; pp. 994-1001.
[http://dx.doi.org/10.1016/B978-0-12-804327-1.00259-4]
[2]
Puttur F, Gregory LG, Lloyd CM. Airway macrophages as the guardians of tissue repair in the lung. Immunol Cell Biol 2019; 97(3): 246-57.
[http://dx.doi.org/10.1111/imcb.12235] [PMID: 30768869]
[3]
De Procaccini C, De Procaccini C, Rosa V, Perna F, et al. Complex interface between immunity and metabolism: The lung as a target organ.Mechanisms and manifestations of obesity in lung disease. Academic Press 2019; pp. 23-43.
[http://dx.doi.org/10.1016/B978-0-12-813553-2.00002-6]
[4]
Triplette M, Crothers K, Mahale P, et al. Risk of lung cancer in lung transplant recipients in the United States. Am J Transplant 2019; 19(5): 1478-90.
[http://dx.doi.org/10.1111/ajt.15181] [PMID: 30565414]
[5]
Raimundo K, Solomon JJ, Olson AL, et al. Rheumatoid arthritis-interstitial lung disease in the united states: prevalence, incidence, and healthcare costs and mortality. J Rheumatol 2019; 46(4): 360-9.
[http://dx.doi.org/10.3899/jrheum.171315] [PMID: 30442831]
[6]
Zhan T, Rindtorff N, Betge J, Ebert MP, Boutros M. CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol 2019; 55: 106-19.
[http://dx.doi.org/10.1016/j.semcancer.2018.04.001] [PMID: 29673923]
[7]
Tian X, Gu T, Patel S, Bode AM, Lee MH, Dong Z. CRISPR/Cas9 - An evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol 2019; 3: 8.
[http://dx.doi.org/10.1038/s41698-019-0080-7] [PMID: 30911676]
[8]
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24(4): 955-70.
[http://dx.doi.org/10.1016/j.drudis.2019.02.011] [PMID: 30849442]
[9]
Jansen R, Embden JDV, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43(6): 1565-75.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[10]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(5819): 1709-12.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[11]
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010; 327(5962): 167-70.
[http://dx.doi.org/10.1126/science.1179555] [PMID: 20056882]
[12]
Mojica FJM, Montoliu L. On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends Microbiol 2016; 24(10): 811-20.
[http://dx.doi.org/10.1016/j.tim.2016.06.005] [PMID: 27401123]
[13]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[14]
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[15]
Park MY, Jung MH, Eo EY, et al. Generation of lung cancer cell lines harboring EGFR T790M mutation by CRISPR/Cas9-mediated genome editing. Oncotarget 2017; 8(22): 36331-8.
[http://dx.doi.org/10.18632/oncotarget.16752] [PMID: 28422737]
[16]
Maddalo D, Manchado E, Concepcion CP, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516(7531): 423-7.
[http://dx.doi.org/10.1038/nature13902] [PMID: 25337876]
[17]
Bulstrode H, Johnstone E, Marques-Torrejon MA, et al. Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes Dev 2017; 31(8): 757-73.
[http://dx.doi.org/10.1101/gad.293027.116] [PMID: 28465359]
[18]
Hegge B, Sjøttem E, Mikkola I. Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress. BMC Cancer 2018; 18(1): 496.
[http://dx.doi.org/10.1186/s12885-018-4394-6] [PMID: 29716531]
[19]
Liu J, Sareddy GR, Zhou M, et al. Differential effects of estrogen receptor β isoforms on glioblastoma progression. Cancer Res 2018; 78(12): 3176-89.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3470] [PMID: 29661831]
[20]
Guernet A, Mungamuri SK, Cartier D, et al. CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. Mol Cell 2016; 63(3): 526-38.
[http://dx.doi.org/10.1016/j.molcel.2016.06.017] [PMID: 27453044]
[21]
Guernet A, Aaronson SA, Anouar Y, Grumolato L. Modeling intratumor heterogeneity through CRISPR-barcodes. Mol Cell Oncol 2016; 3(6): e1227894.
[http://dx.doi.org/10.1080/23723556.2016.1227894] [PMID: 28090577]
[22]
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science 2013; 339(6127): 1546-58.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[23]
Walter DM, Venancio OS, Buza EL, et al. Systematic in vivo inactivation of chromatin-regulating enzymes identifies Setd2 as a potent tumor suppressor in lung adenocarcinoma. Cancer Res 2017; 77(7): 1719-29.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2159] [PMID: 28202515]
[24]
He J, Jin Y, Zhou M, et al. Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor-β type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis. Cancer Sci 2018; 109(3): 642-55.
[http://dx.doi.org/10.1111/cas.13478] [PMID: 29274137]
[25]
Anelli V, Villefranc JA, Chhangawala S, et al. Oncogenic BRAF disrupts thyroid morphogenesis and function via twist expression. eLife 2017; 6: 20728.
[http://dx.doi.org/10.7554/eLife.20728] [PMID: 28350298]
[26]
Moreno AM, Mali P. Therapeutic genome engineering via CRISPR-Cas systems. Wiley Interdiscip Rev Syst Biol Med 2017; 9(4): 4.
[http://dx.doi.org/10.1002/wsbm.1380] [PMID: 28198142]
[27]
Liang X, Potter J, Kumar S, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 2015; 208: 44-53.
[http://dx.doi.org/10.1016/j.jbiotec.2015.04.024] [PMID: 26003884]
[28]
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. eLife 2013; 2: e00471.
[http://dx.doi.org/10.7554/eLife.00471] [PMID: 23386978]
[29]
Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014; 24(6): 1012-9.
[http://dx.doi.org/10.1101/gr.171322.113] [PMID: 24696461]
[30]
Malina A, Mills JR, Cencic R, et al. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev 2013; 27(23): 2602-14.
[http://dx.doi.org/10.1101/gad.227132.113] [PMID: 24298059]
[31]
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343(6166): 84-7.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571]
[32]
Koonin EV, Makarova KS. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 2013; 10(5): 679-86.
[http://dx.doi.org/10.4161/rna.24022] [PMID: 23439366]
[33]
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 2013; 41(7): 4336-43.
[http://dx.doi.org/10.1093/nar/gkT135] [PMID: 23460208]
[34]
Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 2016; 164(1-2): 29-44.
[http://dx.doi.org/10.1016/j.cell.2015.12.035] [PMID: 26771484]
[35]
Moses C, Kaur P. Applications of CRISPR systems in respiratory health: Entering a new ‘red pen’ era in genome editing. Respirology 2019; 24(7): 628-37.
[http://dx.doi.org/10.1111/resp.13527] [PMID: 30883991]
[36]
Standage-Beier K, Brookhouser N, Balachandran P, Zhang Q, Brafman DA, Wang X. RNA-guided recombinase-Cas9 fusion targets genomic DNA deletion and integration. CRISPR J 2019; 2(4): 209-22.
[http://dx.doi.org/10.1089/crispr.2019.0013] [PMID: 31436506]
[37]
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014; 507(7490): 62-7.
[http://dx.doi.org/10.1038/nature13011] [PMID: 24476820]
[38]
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): E2579-86.
[http://dx.doi.org/10.1073/pnas.1208507109] [PMID: 22949671]
[39]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[40]
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015; 517(7536): 583-8.
[http://dx.doi.org/10.1038/nature14136] [PMID: 25494202]
[41]
Horlbeck MA, Gilbert LA, Villalta JE, et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 2016; 5: 19760.
[http://dx.doi.org/10.7554/eLife.19760] [PMID: 27661255]
[42]
Wu Q, Tian Y, Zhang J, et al. In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis. Proc Natl Acad Sci USA 2018; 115(17): E3978-86.
[http://dx.doi.org/10.1073/pnas.1716589115] [PMID: 29632194]
[43]
Liao S, Davoli T, Leng Y, Li MZ, Xu Q, Elledge SJ. A genetic interaction analysis identifies cancer drivers that modify EGFR dependency. Genes Dev 2017; 31(2): 184-96.
[http://dx.doi.org/10.1101/gad.291948.116] [PMID: 28167502]
[44]
Han J, Perez JT, Chen C, et al. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell Rep 2018; 23(2): 596-607.
[http://dx.doi.org/10.1016/j.celrep.2018.03.045] [PMID: 29642015]
[45]
Kim HS, Lee K, Bae S, et al. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection. J Biol Chem 2017; 292(25): 10664-71.
[http://dx.doi.org/10.1074/jbc.M117.782425] [PMID: 28446605]
[46]
Schiwitza A, Schildhaus HU, Zwerger B, et al. Monitoring efficacy of checkpoint inhibitor therapy in patients with non-small-cell lung cancer. Immunotherapy 2019; 11(9): 769-82.
[http://dx.doi.org/10.2217/imt-2019-0039] [PMID: 31120392]
[47]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[48]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[49]
Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014; 159(2): 440-55.
[http://dx.doi.org/10.1016/j.cell.2014.09.014] [PMID: 25263330]
[50]
Chen S, Sanjana NE, Zheng K, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 2015; 160(6): 1246-60.
[http://dx.doi.org/10.1016/j.cell.2015.02.038] [PMID: 25748654]
[51]
Constanzo JD, Tang KJ, Rindhe S, et al. PIAS1-FAK interaction promotes the survival and progression of non-small cell lung cancer. Neoplasia 2016; 18(5): 282-93.
[http://dx.doi.org/10.1016/j.neo.2016.03.003] [PMID: 27237320]
[52]
Tang KJ, Constanzo JD, Venkateswaran N, et al. Focal adhesion kinase regulates the DNA damage response and its inhibition radiosensitizes mutant KRAS lung cancer. Clin Cancer Res 2016; 22(23): 5851-63.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2603] [PMID: 27220963]
[53]
Saber A. Genomic aberrations guiding treatment of non-small cell lung cancer patients. Cancer Treat Commun 2015; 4: 23-33.
[http://dx.doi.org/10.1016/j.ctrc.2015.03.005]
[54]
Carelli S, Zadra G, Vaira V, et al. Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer 2006; 53(3): 263-71.
[http://dx.doi.org/10.1016/j.lungcan.2006.06.001] [PMID: 16842883]
[55]
Dy GK, Ylagan L, Pokharel S, et al. The prognostic significance of focal adhesion kinase expression in stage I non-small-cell lung cancer. J Thorac Oncol 2014; 9(9): 1278-84.
[http://dx.doi.org/10.1097/JTO.0000000000000248] [PMID: 25122425]
[56]
Seo S, Woo CG, Lee DH, Choi J. The clinical impact of an EML4-ALK variant on survival following crizotinib treatment in patients with advanced ALK-rearranged non-small-cell lung cancer. Ann Oncol 2017; 28(7): 1667-8.
[http://dx.doi.org/10.1093/annonc/mdx185] [PMID: 28407036]
[57]
González-Vallinas M, Rodríguez-Paredes M, Albrecht M, et al. Epigenetically regulated chromosome 14q32 miRNA cluster induces metastasis and predicts poor prognosis in lung adenocarcinoma patients. Mol Cancer Res 2018; 16(3): 390-402.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0334] [PMID: 29330288]
[58]
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002; 99(19): 12293-7.
[http://dx.doi.org/10.1073/pnas.192461099] [PMID: 12218188]
[59]
Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature 2016; 539(7630): 479.
[http://dx.doi.org/10.1038/nature.2016.20988] [PMID: 27882996]
[60]
Song CQ, Li Y, Mou H, et al. Genome-wide CRISPR screen identifies regulators of mitogen-activated protein kinase as suppressors of liver tumors in mice. Gastroenterology 2017; 152(5): 1161-1173.e1.
[http://dx.doi.org/10.1053/j.gastro.2016.12.002] [PMID: 27956228]
[61]
Tang JT, Wang JL, Du W, et al. MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis 2011; 32(8): 1207-15.
[http://dx.doi.org/10.1093/carcin/bgr114] [PMID: 21665895]
[62]
Cheng Z, Ma R, Tan W, Zhang L. MiR-152 suppresses the proliferation and invasion of NSCLC cells by inhibiting FGF2. Exp Mol Med 2014; 46: e112.
[http://dx.doi.org/10.1038/emm.2014.51] [PMID: 25190353]
[63]
McFadden DG, Papagiannakopoulos T, Taylor-Weiner A, et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 2014; 156(6): 1298-311.
[http://dx.doi.org/10.1016/j.cell.2014.02.031] [PMID: 24630729]
[64]
Pfister SX, Ahrabi S, Zalmas LP, et al. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep 2014; 7(6): 2006-18.
[http://dx.doi.org/10.1016/j.celrep.2014.05.026] [PMID: 24931610]
[65]
Medina PP, Romero OA, Kohno T, et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 2008; 29(5): 617-22.
[http://dx.doi.org/10.1002/humu.20730] [PMID: 18386774]
[66]
Chen R, Zhao WQ, Fang C, Yang X, Ji M. Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. J Cancer 2020; 11(11): 3349-56.
[http://dx.doi.org/10.7150/jca.38391] [PMID: 32231741]
[67]
Orvis T, Hepperla A, Walter V, et al. BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Res 2014; 74(22): 6486-98.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0061] [PMID: 25115300]
[68]
Tagal V, Wei S, Zhang W, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun 2017; 8: 14098.
[http://dx.doi.org/10.1038/ncomms14098] [PMID: 28102363]
[69]
Malhotra S, Hayes D Jr, Wozniak DJ. Cystic fibrosis and pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev 2019; 32(3): 00138-18.
[http://dx.doi.org/10.1128/CMR.00138-18] [PMID: 31142499]
[70]
Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013; 13(6): 653-8.
[http://dx.doi.org/10.1016/j.stem.2013.11.002] [PMID: 24315439]
[71]
Firth AL, Menon T, Parker GS, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 2015; 12(9): 1385-90.
[http://dx.doi.org/10.1016/j.celrep.2015.07.062] [PMID: 26299960]
[72]
Zhang S, Shrestha CL, Kopp BT. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have differential effects on cystic fibrosis macrophage function. Sci Rep 2018; 8(1): 17066.
[http://dx.doi.org/10.1038/s41598-018-35151-7] [PMID: 30459435]
[73]
Li Y, Glass Z, Huang M, Chen ZY, Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 2020; 234119711
[http://dx.doi.org/10.1016/j.biomaterials.2019.119711]
[74]
Geurts MH, de Poel E, Amatngalim GD, et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell 2020; 26(4): 503-510.e7.
[http://dx.doi.org/10.1016/j.stem.2020.01.019] [PMID: 32084388]
[75]
Vaidyanathan S, Salahudeen AA, Sellers ZM, et al. High-efficiency, selection-free gene repair in airway stem cells from cystic fibrosis patients’ rescues cftr function in differentiated epithelia. Cell Stem Cell 2020; 26(2): 161-71.
[http://dx.doi.org/10.1016/j.stem.2019.11.002] [PMID: 31839569]
[76]
Avgerinou A, Ofrim M, Woodall M, et al. A proof-of-principle ex vivo gene therapy for cystic fibrosis: CFTR gene correction with CRISPR/cas9 of primary CF airway epithelial cells. Pediatr Pulmonol 2019; 54(2): 210.
[77]
Ruan J, Hirai H, Yang D, et al. Efficient gene editing at major CFTR mutation loci. Mol Ther Nucleic Acids 2019; 16(16): 73-81.
[http://dx.doi.org/10.1016/j.omtn.2019.02.006] [PMID: 30852378]
[78]
Xu Q, Hou YX, Chang XB. CRISPR/Cas9-mediated three nucleotide insertion corrects a deletion mutation in MRP1/ABCC1 and restores its proper folding and function. Mol Ther Nucleic Acids 2017; 7(7): 429-38.
[http://dx.doi.org/10.1016/j.omtn.2017.05.005] [PMID: 28624219]
[79]
Hao S, Roesch EA, Perez A, et al. Inactivation of CFTR by CRISPR/Cas9 alters transcriptional regulation of inflammatory pathways and other networks. J Cyst Fibros 2020; 19(1): 34-9.
[http://dx.doi.org/10.1016/j.jcf.2019.05.003] [PMID: 31126900]
[80]
Zhou ZP, Yang LL, Cao H, et al. In vitro validation of a CRISPR-mediated CFTR correction strategy for preclinical translation in pigs. Hum Gene Ther 2019; 30(9): 1101-16.
[http://dx.doi.org/10.1089/hum.2019.074] [PMID: 31099266]
[81]
Xia E, Duan R, Shi F, Seigel KE, Grasemann H, Hu J. Overcoming the undesirable CRISPR-Cas9 expression in gene correction. Mol Ther Nucleic Acids 2018; 13: 699-709.
[http://dx.doi.org/10.1016/j.omtn.2018.10.015] [PMID: 30513454]
[82]
Fan Z, Perisse IV, Cotton CU, et al. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 2018; 3(19): 123529.
[http://dx.doi.org/10.1172/jci.insight.123529] [PMID: 30282831]
[83]
Bellec J, Bacchetta M, Losa D, Anegon I, Chanson M, Nguyen TH. CFTR inactivation by lentiviral vector-mediated RNA interference and CRISPR-Cas9 genome editing in human airway epithelial cells. Curr Gene Ther 2015; 15(5): 447-59.
[http://dx.doi.org/10.2174/1566523215666150812115939] [PMID: 26264708]
[84]
Bhandary YP, Shetty SK, Marudamuthu AS, et al. Regulation of lung injury and fibrosis by p53-mediated changes in urokinase and plasminogen activator inhibitor-1. Am J Pathol 2013; 183(1): 131-43.
[http://dx.doi.org/10.1016/j.ajpath.2013.03.022] [PMID: 23665346]
[85]
Shaikh SB, Prabhu A, Bhandary YP. Interleukin-17A a potential therapeutic target in chronic lung diseases. Endocr Metab Immune Disord Drug Targets 2019; 19(7): 921-8.
[http://dx.doi.org/10.2174/1871530319666190116115226] [PMID: 30652654]
[86]
Cockrell AS, Yount BL, Scobey T, et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat Microbiol 2016; 2: 16226.
[http://dx.doi.org/10.1038/nmicrobiol.2016.226] [PMID: 27892925]
[87]
Chan JF, Yao Y, Yeung ML, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 2015; 212(12): 1904-13.
[http://dx.doi.org/10.1093/infdis/jiv392] [PMID: 26198719]
[88]
Alcorn JL. Innate immunity and pulmonary inflammation: a balance between protection and disease.Translational Inflammation. Academic Press 2019; pp. 153-75.
[89]
Goodman MA, Moradi Manesh D, Malik P, Rothenberg ME. CRISPR/Cas9 in allergic and immunologic diseases. Expert Rev Clin Immunol 2017; 13(1): 5-9.
[http://dx.doi.org/10.1080/1744666X.2017.1241711] [PMID: 27687572]
[90]
Dixit A, Parnas O, Li B, et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 2016; 167(7): 1853-66.
[http://dx.doi.org/10.1016/j.cell.2016.11.038] [PMID: 27984732]
[91]
Datlinger P, Rendeiro AF, Schmidl C, et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods 2017; 14(3): 297-301.
[http://dx.doi.org/10.1038/nmeth.4177] [PMID: 28099430]
[92]
Yilmaz G, Salihoglu Z. Does mean platelet volume/platelet count ratio and red rlood cell distribution width predict in-hospital mortality in patients admitted for acute exacerbation of chronic obstructive pulmonary disease? J Clin Microbiol 2019; 30: 18-25.
[93]
Bhandary YP, Shetty SK, Marudamuthu AS, et al. Plasminogen activator inhibitor-1 in cigarette smoke exposure and influenza A virus infection-induced lung injury. PLoS One 2015; 10(5): e0123187.
[http://dx.doi.org/10.1371/journal.pone.0123187] [PMID: 25932922]
[94]
Chu HW, Rios C, Huang C, et al. CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18. Gene Ther 2015; 22(10): 822-9.
[http://dx.doi.org/10.1038/gt.2015.53] [PMID: 26043872]
[95]
Gao X, Bali AS, Randell SH, Hogan BL. GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J Cell Biol 2015; 211(3): 669-82.
[http://dx.doi.org/10.1083/jcb.201506014] [PMID: 26527742]
[96]
Stolzenburg LR, Harris A, Winkle M, et al. Microvesicle-mediated delivery of miR-1343: impact on markers of fibrosis. Cell Tissue Res 2018; 371(2): 325-38.
[http://dx.doi.org/10.1007/s00441-017-2697-6] [PMID: 29022142]
[97]
Shaikh SB, Prabhu A, Bhandary YP. Targeting anti-aging protein sirtuin (Sirt) in the diagnosis of idiopathic pulmonary fibrosis. J Cell Biochem 2018; 120: 6878-85.
[http://dx.doi.org/10.1002/jcb.28033] [PMID: 30390331]
[98]
Woodcock HV, Eley JD, Guillotin D, et al. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun 2019; 10(1): 6.
[http://dx.doi.org/10.1038/s41467-018-07858-8] [PMID: 30602778]
[99]
Chen G, Ribeiro CMP, Sun L, et al. XBP1S regulates MUC5B in a promoter variant–dependent pathway in idiopathic pulmonary fibrosis airway epithelia. Am J Respir Crit Care Med 2019; 200(2): 220-34.
[http://dx.doi.org/10.1164/rccm.201810-1972OC] [PMID: 30973754]
[100]
Song X, Xu P, Meng C, et al. lncITPF promotes pulmonary fibrosis by targeting hnRNP-L depending on its host gene ITGBL1. Mol Ther 2019; 27(2): 380-93.
[http://dx.doi.org/10.1016/j.ymthe.2018.08.026] [PMID: 30528088]
[101]
Marudamuthu AS, Bhandary YP, Shetty SK, et al. Role of the urokinase-fibrinolytic system in epithelial-mesenchymal transition during lung injury. Am J Pathol 2015; 185(1): 55-68.
[http://dx.doi.org/10.1016/j.ajpath.2014.08.027] [PMID: 25447049]
[102]
Wu Q, Jiang D, Matsuda JL, Ternyak K, Zhang B, Chu HW. Cigarette smoke induces human airway epithelial senescence via growth differentiation factor 15 production. Am J Respir Cell Mol Biol 2016; 55(3): 429-38.
[http://dx.doi.org/10.1165/rcmb.2015-0143OC] [PMID: 27093475]
[103]
Zhang YH, Wu LZ, Liang HL, et al. Pulmonary surfactant synthesis in miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the CRISPR/Cas9 system. Am J Transl Res 2017; 9(2): 355-65.
[PMID: 28337265]
[104]
Bhandary YP. p53-Fibrinolytic system and acute lung injury. Biologia 2016; 71: 1098-102.
[http://dx.doi.org/10.1515/biolog-2016-0141]
[105]
Geiger S, Hirsch D, Hermann FG. Cell therapy for lung disease. Eur Respir Rev 2017; 26(144): 170044.
[http://dx.doi.org/10.1183/16000617.0044-2017] [PMID: 28659506]
[106]
Asokan A. CRISPR genome editing in stem cells turns to gold. Nat Mater 2019; 18(10): 1038-9.
[http://dx.doi.org/10.1038/s41563-019-0491-4] [PMID: 31537943]
[107]
Yang G, Huang X. Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regen (Lond) 2019; 8(2): 33-41.
[http://dx.doi.org/10.1016/j.cr.2019.08.001] [PMID: 31666940]
[108]
Shui B, Hernandez Matias L, Guo Y, Peng Y. The rise of CRISPR/Cas for genome editing in stem cells. Stem Cells Int 2016; 2016: 8140168.
[http://dx.doi.org/10.1155/2016/8140168] [PMID: 26880991]
[109]
Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 2015; 16(2): 142-7.
[http://dx.doi.org/10.1016/j.stem.2015.01.003] [PMID: 25658371]
[110]
Chen KY, Knoepfler PS. To CRISPR and beyond: the evolution of genome editing in stem cells. Regen Med 2016; 11(8): 801-16.
[http://dx.doi.org/10.2217/rme-2016-0107] [PMID: 27905217]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy