Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Electronic and Crystal Structures

Exploring Structure-function Relationship of Two-dimensional Electrocatalysts with Synchrotron Radiation X-ray Absorption Spectrum

Author(s): Nan Zhang, Wenjie Wang, Tianpei Zhou, Yangchao Tian* and Wangsheng Chu*

Volume 1, Issue 1, 2021

Published on: 08 October, 2020

Page: [22 - 42] Pages: 21

DOI: 10.2174/2210298101999201008142619

Abstract

Two-dimensional (2D) nanomaterials with unique anisotropy and electronic properties are deemed as an ideal platform for establishing clear relationships between structure and catalytic reactivity. Knowledge of their structures is essential for understanding the catalytic behavior, which further facilitates the development of high-performance catalysts. In this review, we focus on the recent progress of synchrotron radiation X-ray absorption spectrum (XAS) techniques in exploring the structure-function relationship of two-dimensional electrocatalysts. Also, we summarize the application of XAS technique in disclosing key factors that affect the catalytic activity, including identification of local atomic structure, electronic structure and defect structure. Through the characterization of the catalytic process with XAS technique, we further highlight the atomic-level correlation between structure and function in the field of oxygen evolution, oxygen reduction, hydrogen evolution and CO2 reduction. Finally, we propose the major challenges and prospects of XAS technique in advancing the development of two-dimensional electrocatalysts. We anticipate that this review provides critical insights into the application of the XAS technique in electrocatalysis, thereby promoting the development of advanced characterization techniques and the design of high-active catalysts.

Keywords: Two-dimensional material, X-ray absorption spectrum, synchrotron radiation, electrocatalysis, structure-functionrelationship, 2D nanomaterials.

Graphical Abstract
[1]
Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020; 577(7791): 509-13.
[http://dx.doi.org/10.1038/s41586-019-1782-2] [PMID: 31747679]
[2]
Luo M, Zhao Z, Zhang Y, et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019; 574(7776): 81-5.
[http://dx.doi.org/10.1038/s41586-019-1603-7] [PMID: 31554968]
[3]
Li Z, Zhang X, Cheng H, et al. Confined synthesis of 2D nanostructured materials toward electrocatalysis. Adv Energy Mater 2020; 10(11)1900486
[http://dx.doi.org/10.1002/aenm.201900486]
[4]
Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem Rev 2015; 115(18): 9869-921.
[http://dx.doi.org/10.1021/acs.chemrev.5b00073] [PMID: 26367275]
[5]
Stamenkovic VR, Strmcnik D, Lopes PP, Markovic NM. Energy and fuels from electrochemical interfaces. Nat Mater 2016; 16(1): 57-69.
[http://dx.doi.org/10.1038/nmat4738] [PMID: 27994237]
[6]
Yuan Y, Wang J, Adimi S, et al. Zirconium nitride catalysts surpass platinum for oxygen reduction. Nat Mater 2020; 19(3): 282-6.
[http://dx.doi.org/10.1038/s41563-019-0535-9] [PMID: 31740792]
[7]
Liu D, Li X, Chen S, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy 2019; 4(6): 512-8.
[http://dx.doi.org/10.1038/s41560-019-0402-6]
[8]
Wang H-Y, Hung S-F, Chen H-Y, Chan T-S, Chen HM, Liu B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J Am Chem Soc 2016; 138(1): 36-9.
[http://dx.doi.org/10.1021/jacs.5b10525] [PMID: 26710084]
[9]
Calle-Vallejo F, Tymoczko J, Colic V, et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 2015; 350(6257): 185-9.
[http://dx.doi.org/10.1126/science.aab3501] [PMID: 26450207]
[10]
Smith JG, Jain PK. The ligand shell as an energy barrier in surface reactions on transition metal nanoparticles. J Am Chem Soc 2016; 138(21): 6765-73.
[http://dx.doi.org/10.1021/jacs.6b00179] [PMID: 27152595]
[11]
Guo Y, Xu K, Wu C, Zhao J, Xie Y. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem Soc Rev 2015; 44(3): 637-46.
[http://dx.doi.org/10.1039/C4CS00302K] [PMID: 25406669]
[12]
Voiry D, Yang J, Chhowalla M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv Mater 2016; 28(29): 6197-206.
[http://dx.doi.org/10.1002/adma.201505597] [PMID: 26867809]
[13]
Chen P, Tong Y, Wu C, Xie Y. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis. Acc Chem Res 2018; 51(11): 2857-66.
[http://dx.doi.org/10.1021/acs.accounts.8b00266] [PMID: 30375850]
[14]
Chia X, Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nature Catal 2018; 1(12): 909-21.
[http://dx.doi.org/10.1038/s41929-018-0181-7]
[15]
Huan Y, Shi J, Zou X, et al. Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J Am Chem Soc 2019; 141(47): 18694-703.
[http://dx.doi.org/10.1021/jacs.9b06044] [PMID: 31558019]
[16]
Tan C, Cao X, Wu X-J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 2017; 117(9): 6225-331.
[http://dx.doi.org/10.1021/acs.chemrev.6b00558] [PMID: 28306244]
[17]
Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X. Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol 2016; 11(3): 218-30.
[http://dx.doi.org/10.1038/nnano.2015.340] [PMID: 26936816]
[18]
Xiao X, Yu H, Jin H, et al. Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 2017; 11(2): 2180-6.
[http://dx.doi.org/10.1021/acsnano.6b08534] [PMID: 28157328]
[19]
Sun Y, Gao S, Lei F, Xiao C, Xie Y. Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry. Acc Chem Res 2015; 48(1): 3-12.
[http://dx.doi.org/10.1021/ar500164g] [PMID: 25489751]
[20]
Li X, Wang S, Li L, Sun Y, Xie Y. Progress and perspective for in situ studies of CO2 reduction. J Am Chem Soc 2020; 142(21): 9567-81.
[http://dx.doi.org/10.1021/jacs.0c02973] [PMID: 32357008]
[21]
Meirer F, Weckhuysen BM. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat Rev Mater 2018; 3(9): 324-40.
[http://dx.doi.org/10.1038/s41578-018-0044-5]
[22]
Singh J, Lamberti C, Van Bokhoven JA. Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem Soc Rev 2010; 39(12): 4754-66.
[http://dx.doi.org/10.1039/c0cs00054j] [PMID: 20981379]
[23]
Dong C-L, Vayssieres L. In situ/operando X-ray spectroscopies for advanced investigation of energy materials. Chemistry 2018; 24(69): 18356-73.
[http://dx.doi.org/10.1002/chem.201803936] [PMID: 30300939]
[24]
Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev 2013; 113(3): 1736-850.
[http://dx.doi.org/10.1021/cr2000898] [PMID: 23444971]
[25]
Shi W-Q, Yuan L-Y, Wang C-Z, et al. Exploring actinide materials through synchrotron radiation techniques. Adv Mater 2014; 26(46): 7807-48.
[http://dx.doi.org/10.1002/adma.201304323] [PMID: 25169914]
[26]
Newton MA, van Beek W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem Soc Rev 2010; 39(12): 4845-63.
[http://dx.doi.org/10.1039/b919689g] [PMID: 20967341]
[27]
Huang W, Marcelli A, Xia D. Application of synchrotron radiation technologies to electrode materials for Li- and Na-ion batteries. Adv Energy Mater 2017; 7(21)1700460
[http://dx.doi.org/10.1002/aenm.201700460]
[28]
Tiede DM, Kwon G, He X, Mulfort KL, Martinson ABF. Characterizing electronic and atomic structures for amorphous and molecular metal oxide catalysts at functional interfaces by combining soft X-ray spectroscopy and high-energy X-ray scattering. Nanoscale 2020; 12(25): 13276-96.
[http://dx.doi.org/10.1039/D0NR02350G] [PMID: 32567636]
[29]
Zhou J, Hong D, Wang J, Hu Y, Xie X, Fang H. Electronic structure variation of the surface and bulk of a LiNi0.5Mn1.5O4 cathode as a function of state of charge: X-ray absorption spectroscopic study. Phys Chem Chem Phys 2014; 16(27): 13838-42.
[http://dx.doi.org/10.1039/C4CP01436G] [PMID: 24912501]
[30]
Föttinger K, van Bokhoven JA, Nachtegaal M, Rupprechter G. Dynamic structure of a working methanol steam reforming catalyst: In situ Quick-EXAFS on Pd/ZnO nanoparticles. J Phys Chem Lett 2011; 2(5): 428-33.
[http://dx.doi.org/10.1021/jz101751s]
[31]
Wang D, Zhou J, Hu Y, et al. In situ X-ray absorption near-edge structure study of advanced NiFe(OH)x electrocatalyst on carbon paper for water oxidation. J Phys Chem C 2015; 119(34): 19573-83.
[http://dx.doi.org/10.1021/acs.jpcc.5b02685]
[32]
Rehr JJ, Ankudinov AL. Progress in the theory and interpretation of XANES. Coord Chem Rev 2005; 249(1): 131-40.
[http://dx.doi.org/10.1016/j.ccr.2004.02.014]
[33]
Rehr JJ, Albers RC. Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys 2000; 72(3): 621-54.
[http://dx.doi.org/10.1103/RevModPhys.72.621]
[34]
Wan P, Xie H, Zhang N, et al. Stepwise hollow prussian blue nanoframes/carbon nanotubes composite film as ultrahigh rate sodium ion cathode. Adv Funct Mater 2020. [ePub ahead of Print
[http://dx.doi.org/10.1002/adfm.202002624]
[35]
Zhang X-W, Yan X-J, Zhou Z-R, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 2010; 328(5975): 240-3.
[http://dx.doi.org/10.1126/science.1183424] [PMID: 20378816]
[36]
Wu G, Zheng X, Cui P, et al. A general synthesis approach for amorphous noble metal nanosheets. Nat Commun 2019; 10(1): 4855.
[http://dx.doi.org/10.1038/s41467-019-12859-2] [PMID: 31649272]
[37]
Jia Y, Zhang L, Zhuang L, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nature Catal 2019; 2(8): 688-95.
[http://dx.doi.org/10.1038/s41929-019-0297-4]
[38]
Luo Y, Li X, Cai X, et al. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 2018; 12(5): 4565-73.
[http://dx.doi.org/10.1021/acsnano.8b00942] [PMID: 29688695]
[39]
Jin H, Guo C, Liu X, et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 2018; 118(13): 6337-408.
[http://dx.doi.org/10.1021/acs.chemrev.7b00689] [PMID: 29552883]
[40]
Yao W, Wu B, Liu Y. Growth and grain boundaries in 2D materials. ACS Nano 2020; 14(8): 9320-46.
[http://dx.doi.org/10.1021/acsnano.0c03558] [PMID: 32701265]
[41]
Jatav S, Furlan KP, Liu J, Hill EH. Heterostructured monolayer MoS2 nanoparticles toward water-dispersible catalysts. ACS Appl Mater Interfaces 2020; 12(17): 19813-22.
[http://dx.doi.org/10.1021/acsami.0c02246] [PMID: 32227875]
[42]
Zheng Y, Jiao Y, Zhu Y, et al. Hydrogen evolution by a metal-free electrocatalyst. Nat Commun 2014; 5(1): 3783.
[http://dx.doi.org/10.1038/ncomms4783] [PMID: 24769657]
[43]
Yuan K, Lützenkirchen-Hecht D, Li L, et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J Am Chem Soc 2020; 142(5): 2404-12.
[http://dx.doi.org/10.1021/jacs.9b11852] [PMID: 31902210]
[44]
Chen W, Gao W, Tu P, et al. Neighboring Pt atom sites in an ultrathin FePt nanosheet for the efficient and highly CO-tolerant oxygen reduction reaction. Nano Lett 2018; 18(9): 5905-12.
[http://dx.doi.org/10.1021/acs.nanolett.8b02606] [PMID: 30064214]
[45]
Zuo Q, Liu T, Chen C, et al. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew Chem Int Ed Engl 2019; 58(30): 10198-203.
[http://dx.doi.org/10.1002/anie.201904058] [PMID: 31107580]
[46]
Li X, Bi W, Chen M, et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J Am Chem Soc 2017; 139(42): 14889-92.
[http://dx.doi.org/10.1021/jacs.7b09074] [PMID: 28992701]
[47]
Li X, Bi W, Zhang L, et al. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater 2016; 28(12): 2427-31.
[http://dx.doi.org/10.1002/adma.201505281] [PMID: 26822495]
[48]
Wu H, Li H, Zhao X, et al. Highly doped and exposed Cu(i)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ Sci 2016; 9(12): 3736-45.
[http://dx.doi.org/10.1039/C6EE01867J]
[49]
Bi W, Li X, You R, et al. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv Mater 2018; 30(18)e1706617
[http://dx.doi.org/10.1002/adma.201706617] [PMID: 29575274]
[50]
Cheng H, Liu S, Hao Z, et al. Optimal coordination-site exposure engineering in porous platinum for outstanding oxygen reduction performance. Chem Sci (Camb) 2019; 10(21): 5589-95.
[http://dx.doi.org/10.1039/C9SC01078E] [PMID: 31293743]
[51]
Ye S-H, Shi Z-X, Feng J-X, Tong Y-X, Li G-R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew Chem Int Ed Engl 2018; 57(10): 2672-6.
[http://dx.doi.org/10.1002/anie.201712549] [PMID: 29418055]
[52]
He W, Han L, Hao Q, et al. Fluorine-anion-modulated electron structure of nickel sulfide nanosheet arrays for alkaline hydrogen evolution. ACS Energy Lett 2019; 4(12): 2905-12.
[http://dx.doi.org/10.1021/acsenergylett.9b02316]
[53]
Zhu X, Guo Y, Cheng H, et al. Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption. Nat Commun 2016; 7(1): 11210.
[http://dx.doi.org/10.1038/ncomms11210] [PMID: 27039840]
[54]
Xu K, Chen P, Li X, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J Am Chem Soc 2015; 137(12): 4119-25.
[http://dx.doi.org/10.1021/ja5119495] [PMID: 25761452]
[55]
Peng X, Guo Y, Yin Q, et al. Double-exchange effect in two-dimensional MNO2 nanomaterials. J Am Chem Soc 2017; 139(14): 5242-8.
[http://dx.doi.org/10.1021/jacs.7b01903] [PMID: 28306253]
[56]
Zhu D, Guo C, Liu J, Wang L, Du Y, Qiao S-Z. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem Commun (Camb) 2017; 53(79): 10906-9.
[http://dx.doi.org/10.1039/C7CC06378D] [PMID: 28929153]
[57]
Chen P, Zhang N, Wang S, et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc Natl Acad Sci USA 2019; 116(14): 6635-40.
[http://dx.doi.org/10.1073/pnas.1817881116] [PMID: 30872473]
[58]
Yuan R, Bi W, Zhou T, et al. Two-dimensional hierarchical Fe–N–C electrocatalyst for Zn-air batteries with ultrahigh specific capacity. ACS Mat Lett 2020; 2(1): 35-41.
[http://dx.doi.org/10.1021/acsmaterialslett.9b00386]
[59]
Huang J, Chen J, Yao T, et al. CoOOH nanosheets with high mass activity for water oxidation. Angew Chem Int Ed Engl 2015; 54(30): 8722-7.
[http://dx.doi.org/10.1002/anie.201502836] [PMID: 26094612]
[60]
Tong Y, Chen P, Zhou T, et al. A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene. Angew Chem Int Ed Engl 2017; 56(25): 7121-5.
[http://dx.doi.org/10.1002/anie.201702430] [PMID: 28523861]
[61]
Zhou L, Shao M, Zhang C, et al. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation. Adv Mater 2017; 29(6)1604080
[http://dx.doi.org/10.1002/adma.201604080] [PMID: 27918124]
[62]
Gu T-H, Kim J, Oh SM, Jin X, Hwang S-J. Interstratified heterostructures of metal hydroxide nanoclusters and MoS2 monolayers with improved electrode performance. Nanoscale 2020; 12(21): 11759-66.
[http://dx.doi.org/10.1039/D0NR02569K] [PMID: 32458874]
[63]
Zhu X, Dou X, Dai J, et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew Chem Int Ed Engl 2016; 55(40): 12465-9.
[http://dx.doi.org/10.1002/anie.201606313] [PMID: 27572334]
[64]
Liu Y, Cheng H, Lyu M, et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc 2014; 136(44): 15670-5.
[http://dx.doi.org/10.1021/ja5085157] [PMID: 25310506]
[65]
Zheng X, Chen Y, Zheng X, et al. Electronic structure engineering of licoo2 toward enhanced oxygen electrocatalysis. Adv Energy Mater 2019; 9(16)1803482
[http://dx.doi.org/10.1002/aenm.201803482]
[66]
Wang W, Zhu Y-B, Wen Q, et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv Mater 2019; 31(28)e1900528
[http://dx.doi.org/10.1002/adma.201900528] [PMID: 31116896]
[67]
Chen S, Kang Z, Hu X, et al. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution. Adv Mater 2017; 29(30)1701687
[http://dx.doi.org/10.1002/adma.201701687] [PMID: 28593650]
[68]
Wang X, Zhuang L, Jia Y, et al. Plasma-triggered synergy of exfoliation, phase transformation, and surface engineering in cobalt diselenide for enhanced water oxidation. Angew Chem Int Ed Engl 2018; 57(50): 16421-5.
[http://dx.doi.org/10.1002/anie.201810199] [PMID: 30332523]
[69]
Wang Y, Shi MM, Bao D, et al. Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia. Angew Chem Int Ed Engl 2019; 58(28): 9464-9.
[http://dx.doi.org/10.1002/anie.201903969] [PMID: 31090132]
[70]
Zhang N, Li X, Ye H, et al. Oxide Defect engineering enables to couple solar energy into oxygen activation. J Am Chem Soc 2016; 138(28): 8928-35.
[http://dx.doi.org/10.1021/jacs.6b04629] [PMID: 27351805]
[71]
Ye S, Zhang Y, Xiong W, et al. Construction of tetrahedral CoO4 vacancies for activating the high oxygen evolution activity of Co3-xO4-δ porous nanosheet arrays. Nanoscale 2020; 12(20): 11079-87.
[http://dx.doi.org/10.1039/D0NR00744G] [PMID: 32400794]
[72]
Tong Y, Guo Y, Mu K, et al. Half-Metallic behavior in 2D transition metal dichalcogenides nanosheets by dual-native-defects engineering. Adv Mater 2017; 29(40)1703123
[http://dx.doi.org/10.1002/adma.201703123] [PMID: 28861927]
[73]
Yang W, Zhang L, Xie J, et al. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2 S4 nanosheets for hydrogen evolution. Angew Chem Int Ed Engl 2016; 55(23): 6716-20.
[http://dx.doi.org/10.1002/anie.201602543] [PMID: 27100950]
[74]
Jin H, Li L, Liu X, et al. Nitrogen vacancies on 2D layered W2 N3: A stable and efficient active site for nitrogen reduction reaction. Adv Mater 2019; 31(32)e1902709
[http://dx.doi.org/10.1002/adma.201902709] [PMID: 31194268]
[75]
Zhang X, Zhao Y, Zhao Y, Shi R, Waterhouse GIN, Zhang T. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv Energy Mater 2019; 9(24)1900881
[http://dx.doi.org/10.1002/aenm.201900881]
[76]
Tong Y, Chen P, Zhang M, et al. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal 2018; 8(1): 1-7.
[http://dx.doi.org/10.1021/acscatal.7b03177]
[77]
Yin J, Fan Q, Li Y, et al. Ni-C-N nanosheets as catalyst for hydrogen evolution reaction. J Am Chem Soc 2016; 138(44): 14546-9.
[http://dx.doi.org/10.1021/jacs.6b09351] [PMID: 27775881]
[78]
Li Z, Yu L, Milligan C, et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat Commun 2018; 9(1): 5258.
[http://dx.doi.org/10.1038/s41467-018-07502-5] [PMID: 30531995]
[79]
He Q, Wan Y, Jiang H, et al. High-metallic-phase-concentration Mo1–xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts. Nano Res 2018; 11(3): 1687-98.
[http://dx.doi.org/10.1007/s12274-017-1786-x]
[80]
Li L, Tang C, Xia B, Jin H, Zheng Y, Qiao S-Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal 2019; 9(4): 2902-8.
[http://dx.doi.org/10.1021/acscatal.9b00366]
[81]
Cao L, Luo Q, Chen J, et al. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat Commun 2019; 10(1): 4849.
[http://dx.doi.org/10.1038/s41467-019-12886-z] [PMID: 31649237]
[82]
Liu Z, Dong C-L, Huang Y-C, et al. Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction. J Mater Chem A Mater Energy Sustain 2019; 7(24): 14483-8.
[http://dx.doi.org/10.1039/C9TA03882E]
[83]
Bai L, Hsu C-S, Alexander DTL, Chen HM, Hu X. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J Am Chem Soc 2019; 141(36): 14190-9.
[http://dx.doi.org/10.1021/jacs.9b05268] [PMID: 31418268]
[84]
Enman LJ, Stevens MB, Dahan MH, Nellist MR, Toroker MC, Boettcher SW. Operando X-Ray absorption spectroscopy shows iron oxidation is concurrent with oxygen evolution in cobalt-iron (Oxy)hydroxide electrocatalysts. Angew Chem Int Ed Engl 2018; 57(39): 12840-4.
[http://dx.doi.org/10.1002/anie.201808818] [PMID: 30112793]
[85]
Su X, Wang Y, Zhou J, Gu S, Li J, Zhang S. Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J Am Chem Soc 2018; 140(36): 11286-92.
[http://dx.doi.org/10.1021/jacs.8b05294] [PMID: 30111100]
[86]
Zhou J, Wang Y, Su X, et al. Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy Environ Sci 2019; 12(2): 739-46.
[http://dx.doi.org/10.1039/C8EE03208D]
[87]
Zheng X, Zhang B, De Luna P, et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat Chem 2018; 10(2): 149-54.
[http://dx.doi.org/10.1038/nchem.2886] [PMID: 29359759]
[88]
Bergmann A, Jones TE, Martinez Moreno E, et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nature Catal 2018; 1(9): 711-9.
[http://dx.doi.org/10.1038/s41929-018-0141-2]
[89]
Takimoto D, Sugimoto W, Yuan Q, et al. Two-Dimensional effects on the oxygen reduction reaction and irreversible surface oxidation of metallic Ru nanosheets and nanoparticles. ACS Appl Nano Mater 2019; 2(9): 5743-51.
[http://dx.doi.org/10.1021/acsanm.9b01216]
[90]
Wang HY, Hsu Y-Y, Chen R, Chan TS, Chen H, Liu B. Ni3+-Induced formation of active NiOOH on the spinel Ni–Co oxide surface for efficient oxygen evolution reaction. Adv Energy Mater 2015.51500091
[http://dx.doi.org/10.1002/aenm.201500091]
[91]
Ramaswamy N, Tylus U, Jia Q, Mukerjee S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J Am Chem Soc 2013; 135(41): 15443-9.
[http://dx.doi.org/10.1021/ja405149m] [PMID: 24032690]
[92]
Yang Y, Wang Y, Xiong Y, et al. In situ X-ray absorption spectroscopy of a synergistic Co-Mn oxide catalyst for the oxygen reduction reaction. J Am Chem Soc 2019; 141(4): 1463-6.
[http://dx.doi.org/10.1021/jacs.8b12243] [PMID: 30646684]
[93]
Park J, Risch M, Nam G, et al. Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functional oxygen electrocatalysts for Zn–air batteries. Energy Environ Sci 2017; 10(1): 129-36.
[http://dx.doi.org/10.1039/C6EE03046G]
[94]
Yu P, Wang L, Sun F, et al. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv Mater 2019; 31(30)e1901666
[http://dx.doi.org/10.1002/adma.201901666] [PMID: 31169937]
[95]
Zitolo A, Ranjbar-Sahraie N, Mineva T, et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat Commun 2017; 8(1): 957.
[http://dx.doi.org/10.1038/s41467-017-01100-7] [PMID: 29038426]
[96]
Yang HB, Miao J, Hung S-F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv 2016; 2(4)e1501122
[http://dx.doi.org/10.1126/sciadv.1501122]
[97]
Li J, Ghoshal S, Liang W, et al. Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ Sci 2016; 9(7): 2418-32.
[http://dx.doi.org/10.1039/C6EE01160H]
[98]
Cao L, Luo Q, Liu W, et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nature Catal 2019; 2(2): 134-41.
[http://dx.doi.org/10.1038/s41929-018-0203-5]
[99]
Jiao Y, Zheng Y, Davey K, Qiao S-Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat Energy 2016; 1(10): 16130.
[http://dx.doi.org/10.1038/nenergy.2016.130]
[100]
Kornienko N, Resasco J, Becknell N, et al. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J Am Chem Soc 2015; 137(23): 7448-55.
[http://dx.doi.org/10.1021/jacs.5b03545] [PMID: 26051104]
[101]
Zhu Y, Chen H-C, Hsu C-S, et al. Operando unraveling of the structural and chemical stability of P-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte. ACS Energy Lett 2019; 4(4): 987-94.
[http://dx.doi.org/10.1021/acsenergylett.9b00382]
[102]
Huang L, Chen D, Luo G, et al. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv Mater 2019; 31(28)e1901439
[http://dx.doi.org/10.1002/adma.201901439] [PMID: 31148279]
[103]
Kuznetsov DA, Chen Z, Kumar PV, et al. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J Am Chem Soc 2019; 141(44): 17809-16.
[http://dx.doi.org/10.1021/jacs.9b08897] [PMID: 31540549]
[104]
Lei F, Liu W, Sun Y, et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun 2016; 7(1): 12697.
[http://dx.doi.org/10.1038/ncomms12697] [PMID: 27585984]
[105]
Gao D, Zhou H, Cai F, et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res 2017; 10(6): 2181-91.
[http://dx.doi.org/10.1007/s12274-017-1514-6]
[106]
Zhang Z, Ahmad F, Zhao W, et al. Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett 2019; 19(6): 4029-34.
[http://dx.doi.org/10.1021/acs.nanolett.9b01393] [PMID: 31136185]
[107]
Chen Z, Mou K, Wang X, Liu L. Nitrogen-doped graphene quantum dots enhance the activity of Bi2 O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew Chem Int Ed Engl 2018; 57(39): 12790-4.
[http://dx.doi.org/10.1002/anie.201807643] [PMID: 30074663]
[108]
Zhou Y, Che F, Liu M, et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat Chem 2018; 10(9): 974-80.
[http://dx.doi.org/10.1038/s41557-018-0092-x] [PMID: 30013194]
[109]
Zheng X, Ji Y, Tang J, et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nature Catal 2019; 2(1): 55-61.
[http://dx.doi.org/10.1038/s41929-018-0200-8]
[110]
Jeon HS, Sinev I, Scholten F, et al. Operando evolution of the structure and oxidation state of size-controlled Zn nanoparticles during CO2 electroreduction. J Am Chem Soc 2018; 140(30): 9383-6.
[http://dx.doi.org/10.1021/jacs.8b05258] [PMID: 30008209]
[111]
Gu J, Hsu C-S, Bai L, Chen HM, Hu X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019; 364(6445): 1091-4.
[http://dx.doi.org/10.1126/science.aaw7515] [PMID: 31197014]
[112]
Wang M, Árnadóttir L, Xu ZJ, Feng Z. In situ X-ray Absorption spectroscopy studies of nanoscale electrocatalysts. Nano-Micro Lett 2019; 11(1): 47.
[http://dx.doi.org/10.1007/s40820-019-0277-x]
[113]
Müller O, Nachtegaal M, Just J, Lützenkirchen-Hecht D, Frahm R. Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution. J Synchrotron Radiat 2016; 23(1): 260-6.
[http://dx.doi.org/10.1107/S1600577515018007] [PMID: 26698072]
[114]
Ozawa S, Matsui H, Ishiguro N, et al. Operando time-resolved X-ray absorption fine structure study for Pt oxidation kinetics on Pt/C and Pt3Co/C cathode catalysts by polymer electrolyte fuel cell voltage operation synchronized with rapid O2 exposure. J Phys Chem C 2018; 122(26): 14511-7.
[http://dx.doi.org/10.1021/acs.jpcc.8b02541]
[115]
Handoko AD, Wei F. Jenndy, Yeo BS, Seh ZW. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nature Catal 2018; 1(12): 922-34.
[http://dx.doi.org/10.1038/s41929-018-0182-6]
[116]
Matsui H, Ishiguro N, Uruga T, et al. Operando 3D visualization of migration and degradation of a platinum cathode catalyst in a polymer electrolyte fuel cell. Angew Chem Int Ed Engl 2017; 56(32): 9371-5.
[http://dx.doi.org/10.1002/anie.201703940] [PMID: 28620952]
[117]
Sheng W, Kattel S, Yao S, et al. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ Sci 2017; 10(5): 1180-5.
[http://dx.doi.org/10.1039/C7EE00071E]
[118]
Zhuang T-T, Pang Y, Liang Z-Q, et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nature Catal 2018; 1(12): 946-51.
[http://dx.doi.org/10.1038/s41929-018-0168-4]
[119]
Choi J, Wagner P, Jalili R, et al. Porphyrin/graphene framework: A highly efficient and robust electrocatalyst for carbon dioxide reduction. Adv Energy Mater 2018; 8(26)1801280
[http://dx.doi.org/10.1002/aenm.201801280]

© 2024 Bentham Science Publishers | Privacy Policy