Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Advances in Sample Digestion Using Microwave-ultraviolet Radiations: Phosphorus and Sulfur Determination in Animal Feed

Author(s): Diogo L. R. Novo, Priscila T. Scaglioni, Rodrigo M. Pereira, Filipe S. Rondan, Gilberto S. Coelho Junior and Marcia F. Mesko*

Volume 17, Issue 4, 2021

Published on: 30 September, 2020

Page: [512 - 520] Pages: 9

DOI: 10.2174/1573411016999200930115139

Price: $65

Abstract

Background: Conventional analytical methods for phosphorus and sulfur determination in several matrices present normally analytical challenges regarding inaccuracy, detectability and waste generation.

Objective: The main objective is proposing a green and feasible analytical method for phosphorus and sulfur determination in animal feed.

Methods: Synergic effect between microwave and ultraviolet radiations during sample preparation was evaluated for the first time for the animal feed digestion associated with further phosphorus and sulfur determination by ion chromatography with conductivity detection. Dissolved carbon and residual acidity in the final digests were used for the proposed method assessment. Phosphorus and sulfur values were compared with those obtained using conventional microwaveassisted wet digestion in closed vessels associated with inductively coupled plasma optical emission spectrometry and with those obtained using an official method (Association of Official Analytical Chemists International). Recovery tests and certified reference material analyses were performed. Animal feeds were analyzed using the proposed method.

Results: Sample masses of 500 mg were efficiently digested using only 2 mol L-1 HNO3. The results obtained by the proposed method were not differing significantly (p > 0.05) from those obtained by conventional and by official methods. Suitable recoveries (from 94 to 99%), agreement with certified values (101 and 104%), and suitable relative standard deviations (< 8%) were achieved. Phosphorus and sulfur content in commercial products varied in a wide range (P: 5,873 to 28,387 mg kg-1 and S: 2,165 to 4,501 mg kg-1).

Conclusion: The proposed method is a green, safe, accurate, precise and sensitive alternative for animal feed quality control.

Keywords: Microwave-assisted ultraviolet digestion, ion chromatography, phosphorus, sulfur, feed safety, minerals determination, quality control.

Graphical Abstract
[1]
McDowell, L.R. Calcium and Phosphorus.Minerals in animal and human nutrition; McDowell, L.R., Ed.; Elsevier: Amsterdam, 2003, pp. 33-100.
[http://dx.doi.org/10.1016/B978-0-444-51367-0.50005-2]
[2]
McDowell, L.R. Sulfur.Minerals in animal and human nutrition; McDowell, L.R., Ed.; Elsevier: Amsterdam, 2003, pp. 179-202.
[http://dx.doi.org/10.1016/B978-0-444-51367-0.50009-X]
[3]
Fernandez-Ibanez, V.; Fearn, T.; Soldado, A.; de la Roza-Delgado, B. Development and validation of near infrared microscopy spectral libraries of ingredients in animal feed as a first step to adopting traceability and authenticity as guarantors of food safety. Food Chem., 2010, 121, 871-877.
[http://dx.doi.org/10.1016/j.foodchem.2009.10.072]
[4]
Thongsrisomboon, P.; Liawruangrath, B.; Liawruangrath, S.; Satienperakul, S. Determination of nitrofurans residues in animal feeds by flow injection chemiluminescence procedure. Food Chem., 2010, 123, 834-839.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.018]
[5]
van der Fels-Klerx, H.J.; Adamse, P.; de Jong, J; Hoogenboom, R.; de Nijs, M.; Bikker, P. A model for risk-based monitoring of contaminants in feed ingredients. Food Control, 2017, 72(B), 211-218.
[http://dx.doi.org/10.1016/j.foodcont.2016.05.007]
[6]
Rebelo, L.R.; Luna, I.C.; Messana, J.D.; Araujo, R.C.; Simioni, T.A.; Granja-Salcedo, Y.T.; Vito, E.S.; Lee, C.; Teixeira, I.A.M.A.; Rooke, J.A.; Berchielli, T.T. Effect of replacing soybean meal with urea or encapsulated nitratewith or without elemental sulfur on nitrogen digestion andmethane emissions in feedlot cattle. Anim. Feed Sci. Technol., 2019, 257114293
[http://dx.doi.org/10.1016/j.anifeedsci.2019.114293]
[7]
Kandylis, K. The role of sulphur in ruminant nutrition. A review. Livest. Prod. Sci., 1984, 11, 611-624.
[http://dx.doi.org/10.1016/0301-6226(84)90075-7]
[8]
Hooser, S.B.; Van Alstine, W.; Kiupel, M.; Sojka, J. Acute pit gas (hydrogen sulfide) poisoning in confinement cattle. J. Vet. Diagn. Invest., 2000, 12(3), 272-275.
[http://dx.doi.org/10.1177/104063870001200315] [PMID: 10826845]
[9]
Paik, I. Application of phytase, microbial or plant origin, to reduce phosphorus excretion in poultry production. Asian-Austral. J. Anim. Sci., 2003, 16, 124-135.
[10]
Castrodeza, C.; Lara, P.; Pena, T. Multicriteria fractional model for feed formulation: Economic, nutritional and environmental criteria. Agric. Syst., 2005, 86, 76-96.
[http://dx.doi.org/10.1016/j.agsy.2004.08.004]
[11]
Pomar, C.; Dubeau, F.; Letourneau-Montminy, M.P.; Boucher, C.; Julien, P.O. Reducing phosphorus concentration in pig diets by adding an environmental objective to the traditional feed formulation algorithm. Livest. Sci., 2007, 111, 16-27.
[http://dx.doi.org/10.1016/j.livsci.2006.11.011]
[12]
Arredondo, M.A.; Casas, G.A.; Stein, H.H. Increasing levels of microbial phytase increases the digestibility of energy and minerals in diets fed to pigs. Anim. Feed Sci. Technol., 2019, 248, 27-36.
[http://dx.doi.org/10.1016/j.anifeedsci.2019.01.001]
[13]
Trairatapiwan, T.; Ruangpanit, Y.; Songserm, O.; Attamangkune, S. True ileial phosphorus digestibility of monocalcium phosphate, monodicalcium phosphate and dicalcium phosphate for broiler chickens. Anim. Feed Sci. Technol., 2018, 241, 1-7.
[14]
European Food Safety Authority (EFSA). Parma, IT. http://www. efsa.europa.eu (Accessed January 20, 2020)
[15]
National Research Council (NRC). Washington, DC. http://www. nationalacademies.org (Accessed January 20, 2020)
[16]
The Association of American Feed Control Officials (AAFCO) Champaign, IL.. http://www.aafco.org(Accessed January 20, 2020).
[17]
Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed; AOAC International: Gaithersburg, 2011.
[18]
Crizel, M.G.; Hartwig, C.A.; Novo, D.L.R.; Toralles, I.G.; Schmidt, L.; Muller, E.I.; Mesko, M.F. A new method for chlorine determination in commercial pet food after decomposition by microwave-induced combustion. Anal. Methods, 2015, 7, 4315-4320.
[http://dx.doi.org/10.1039/C5AY00649J]
[19]
Novo, D.L.R.; Pereira, R.M.; Costa, V.C.; Hartwig, C.A.; Mesko, M.F. A novel and eco-friendly analytical method for phosphorus and sulfur determination in animal feed. Food Chem., 2018, 246, 422-427.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.036] [PMID: 29291868]
[20]
Mello, J.E.; Novo, D.L.R.; Coelho, G.S. Junior; Scaglioni, P.T.; Mesko, M.F. A green analytical method for the multielemental determination of halogens and sulfur in pet food. Food Anal. Methods, 2020, 13, 131-139.
[http://dx.doi.org/10.1007/s12161-019-01549-w]
[21]
Brinch-Pedersen, H.; Hatzack, F. Analysis of phosphorus and phosphorylated compounds in the context of plant physiology and global phosphorus management: A review. Curr. Anal. Chem., 2006, 2(4), 421-430.
[http://dx.doi.org/10.2174/157341106778520517]
[22]
López-Ruiz, B. Advances in the determination of inorganic anions by ion chromatography. J. Chromatogr. A, 2000, 881(1-2), 607-627.
[http://dx.doi.org/10.1016/S0021-9673(00)00244-2] [PMID: 10905740]
[23]
Haddad, P.R.; Nesterenko, P.N.; Buchberger, W. Recent developments and emerging directions in ion chromatography. J. Chromatogr. A, 2008, 1184(1-2), 456-473.
[http://dx.doi.org/10.1016/j.chroma.2007.10.022] [PMID: 17964583]
[24]
Weiss, J. Handbook of Ion Chromatograph, 4th Ed; Wiley-VHC: Weinheim, 2016.
[http://dx.doi.org/10.1002/9783527651610]
[25]
Novic, M.; Dovzan, A.; Pihlar, B.; Hudnik, V. Determination of chlorine, sulphur and phosphorus in organic materials by ion chromatography using electrodialysis sample pretreatment. J. Chromatogr. A, 1995, 704, 530-534.
[http://dx.doi.org/10.1016/0021-9673(95)00105-V]
[26]
Kaiser, E.; Rohrer, J.S.; Jensen, D. Determination of trace anions in high-nitrate matrices by ion chromatography. J. Chromatogr. A, 2001, 920(1-2), 127-133.
[http://dx.doi.org/10.1016/S0021-9673(01)00699-9] [PMID: 11452990]
[27]
Kaiser, E.; Rohrer, J.S.; Watanabe, K. Determination of trace anions in concentrated weak acids by ion chromatography. J. Chromatogr. A, 1999, 850(1-2), 167-176.
[http://dx.doi.org/10.1016/S0021-9673(99)00390-8] [PMID: 10457478]
[28]
Slingsby, R.; Kiser, R. Sample treatment techniques and methodologies for ion chromatography. TrAC- Trend. Anal. Chem., 2001, 20, 288-295.
[29]
Pereira, R.M.; Crizel, M.G.; Novo, D.L.R.; dos Santos, C.M.M.; Mesko, M.F. Multitechnique determination of metals and non-metals in sports supplements after microwave-assisted digestion using diluted acid. Microchem. J., 2019, 145, 235-241.
[http://dx.doi.org/10.1016/j.microc.2018.10.043]
[30]
Ai, S.; Xu, Q. Separation of inorganic anions and cations by high-speed ion chromatography. Curr. Anal. Chem., 2006, 2(4), 389-396.
[http://dx.doi.org/10.2174/157341106778520481]
[31]
da Costa, S.S.; Pereira, A.C.L.; Passos, E.A. Alves, Jdo.P.; Garcia, C.A.B.; Araujo, R.G.O. Multivariate optimization of an analytical method for the analysis of dog and cat foods by ICP OES. Talanta, 2013, 108, 157-164.
[http://dx.doi.org/10.1016/j.talanta.2013.03.002] [PMID: 23601884]
[32]
Florian, D.; Knapp, G. High-temperature, microwave-assisted UV digestion: a promising sample preparation technique for trace element analysis. Anal. Chem., 2001, 73(7), 1515-1520.
[http://dx.doi.org/10.1021/ac001180y] [PMID: 11321303]
[33]
Pereira, J.S.F.; Picoloto, R.S.; Pereira, L.S.F.; Guimarães, R.C.L.; Guarnieri, R.A.; Flores, E.M.M. High-efficiency microwave-assisted digestion combined to in situ ultraviolet radiation for the determination of rare earth elements by ultrasonic nebulization ICPMS in crude oils. Anal. Chem., 2013, 85(22), 11034-11040.
[http://dx.doi.org/10.1021/ac402928u] [PMID: 24134679]
[34]
Mesko, M.F.; Picoloto, R.S.; Ferreira, L.R.; Costa, V.C.; Pereira, C.M.P.; Colepicolo, P.; Muller, E.I.; Flores, E.M.M. Ultraviolet radiation combined with microwave-assisted wet digestion of Antarctic seaweeds for further determination of toxic elements by ICP-MS. J. Anal. At. Spectrom., 2015, 30, 260-266.
[http://dx.doi.org/10.1039/C4JA00264D]
[35]
Oliveira, J.S.S.; Picoloto, R.S.; Bizzi, C.A.; Mello, P.A.; Barin, J.S.; Flores, E.M.M. Microwave-assisted ultraviolet digestion of petroleum coke for the simultaneous determination of nickel, vanadium and sulfur by ICP-OES. Talanta, 2015, 144, 1052-1058.
[http://dx.doi.org/10.1016/j.talanta.2015.07.060] [PMID: 26452926]
[36]
Hartwig, C.A.; Pereira, R.M.; Rondan, F.S.; Cruz, S.M.; Duarte, F.A.; Flores, E.M.M.; Mesko, M.F. The synergic effect of microwave and ultraviolet radiation for chocolate digestion and further determination of As, Cd, Ni and Pb by ICP-MS. J. Anal. At. Spectrom., 2016, 31, 523-530.
[http://dx.doi.org/10.1039/C5JA00388A]
[37]
Mesko, M.F.; Crizel, M.G.; Novo, D.L.R.; Hartwig, C.A.; Rondan, F.S.; Bizzi, C.A. New and feasible method for total phosphorus and sulfur determination in dietary supplements by ion chromatography. Arab. J. Chem., 2020, 13, 2076-2083.
[http://dx.doi.org/10.1016/j.arabjc.2018.03.006]
[38]
Magnusson, B.; Örnemark, U. Eurachem Guide: The fitness for purpose of analytical methods - a laboratory guide to method validation and related topics. (ISBN 978-91-87461-59-0) 2014. https://www.eurachem.org (Accessed January 20, 2020)
[39]
Bizzi, C.A.; Nobrega, J.A.; Barin, J.S. Diluted acids in microwave-assisted wet digestion.Microwave-assisted sample preparation for trace element analysis; Flores, E.M.M., Ed.; Elsevier: Amsterdam, 2014, pp. 179-204.
[http://dx.doi.org/10.1016/B978-0-444-59420-4.00006-4]
[40]
Muller, E.I.; Mesko, M.F.; Moraes, D.P.; Korn, M.G.A.; Flores, E.M.M. Wet digestion using microwave heating. Microwave-assisted sample preparation for trace element analysis; Flores, E.M.M., Ed.; Elsevier: Amsterdam, 2014, pp. 99-142.
[http://dx.doi.org/10.1016/B978-0-444-59420-4.00004-0]
[41]
Yayayürük, A.E.; Yayayürük, O. Applications of green chemistry approaches in environmental analysis. Curr. Anal. Chem., 2019, 15(7), 745-758.
[42]
Bollinger, D.W.; Tsunoda, A.; Ledoux, D.R.; Ellersieck, M.R.; Veum, T.L. A comparison of the test tube and the dialysis tubing in vitro methods for estimating the bioavailability of phosphorus in feed ingredients for swine. J. Agric. Food Chem., 2005, 53(9), 3287-3294.
[http://dx.doi.org/10.1021/jf0483366] [PMID: 15853361]
[43]
Kul, O.; Karahan, S.; Basalan, M.; Kabakci, N. Polioencephalomalacia in cattle: A consequence of prolonged feeding barley malt sprouts. J. Vet. Med. A Physiol. Pathol. Clin. Med., 2006, 53(3), 123-128.
[http://dx.doi.org/10.1111/j.1439-0442.2006.00808.x] [PMID: 16533327]
[44]
McKenzie, R.A.; Carmichael, A.M.; Schibrowski, M.L.; Duigan, S.A.; Gibson, J.A.; Taylor, J.D. Sulfur-associated polioencephalomalacia in cattle grazing plants in the Family Brassicaceae. Aust. Vet. J., 2009, 87(1), 27-32.
[http://dx.doi.org/10.1111/j.1751-0813.2008.00387.x] [PMID: 19178473]
[45]
Sant’Ana, F.J.F.; Barros, C.S.L. Polioencephalomalacia in ruminants in Brazil. Braz. J. Vet. Pathol., 2010, 3, 70-79.
[46]
Bozic, M.; Panizo, S.; Sevilla, M.A.; Riera, M.; Soler, M.J.; Pascual, J.; Lopez, I.; Freixenet, M.; Fernandez, E.; Valdivielso, J.M. High phosphate diet increases arterial blood pressure via a parathyroid hormone mediated increase of renin. J. Hypertens., 2014, 32(9), 1822-1832.
[http://dx.doi.org/10.1097/HJH.0000000000000261] [PMID: 24979301]
[47]
Sung, J.Y.; Kim, B.G. Prediction models for apparent and stardandized total tract digestible phosphorus in swine diets. Anim. Feed Sci. Technol., 2019, 255114224
[http://dx.doi.org/10.1016/j.anifeedsci.2019.114224]
[48]
van Zijderveld, S.M.; Gerrits, W.J.; Apajalahti, J.A.; Newbold, J.R.; Dijkstra, J.; Leng, R.A.; Perdok, H.B. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci., 2010, 93(12), 5856-5866.
[http://dx.doi.org/10.3168/jds.2010-3281] [PMID: 21094759]
[49]
Teklebrhan, T.; Wang, R.; Wang, M.; Wen, J.N.; Tan, L.W.; Zhang, X.M.; Ma, Z.Y.; Tan, Z.L. Effect of dietary corn gluten inclusion on rumen fermentation, microbiota and methane emissions in goats. Anim. Feed Sci. Technol., 2020, 259114314
[http://dx.doi.org/10.1016/j.anifeedsci.2019.114314]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy