Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Identification and Expression Analysis of CD73 Inhibitors in Cervical Cancer

Author(s): Jamshed Iqbal*, Ayesha Basharat, Sehrish Bano, Syed Mobasher Ali Abid, Julie Pelletier and Jean Sévigny

Volume 17, Issue 8, 2021

Published on: 25 September, 2020

Page: [866 - 874] Pages: 9

DOI: 10.2174/1573406416666200925141703

Price: $65

Abstract

Aims: The present study was conducted to examine the inhibitory effects of synthesized sulfonylhydrazones on the expression of CD73 (ecto-5′-NT).

Background: CD73 (ecto-5′-NT) represents the most significant class of ecto-nucleotidases, which are mainly responsible for the dephosphorylation of adenosine monophosphate to adenosine. Inhibition of CD73 played an important role in the treatment of cancer, autoimmune disorders, precancerous syndromes, and some other diseases associated with CD73 activity.

Objective: Keeping in view the significance of CD73 inhibitor in the treatment of cervical cancer, a series of sulfonylhydrazones (3a-3i) derivatives synthesized from 3-formylchromones were evaluated.

Methods: All sulfonylhydrazones (3a-3i) were evaluated for their inhibitory activity towards CD73 (ecto-5′-NT) by the malachite green assay and their cytotoxic effect was investigated on the HeLa cell line using MTT assay. Secondly, the most potent compound was selected for cell apoptosis, immunofluorescence staining, and cell cycle analysis. After that, CD73 mRNA and protein expression were analyzed by real-time PCR and Western blot.

Results: Among all compounds, 3h, 3e, 3b, and 3c were found to be the most active against rat-ecto- 5′-NT (CD73) enzyme with IC50 (μM) values of 0.70 ± 0.06 μM, 0.87 ± 0.05 μM, 0.39 ± 0.02 μM, and 0.33 ± 0.03 μM, respectively. These derivatives were further evaluated for their cytotoxic potential against cancer cell line (HeLa). Compounds 3h and 3c showed the cytotoxicity at IC50 value of 30.20 ± 3.11 μM and 86.02 ± 7.11 μM, respectively. Furthermore, compound 3h was selected for cell apoptosis, immunofluorescence staining, and cell cycle analysis, which showed a promising apoptotic effect in HeLa cells. Additionally, compound 3h was further investigated for its effect on the expression of CD73 using qRT-PCR and western blot.

Conclusion: Among all synthesized compounds (3a-3i), Compound 3h (E)-N'-((6-ethyl-4-oxo-4Hchromen- 3-yl) methylene)-4-methylbenzenesulfonohydrazide was identified as the most potent compound. Additional expression studies conducted on the HeLa cell line proved that this compound successfully decreased the expression level of CD73 and thus, inhibited the growth and proliferation of cancer cells.

Keywords: Ecto-5′-NT/CD73, sulphonylhydrazones, malachite green, cytotoxic studies, cell apoptosis, RT-PCR, western blot.

Graphical Abstract

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy