Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

An Efficient, Green, Microwave-assisted Synthesis of Benzo[a]furo[2, 3-c]phenazine Derivatives with TiO2-SO3H as Cost-effective and Recyclable Catalyst under Solventfree Conditions

Author(s): Milad Taheri, Razieh Mohebat* and Mohammad Hossein Moslemin

Volume 18, Issue 3, 2021

Published on: 24 September, 2020

Page: [301 - 309] Pages: 9

DOI: 10.2174/1570179417666200924145534

Price: $65

Abstract

Background: A rapid, efficient, and environmentally benign procedure for the synthesis of novel furo [2,3-c]phenazine derivatives has been developed via reactions of 2-hydroxynaphthalene-1,4-dione, arylglyoxals, and indole in the presence of TiO2-SO3H-catalyst (TSAC) as a recyclable heterogeneous catalyst under solventfree conditions using microwave irradiation.

Introduction: This study describes a successful approach for the synthesis of 2-(4-bromophenyl)-1-(1H-indol-3- yl) benzo[a]furo[2,3-c] phenazine in the presence of TiO2-SO3H-catalyst using microwave irradiation.

Objectives: In this paper, we report an efficient and convenient method for the synthesis of phenazine derivatives from benzo[a]phenazin-5-ol, arylglyoxal derivatives, and indoles in the presence of TiO2-SO3H-catalyst under microwave irradiation.

Materials and Methods: All reagents and solvents were purchased from Merck and Aldrich and used without further purification. 1H NMR spectra (DMSO) were recorded on the Gemini-500 MHz spectrophotometer with TMS as an internal standard.

Results and Discussion: To investigate the reaction conditions for the synthesis of 2-(4-bromophenyl)-1-(1Hindol- 3-yl) benzo[a]furo [2, 3-c] phenazine derivatives, we performed a reaction between 2-hydroxynaphthalene- 1,4-dione (1 mmol) and aromatic 1,2-diamines (1 mmol) as a model.

Conclusion: We demonstrated a green and straightforward procedure for the efficient synthesis of novel benzo[ a]furo[2, 3-c] phenazine derivatives in high yields via a one-pot, four-component domino protocol by using TiO2-SO3H as a mild, effective, non-toxic, and inexpensive solid acid catalyst without the addition of an organic co-solvent.

Keywords: Multi-component, benzo[a]furo[2, 3-c]phenazine derivatives, solvent-free, microwave irradiation, TiO2-SO3H-catalyst, aromatic 1, 2-diamines.

Graphical Abstract
[1]
Chen, W.S.; Juan, C.N.; Wei, K.M. Mineralization of dinitrotoluenes and trinitrotoluene of spent acid in toluene nitration process by Fenton oxidation. Chemosphere, 2005, 60(8), 1072-1079.
[http://dx.doi.org/10.1016/j.chemosphere.2005.01.021] [PMID: 15993154]
[2]
Low, G.K.C.; Mcevoy, S.R.; Matthews, R.W. Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms. Environ. Sci. Technol., 1991, 25, 460.
[http://dx.doi.org/10.1021/es00015a013]
[3]
Kumar, S.; Davis, A.P. Heterogeneous photocatalytic oxidation of nitrotoluenes. Water Environ. Res., 1997, 69, 1238.
[http://dx.doi.org/10.2175/106143097X125993]
[4]
Li, L.; Wu, Q.Y.; Guo, Y.H.; Hu, C.W. Nanosize and bimodal porous polyoxotungstate–anatase TiO2 composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation. Microporous Mesoporous Mater., 2005, 87, 1.
[http://dx.doi.org/10.1016/j.micromeso.2005.07.035]
[5]
Li, L.; Li, Y.J.; Ma, Y.; Guo, Y.H. Preparation and photocatalytic behaviors of nanoporous polyoxotungstate-anatase tio2 composites. J. Rare Earths, 2007, 25, 68.
[http://dx.doi.org/10.1016/S1002-0721(07)60047-7]
[6]
Zhang, L.; Huang, T.; Guo, X.J.; Liu, X.Y. Gold nanoparticles in chemical and biological sensing. Chem. Res. Chin. Univ., 2010, 26, 1020.
[7]
Feng, C.G.; Shang, H.R. Hydrothermal synthesis of H3PW12O40/TiO2 nanometer photocatalyst and its catalytic performance for methyl orange. Chem. Res. Chin. Univ., 2012, 28, 366.
[8]
Wang, Y.J.; Lu, K.C.; Feng, C.G. Photocatalytic degradation of methyl orange by polyoxometalates supported on yttrium-doped TiO2. J. Rare Earths, 2011, 29, 866.
[http://dx.doi.org/10.1016/S1002-0721(10)60557-1]
[9]
Feng, C.G.; Li, Y.Z.; Liu, X. Photocatalytic degradation of imidacloprid by phosphotungstic acid supported on a mesoporous sieve MCM‐41. Chin. J. Chem., 2012, 30, 127.
[http://dx.doi.org/10.1002/cjoc.201180453]
[10]
Feng, C.G.; Xu, G.; Liu, X. Photocatalytic degradation of imidacloprid by composite catalysts H3PW12O40/La-TiO2. J. Rare Earths, 2013, 31, 44.
[http://dx.doi.org/10.1016/S1002-0721(12)60232-4]
[11]
Zhao, X.Q.; Han, Y.T.; Sun, X.L.; Wang, Y.J. Structure and catalytic performance of H3PW12O40/SIO2 prepared by several methods. Chin. J. Catal., 2007, 28, 91.
[http://dx.doi.org/10.1016/S1872-2067(07)60011-4]
[12]
Mishra, B.G.; Kumar, D.; Rao, V.S. H3PW12O40 catalyzed expeditious synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Catal. Commun., 2006, 7, 457.
[http://dx.doi.org/10.1016/j.catcom.2006.01.002]
[13]
Jermy, B.R.; Pandurangan, A. Efficient synthesis of diacetal of pentaerythritol under microwave irradiation using heteropoly acid H3PW12O40. Catal. Commun., 2006, 7, 921.
[http://dx.doi.org/10.1016/j.catcom.2006.03.021]
[14]
Li, L.; Guo, Y.H.; Zhou, P.; Yu, X.D.; Kang, W.L. Preparation of Y-H3PW12O40/TiO2 and La-H3PW12O40/TiO2 by hydrothermal method and its photocatalytic activity for dinitrotoluene decomposition. Chin. J. Catal., 2005, 26, 209.
[15]
Perchet, G.; Merlina, G.; Revel, J.C.; Hafidi, M.; Richard, C.; Pinelli, E. Evaluation of a TiO2 photocatalysis treatment on nitrophenols and nitramines contaminated plant wastewaters by solid-phase extraction coupled with ESI HPLC-MS. J. Hazard. Mater., 2009, 166(1), 284-290.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.013] [PMID: 19111394]
[16]
Son, H.S.; Lee, S.J.; Cho, I.H.; Zoh, K.D. Kinetics and mechanism of TNT degradation in TiO2 photocatalysis. Chemosphere, 2004, 57(4), 309-317.
[http://dx.doi.org/10.1016/j.chemosphere.2004.05.008] [PMID: 15312729]
[17]
Cropek, D.; Kemme, P.A.; Makarova, O.V.; Chen, L.X.; Rajh, T. Water simulation model with explicit three-molecule interactions. J. Phys. Chem., 2008, 112, 8311.
[http://dx.doi.org/10.1021/jp8009468]
[18]
Goswami, P.; Ganguli, J.N. Synthesis, characterization and photocatalytic reactions of phosphated mesoporous titania. Bull. Mater. Sci., 2012, 35, 889.
[http://dx.doi.org/10.1007/s12034-012-0364-9]
[19]
Xiang, Q.J.; Lv, K.L.; Yu, J.G. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1) facets for the photocatalytic degradation of acetone in air. Appl. Catal. B, 2010, 96, 557.
[http://dx.doi.org/10.1016/j.apcatb.2010.03.020]
[20]
Liu, S.W.; Yu, J.G.J. Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers. Solid State Chem., 2008, 181, 1048.
[http://dx.doi.org/10.1016/j.jssc.2008.01.049]
[21]
Li, Z.; Gao, B.; Chen, G.Z.; Mokaya, R.; Sotiropoulos, S.; Puma, G.L. Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl. Catal. B, 2011, 110, 50.
[http://dx.doi.org/10.1016/j.apcatb.2011.08.023]
[22]
Lv, K.L.; Yu, J.G.; Cui, L.Z.; Chen, S.L.; Li, M. Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity. J. Alloys Compd., 2011, 509, 4557.
[http://dx.doi.org/10.1016/j.jallcom.2011.01.103]
[23]
Deltcheff, C.R.; Fournier, M.; Franck, R.; Thouvenot, R. Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg. Chem., 1983, 22, 207.
[http://dx.doi.org/10.1021/ic00144a006]
[24]
Fan, C.M.; Xue, P.; Sun, Y.P. Preparation of nano-tio2 doped with cerium and its photocatalytic activity. J. Rare Earths, 2006, 24, 309.
[http://dx.doi.org/10.1016/S1002-0721(06)60115-4]
[25]
Choi, W.Y.; Termin, A.; Hoffmann, M.R. The role of metal ion dopants in quantum-sized tio2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98, 13669.
[http://dx.doi.org/10.1021/j100102a038]
[26]
O’Sullivan, D.W.; Denzel, J.R.; Prak, D.J.L. Photolysis of 2,4-dinitrotoluene and 2,6-dinitrotoluene in seawater. Aquat. Geochem., 2010, 16, 491.
[http://dx.doi.org/10.1007/s10498-010-9089-9]
[27]
Cai, H.S.; Liu, G.G.; Lv, W.Y.; Li, X.X.; Yu, L.; Li, D.G. Effect of Ho-doping on photocatalytic activity of nanosized TiO2 catalyst. J. Rare Earths, 2008, 26, 71.
[http://dx.doi.org/10.1016/S1002-0721(08)60040-X]
[28]
Dam, B.; Saha, M.; Jamatia, R.; Pal, A.K. Nano-ferrite supported glutathione as a reusable nano-organocatalyst for the synthesis of phthalazine-trione and dione derivatives under solvent-free conditions. RSC Advances, 2016, 6, 54768-54776.
[http://dx.doi.org/10.1039/C6RA06376D]
[29]
Davod, F.; Kiasat, A.R.; Enjilzadeh, M.; Cheraghchi, M. One-pot synthesis of 14-aryl-14 h-dibenzo[a,j]xanthene derivatives catalyzed by nano-alumina sulfuric acid through solvent-free conditions. Lett. Org. Chem., 2016, 13, 58-66.
[http://dx.doi.org/10.2174/1570178612666151026235326]
[30]
Nikoorazm, M.; Ghorbani-Choghamarani, A.; Khanmoradi, M. Synthesis and characterization of Ni(ii)–Vanillin–Schiff base–MCM-41 composite as an efficient and reusable nanocatalyst for multicomponent reactions. RSC Advances, 2016, 6, 56549-56561.
[http://dx.doi.org/10.1039/C6RA09371J]
[31]
Vekariya, R.H.; Prajapati, N.P.; Patel, H.D. Silica-supported polyphosphoric acid (PPA-SiO2): An efficient and reusable heterogeneous catalyst for ecofriendly organic synthesis. Synth. Commun., 2016, 46, 197-219.
[http://dx.doi.org/10.1080/00397911.2015.1114633]]
[32]
Zhang, H.; Deng, J.; Wu, Y. Biobased magnetic microspheres containing aldehyde groups: Constructed by vanillin-derived polymethacrylate/Fe3O4 and recycled in adsorbing amine. Sustain. A.C.S. Chem. Eng., 2017, 5, 658-666.
[33]
Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res., 2013, 46(8), 1825-1837.
[http://dx.doi.org/10.1021/ar300197s] [PMID: 23350747]
[34]
Davod, F.; Kiasat, A.R.; Enjilzadeh, M.; Cheraghchi, M. One-pot synthesis of 14-aryl-14 h-dibenzo[a,j]xanthene derivatives catalyzed by nano-alumina sulfuric acid through solvent-free conditions. Lett. Org. Chem., 2016, 13, 58.
[http://dx.doi.org/10.2174/1570178612666151026235326]
[35]
Mohebat, R.; Yazdani, A.; Maghsoodlou, M.T.; Mohammadi, M. PTSAcatalyzed four-component domino reactions for the one-pot synthesis of functionalized 11H-benzo[a]benzo[6,7]chromeno[2,3-c]phenazine- 11,16(17H)-diones in PEG. Res. Chem. Intermed., 2016, 42, 2413..

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy