Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Different Aspects of Head and Neck Squamous Cell Carcinoma: Cancer Stem Cells, their Niche and Targeted Therapy

Author(s): Meriç Bilgiç Küçükgüven and Betül Çelebi-Saltik*

Volume 16, Issue 3, 2021

Published on: 21 September, 2020

Page: [286 - 306] Pages: 21

DOI: 10.2174/1574888X15666200921163326

Price: $65

Abstract

Head and Neck Squamous Cell Carcinoma (HNSCC) is categorized as the sixth most common cancer worldwide, with an incidence of more than 830,000 cases per year and a mortality rate of 50%. Tobacco use, alcohol consumption, and Human Papillomavirus infection are the prominent risks for HNSCC. Despite significant developments in the treatment of HNSCC, a high rate of recurrences makes the clinical situation worse and results in poor survival rates. Recent perspectives demonstrate that although epithelial transformation plays a crucial role in cancer development, tumor surrounding microenvironment takes part in the progression of cancer as well. Cancer Stem Cells (CSCs), which harbor unlimited self-renewal capacity, have a crucial role in the growth of HNSCC and this cell population is responsible for tumor recurrence unless eliminated by targeted therapy. CSCs are not only a promising target for tumor therapy but also a crucial biomarker to determine the patients at high risk for undetermined results and disease development, just as the bone marrow, which is the niche of hematopoietic and mesenchymal stem cells, is important for stem cell maintenance. Similarly, the concept of microenvironment is also important for the maintenance of CSCs. Apart from the cell-cell interactions, there are many parameters in the cancer microenvironment that affect the development of cancer, such as extracellular regulation, vascularization, microbial flora, pH, and oxygenation. The purpose of this review is to introduce HNSCC, explain the role of CSCs and their microenvironment, and refer to the conventional and novel targeted therapy for HNSCC and CSCs.

Keywords: Cancer stem cells, head and neck squamous cell carcinoma, biomarker, saliva, niche, liquid biopsy.

[1]
Nonaka T, Wong DTW. Liquid biopsy in head and neck cancer: Promises and challenges. J Dent Res 2018; 97(6): 701-8.
[http://dx.doi.org/10.1177/0022034518762071] [PMID: 29513618]
[2]
Cramer JD, Burtness B, Le QT, Ferris RL. The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol 2019; 16(11): 669-83.
[http://dx.doi.org/10.1038/s41571-019-0227-z] [PMID: 31189965]
[3]
Wyss A, Hashibe M, Chuang SC, et al. Cigarette, cigar, and pipe smoking and the risk of head and neck cancers: Pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Am J Epidemiol 2013; 178(5): 679-90.
[http://dx.doi.org/10.1093/aje/kwt029] [PMID: 23817919]
[4]
Maier H, Dietz A, Gewelke U, Heller WD, Weidauer H. Tobacco and alcohol and the risk of head and neck cancer. Clin Investig 1992; 70(3-4): 320-7.
[http://dx.doi.org/10.1007/BF00184668] [PMID: 1521046]
[5]
Chow LQM. Head and Neck Cancer. N Engl J Med 2020; 382(1): 60-72.
[http://dx.doi.org/10.1056/NEJMra1715715] [PMID: 31893516]
[6]
Rettig EM, D’Souza G. Epidemiology of head and neck cancer. Surg Oncol Clin N Am 2015; 24(3): 379-96.
[http://dx.doi.org/10.1016/j.soc.2015.03.001] [PMID: 25979389]
[7]
Simard EP, Torre LA, Jemal A. International trends in head and neck cancer incidence rates: Differences by country, sex and anatomic site. Oral Oncol 2014; 50(5): 387-403.
[http://dx.doi.org/10.1016/j.oraloncology.2014.01.016] [PMID: 24530208]
[8]
Thun M, Peto R, Boreham J, Lopez AD. Stages of the cigarette epidemic on entering its second century. Tob Control 2012; 21(2): 96-101.
[http://dx.doi.org/10.1136/tobaccocontrol-2011-050294] [PMID: 22345230]
[9]
Hwang E, Johnson-Obaseki S, McDonald JT, Connell C, Corsten M. Incidence of head and neck cancer and socioeconomic status in Canada from 1992 to 2007. Oral Oncol 2013; 49(11): 1072-6.
[http://dx.doi.org/10.1016/j.oraloncology.2013.08.002] [PMID: 24018186]
[10]
Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011; 29(32): 4294-301.
[http://dx.doi.org/10.1200/JCO.2011.36.4596] [PMID: 21969503]
[11]
Adoga AA, Silas OA, Nimkur TL. Open cervical lymph node biopsy for head and neck cancers: Any benefit? Head Neck Oncol 2009; 1: 9.
[http://dx.doi.org/10.1186/1758-3284-1-9] [PMID: 19402902]
[12]
Chinn SB, Myers JN. Oral cavity carcinoma: Current management, controversies, and future directions. J Clin Oncol 2015; 33(29): 3269-76.
[http://dx.doi.org/10.1200/JCO.2015.61.2929] [PMID: 26351335]
[13]
Haughey BH, Hinni ML, Salassa JR, et al. Transoral laser microsurgery as primary treatment for advanced-stage oropharyngeal cancer: A United States multicenter study. Head Neck 2011; 33(12): 1683-94.
[http://dx.doi.org/10.1002/hed.21669] [PMID: 21284056]
[14]
Bossi P, Resteghini C, Paielli N, Licitra L, Pilotti S, Perrone F. Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma. Oncotarget 2016; 7(45): 74362-79.
[http://dx.doi.org/10.18632/oncotarget.11413] [PMID: 27556186]
[15]
Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015; 517(7536): 576-82.
[http://dx.doi.org/10.1038/nature14129] [PMID: 25631445]
[16]
Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333(6046): 1157-60.
[http://dx.doi.org/10.1126/science.1208130] [PMID: 21798893]
[17]
Soulières D, Faivre S, Mesía R, et al. Buparlisib and paclitaxel in patients with platinum-pretreated recurrent or metastatic squamous cell carcinoma of the head and neck (BERIL-1): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol 2017; 18(3): 323-35.
[http://dx.doi.org/10.1016/S1470-2045(17)30064-5] [PMID: 28131786]
[18]
Michel L, Ley J, Wildes TM, et al. Phase I trial of palbociclib, a selective cyclin dependent kinase 4/6 inhibitor, in combination with cetuximab in patients with recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol 2016; 58: 41-8.
[http://dx.doi.org/10.1016/j.oraloncology.2016.05.011] [PMID: 27311401]
[19]
Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med 2002; 8(8): 793-800.
[http://dx.doi.org/10.1038/nm730] [PMID: 12091876]
[20]
Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin Cancer Res 2018; 24(4): 896-905.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2664] [PMID: 29233903]
[21]
Cohen EEW, Soulières D, Le Tourneau C, et al. KEYNOTE-040 investigators. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): A randomised, open-label, phase 3 study. Lancet 2019; 393(10167): 156-67.
[http://dx.doi.org/10.1016/S0140-6736(18)31999-8] [PMID: 30509740]
[22]
Wessler S, Aberger F, Hartmann TN. The sound of tumor cell-microenvironment communication - composed by the Cancer Cluster Salzburg research network. Cell Commun Signal 2017; 15(1): 20.
[http://dx.doi.org/10.1186/s12964-017-0176-z] [PMID: 28577565]
[23]
Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 2017; 14(9): 531-48.
[http://dx.doi.org/10.1038/nrclinonc.2017.14] [PMID: 28252003]
[24]
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56(11): 1733-41.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[25]
Tiwari M. Science behind human saliva. J Nat Sci Biol Med 2011; 2(1): 53-8.
[http://dx.doi.org/10.4103/0976-9668.82322] [PMID: 22470235]
[26]
Liu J, Duan Y. Saliva: A potential media for disease diagnostics and monitoring. Oral Oncol 2012; 48(7): 569-77.
[http://dx.doi.org/10.1016/j.oraloncology.2012.01.021] [PMID: 22349278]
[27]
Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DT. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin Microbiol Rev 2013; 26(4): 781-91.
[http://dx.doi.org/10.1128/CMR.00021-13] [PMID: 24092855]
[28]
Al Kawas S, Rahim ZH, Ferguson DB. Potential uses of human salivary protein and peptide analysis in the diagnosis of disease. Arch Oral Biol 2012; 57(1): 1-9.
[http://dx.doi.org/10.1016/j.archoralbio.2011.06.013] [PMID: 21774913]
[29]
Amado FM, Ferreira RP, Vitorino R. One decade of salivary proteomics: Current approaches and outstanding challenges. Clin Biochem 2013; 46(6): 506-17.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.10.024] [PMID: 23103441]
[30]
Arantes LMRB, De Carvalho AC, Melendez ME, Lopes Carvalho A. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn 2018; 18(1): 85-112.
[http://dx.doi.org/10.1080/14737159.2017.1404906] [PMID: 29134827]
[31]
Aguilar-Gallardo C, Simón C. Cells, stem cells, and cancer stem cells. Semin Reprod Med 2013; 31(1): 5-13.
[http://dx.doi.org/10.1055/s-0032-1331792] [PMID: 23329631]
[32]
Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 2014; 13(7): 497-512.
[http://dx.doi.org/10.1038/nrd4253] [PMID: 24981363]
[33]
Brooks MD, Burness ML, Wicha MS. Therapeutic implications of cellular heterogeneity and plasticity in breast cancer. Cell Stem Cell 2015; 17(3): 260-71.
[http://dx.doi.org/10.1016/j.stem.2015.08.014] [PMID: 26340526]
[34]
Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66(19): 9339-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3126] [PMID: 16990346]
[35]
Chen ZG. The cancer stem cell concept in progression of head and neck cancer. J Oncol 2009; 2009: 894064.
[http://dx.doi.org/10.1155/2009/894064] [PMID: 20052382]
[36]
Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006; 355(12): 1253-61.
[http://dx.doi.org/10.1056/NEJMra061808] [PMID: 16990388]
[37]
Major AG, Pitty LP, Farah CS. Cancer stem cell markers in head and neck squamous cell carcinoma. Stem Cells Int 2013; 2013: 319489.
[http://dx.doi.org/10.1155/2013/319489] [PMID: 23533441]
[38]
Reid PA, Wilson P, Li Y, Marcu LG, Bezak E. Current understanding of cancer stem cells: Review of their radiobiology and role in head and neck cancers. Head Neck 2017; 39(9): 1920-32.
[http://dx.doi.org/10.1002/hed.24848] [PMID: 28644558]
[39]
Peitzsch C, Kurth I, Ebert N, Dubrovska A, Baumann M. Cancer stem cells in radiation response: Current views and future perspectives in radiation oncology. Int J Radiat Biol 2019; 95(7): 900-11.
[http://dx.doi.org/10.1080/09553002.2019.1589023] [PMID: 30897014]
[40]
Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104(3): 973-8.
[http://dx.doi.org/10.1073/pnas.0610117104] [PMID: 17210912]
[41]
Wei XD, Zhou L, Cheng L, Tian J, Jiang JJ, Maccallum J. In vivo investigation of CD133 as a putative marker of cancer stem cells in Hep-2 cell line. Head Neck 2009; 31(1): 94-101.
[http://dx.doi.org/10.1002/hed.20935] [PMID: 18853445]
[42]
Martens-de Kemp SR, Brink A, Stigter-van Walsum M, et al. CD98 marks a subpopulation of head and neck squamous cell carcinoma cells with stem cell properties. Stem Cell Res (Amst) 2013; 10(3): 477-88.
[http://dx.doi.org/10.1016/j.scr.2013.02.004] [PMID: 23523931]
[43]
Fukusumi T, Ishii H, Konno M, et al. CD10 as a novel marker of therapeutic resistance and cancer stem cells in head and neck squamous cell carcinoma. Br J Cancer 2014; 111(3): 506-14.
[http://dx.doi.org/10.1038/bjc.2014.289] [PMID: 24874475]
[44]
Song J, Chang I, Chen Z, Kang M, Wang CY. Characterization of side populations in HNSCC: Highly invasive, chemoresistant and abnormal Wnt signaling. PLoS One 2010; 5(7): e11456.
[http://dx.doi.org/10.1371/journal.pone.0011456] [PMID: 20625515]
[45]
Chen YC, Chen YW, Hsu HS, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 2009; 385(3): 307-13.
[http://dx.doi.org/10.1016/j.bbrc.2009.05.048] [PMID: 19450560]
[46]
Lagadec C, Vlashi E, Bhuta S, et al. Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients. BMC Cancer 2014; 14: 152.
[http://dx.doi.org/10.1186/1471-2407-14-152] [PMID: 24593279]
[47]
Linge A, Löck S, Gudziol V, et al. DKTK-ROG. Low cancer stem cell marker expression and low hypoxia identify good prognosis subgroups in HPV(-) HNSCC after postoperative radiochemotherapy: A multicenter study of the DKTK-ROG. Clin Cancer Res 2016; 22(11): 2639-49.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1990] [PMID: 26755529]
[48]
Moreb JS, Ucar-Bilyeu DA, Khan A. Use of retinoic acid/aldehyde dehydrogenase pathway as potential targeted therapy against cancer stem cells. Cancer Chemother Pharmacol 2017; 79(2): 295-301.
[http://dx.doi.org/10.1007/s00280-016-3213-5] [PMID: 27942929]
[49]
Keysar SB, Le PN, Miller B, et al. Regulation of head and neck squamous cancer stem cells by PI3K and SOX2. J Natl Cancer Inst 2016; 109(1)
[http://dx.doi.org/10.1093/jnci/djw189] [PMID: 27634934]
[50]
Kim WT, Ryu CJ. Cancer stem cell surface markers on normal stem cells. BMB Rep 2017; 50(6): 285-98.
[http://dx.doi.org/10.5483/BMBRep.2017.50.6.039] [PMID: 28270302]
[51]
Kim HS, Pearson AT, Nör JE. Isolation and characterization of cancer stem cells from primary head and neck squamous cell carcinoma tumors. Methods Mol Biol 2016; 1395: 241-9.
[http://dx.doi.org/10.1007/978-1-4939-3347-1_14] [PMID: 26910078]
[52]
Krishnamurthy S, Nör JE. Orosphere assay: A method for propagation of head and neck cancer stem cells. Head Neck 2013; 35(7): 1015-21.
[http://dx.doi.org/10.1002/hed.23076] [PMID: 22791367]
[53]
Bahmad HF, Cheaito K, Chalhoub RM, et al. Sphere-formation assay: Three-dimensional in vitro culturing of prostate cancer stem/progenitor sphere-forming cells. Front Oncol 2018; 8: 347.
[http://dx.doi.org/10.3389/fonc.2018.00347] [PMID: 30211124]
[54]
Pozzi V, Sartini D, Rocchetti R, et al. Identification and characterization of cancer stem cells from head and neck squamous cell carcinoma cell lines. Cell Physiol Biochem 2015; 36(2): 784-98.
[http://dx.doi.org/10.1159/000430138] [PMID: 26021266]
[55]
Kaseb HO, Fohrer-Ting H, Lewis DW, Lagasse E, Gollin SM. Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas. Exp Cell Res 2016; 348(1): 75-86.
[http://dx.doi.org/10.1016/j.yexcr.2016.09.003] [PMID: 27619333]
[56]
Bourguignon LYW, Earle C, Shiina M. Activation of matrix hyaluronan-mediated CD44 signaling, epigenetic regulation and chemoresistance in head and neck cancer stem cells. Int J Mol Sci 2017; 18(9): E1849.
[http://dx.doi.org/10.3390/ijms18091849] [PMID: 28837080]
[57]
Wang J, Wu Y, Gao W, et al. Identification and characterization of CD133+CD44+ cancer stem cells from human laryngeal squamous cell carcinoma cell lines. J Cancer 2017; 8(3): 497-506.
[http://dx.doi.org/10.7150/jca.17444] [PMID: 28261352]
[58]
Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer 2003; 3(4): 267-75.
[http://dx.doi.org/10.1038/nrc1043] [PMID: 12671665]
[59]
EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. S ELA. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347-57.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
[60]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[61]
Qadir F, Aziz MA, Sari CP, et al. Transcriptome reprogramming by cancer exosomes: Identification of novel molecular targets in matrix and immune modulation. Mol Cancer 2018; 17(1): 97.
[http://dx.doi.org/10.1186/s12943-018-0846-5] [PMID: 30008265]
[62]
Nair S, Tang KD, Kenny L, Punyadeera C. Salivary exosomes as potential biomarkers in cancer. Oral Oncol 2018; 84: 31-40.
[http://dx.doi.org/10.1016/j.oraloncology.2018.07.001] [PMID: 30115473]
[63]
Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013; 126(Pt 24): 5553-65.
[http://dx.doi.org/10.1242/jcs.128868] [PMID: 24105262]
[64]
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008; 319(5867): 1244-7.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[65]
Aryani A, Denecke B. Exosomes as a nanodelivery system: A key to the future of neuromedicine? Mol Neurobiol 2016; 53(2): 818-34.
[http://dx.doi.org/10.1007/s12035-014-9054-5] [PMID: 25502465]
[66]
Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: From biogenesis and secretion to biological function. Immunol Lett 2006; 107(2): 102-8.
[http://dx.doi.org/10.1016/j.imlet.2006.09.005] [PMID: 17067686]
[67]
Feng D, Zhao WL, Ye YY, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic 2010; 11(5): 675-87.
[http://dx.doi.org/10.1111/j.1600-0854.2010.01041.x] [PMID: 20136776]
[68]
Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012; 119(3): 756-66.
[http://dx.doi.org/10.1182/blood-2011-02-338004] [PMID: 22031862]
[69]
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9(8): 581-93.
[http://dx.doi.org/10.1038/nri2567] [PMID: 19498381]
[70]
Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 1985; 101(3): 942-8.
[http://dx.doi.org/10.1083/jcb.101.3.942] [PMID: 2993317]
[71]
Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183(3): 1161-72.
[http://dx.doi.org/10.1084/jem.183.3.1161] [PMID: 8642258]
[72]
Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes. Nat Med 1998; 4(5): 594-600.
[http://dx.doi.org/10.1038/nm0598-594] [PMID: 9585234]
[73]
Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[74]
Chaput N, Schartz NE, Andre F, Zitvogel L. Exosomes for immunotherapy of cancer. Adv Exp Med Biol 2003; 532: 215-21.
[http://dx.doi.org/10.1007/978-1-4615-0081-0_17] [PMID: 12908560]
[75]
Zhang B, Yin Y, Lai RC, Lim SK. Immunotherapeutic potential of extracellular vesicles. Front Immunol 2014; 5: 518.
[http://dx.doi.org/10.3389/fimmu.2014.00518] [PMID: 25374570]
[76]
Muller L, Hong CS, Stolz DB, Watkins SC, Whiteside TL. Isolation of biologically-active exosomes from human plasma. J Immunol Methods 2014; 411: 55-65.
[http://dx.doi.org/10.1016/j.jim.2014.06.007] [PMID: 24952243]
[77]
Zlotogorski-Hurvitz A, Dayan D, Chaushu G, et al. Human saliva-derived exosomes: Comparing methods of isolation. J Histochem Cytochem 2015; 63(3): 181-9.
[http://dx.doi.org/10.1369/0022155414564219] [PMID: 25473095]
[78]
Abramowicz A, Widlak P, Pietrowska M. Proteomic analysis of exosomal cargo: The challenge of high purity vesicle isolation. Mol Biosyst 2016; 12(5): 1407-19.
[http://dx.doi.org/10.1039/C6MB00082G] [PMID: 27030573]
[79]
Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol 2015; 1295: 179-209.
[http://dx.doi.org/10.1007/978-1-4939-2550-6_15] [PMID: 25820723]
[80]
Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 2015; 4: 27031.
[http://dx.doi.org/10.3402/jev.v4.27031] [PMID: 26194179]
[81]
Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics 2017; 7(3): 789-804.
[http://dx.doi.org/10.7150/thno.18133] [PMID: 28255367]
[82]
Corcoran C, Rani S, O’Brien K, et al. Docetaxel-resistance in prostate cancer: Evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One 2012; 7(12): e50999.
[http://dx.doi.org/10.1371/journal.pone.0050999] [PMID: 23251413]
[83]
Chen WX, Liu XM, Lv MM, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 2014; 9(4): e95240.
[http://dx.doi.org/10.1371/journal.pone.0095240] [PMID: 24740415]
[84]
Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM. Directional cell movement through tissues is controlled by exosome secretion. Nat Commun 2015; 6: 7164.
[http://dx.doi.org/10.1038/ncomms8164] [PMID: 25968605]
[85]
Song W, Yan D, Wei T, Liu Q, Zhou X, Liu J. Tumor-derived extracellular vesicles in angiogenesis. Biomed Pharmacother 2018; 102: 1203-8.
[http://dx.doi.org/10.1016/j.biopha.2018.03.148] [PMID: 29710539]
[86]
Xiao D, Barry S, Kmetz D, et al. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett 2016; 376(2): 318-27.
[http://dx.doi.org/10.1016/j.canlet.2016.03.050] [PMID: 27063098]
[87]
Santi A, Caselli A, Ranaldi F, et al. Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta 2015; 1853(12): 3211-23.
[http://dx.doi.org/10.1016/j.bbamcr.2015.09.013] [PMID: 26384873]
[88]
Luga V, Zhang L, Viloria-Petit AM, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 2012; 151(7): 1542-56.
[http://dx.doi.org/10.1016/j.cell.2012.11.024] [PMID: 23260141]
[89]
Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE, Hill R. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 2017; 36(13): 1770-8.
[http://dx.doi.org/10.1038/onc.2016.353] [PMID: 27669441]
[90]
Au Yeung CL, Co NN, Tsuruga T, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun 2016; 7: 11150.
[http://dx.doi.org/10.1038/ncomms11150] [PMID: 27021436]
[91]
Zhou X, Yan T, Huang C, et al. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res 2018; 37(1): 242.
[http://dx.doi.org/10.1186/s13046-018-0911-3] [PMID: 30285793]
[92]
Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015; 17(6): 816-26.
[http://dx.doi.org/10.1038/ncb3169] [PMID: 25985394]
[93]
Ludwig S, Floros T, Theodoraki MN, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer. Clin Cancer Res 2017; 23(16): 4843-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2819] [PMID: 28400428]
[94]
Chow A, Zhou W, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB. Sci Rep 2014; 4: 5750.
[http://dx.doi.org/10.1038/srep05750] [PMID: 25034888]
[95]
Chalmin F, Ladoire S, Mignot G, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 2010; 120(2): 457-71.
[http://dx.doi.org/10.1172/JCI40483] [PMID: 20093776]
[96]
Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018; 560(7718): 382-6.
[http://dx.doi.org/10.1038/s41586-018-0392-8] [PMID: 30089911]
[97]
Yen EY, Miaw SC, Yu JS, Lai IR. Exosomal TGF-β1 is correlated with lymphatic metastasis of gastric cancers. Am J Cancer Res 2017; 7(11): 2199-208.
[PMID: 29218244]
[98]
Abusamra AJ, Zhong Z, Zheng X, et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis 2005; 35(2): 169-73.
[http://dx.doi.org/10.1016/j.bcmd.2005.07.001] [PMID: 16081306]
[99]
Jin X, Chen Y, Chen H, et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res 2017; 23(17): 5311-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0577] [PMID: 28606918]
[100]
Chiabotto G, Gai C, Deregibus MC, Camussi G. Salivary extracellular vesicle-associated exRNA as cancer biomarker. Cancers (Basel) 2019; 11(7): E891.
[http://dx.doi.org/10.3390/cancers11070891] [PMID: 31247906]
[101]
Borovski T, De Sousa E Melo F, Vermeulen L, Medema JP. Cancer stem cell niche: The place to be. Cancer Res 2011; 71(3): 634-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3220] [PMID: 21266356]
[102]
Ritchie KE, Nör JE. Perivascular stem cell niche in head and neck cancer. Cancer Lett 2013; 338(1): 41-6.
[http://dx.doi.org/10.1016/j.canlet.2012.07.025] [PMID: 22842095]
[103]
Krishnamurthy S, Warner KA, Dong Z, et al. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells. Stem Cells 2014; 32(11): 2845-57.
[http://dx.doi.org/10.1002/stem.1793] [PMID: 25078284]
[104]
Zhang M, Kumar B, Piao L, et al. Elevated intrinsic cancer stem cell population in human papillomavirus-associated head and neck squamous cell carcinoma. Cancer 2014; 120(7): 992-1001.
[http://dx.doi.org/10.1002/cncr.28538] [PMID: 24382806]
[105]
Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer 2013; 4(1): 66-83.
[http://dx.doi.org/10.7150/jca.5112] [PMID: 23386906]
[106]
Mărgăritescu C, Simionescu C, Pirici D, Mogoantă L, Ciurea R, Stepan A. Immunohistochemical characterization of tumoral vessels in oral squamous cell carcinoma. Rom J Morphol Embryol 2008; 49(4): 447-58.
[PMID: 19050792]
[107]
Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M. Cancer stem cells as a predictive factor in radiotherapy. Semin Radiat Oncol 2012; 22(2): 151-74.
[http://dx.doi.org/10.1016/j.semradonc.2011.12.003] [PMID: 22385922]
[108]
Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 2013; 108(3): 378-87.
[http://dx.doi.org/10.1016/j.radonc.2013.06.003] [PMID: 23830195]
[109]
Kuonen F, Secondini C, Rüegg C. Molecular pathways: Emerging pathways mediating growth, invasion, and metastasis of tumors progressing in an irradiated microenvironment. Clin Cancer Res 2012; 18(19): 5196-202.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1758] [PMID: 22730447]
[110]
Cojoc M, Mäbert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: Cellular and molecular mechanisms. Semin Cancer Biol 2015; 31: 16-27.
[http://dx.doi.org/10.1016/j.semcancer.2014.06.004] [PMID: 24956577]
[111]
Chiavarina B, Martinez-Outschoorn UE, Whitaker-Menezes D, et al. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells. Cell Cycle 2012; 11(17): 3280-9.
[http://dx.doi.org/10.4161/cc.21643] [PMID: 22894905]
[112]
Guido C, Whitaker-Menezes D, Capparelli C, et al. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with “Warburg-like” cancer metabolism and L-lactate production. Cell Cycle 2012; 11(16): 3019-35.
[http://dx.doi.org/10.4161/cc.21384] [PMID: 22874531]
[113]
Cuyàs E, Corominas-Faja B, Menendez JA. The nutritional phenome of EMT-induced cancer stem-like cells. Oncotarget 2014; 5(12): 3970-82.
[http://dx.doi.org/10.18632/oncotarget.2147] [PMID: 24994116]
[114]
Bhowmik SK, Ramirez-Peña E, Arnold JM, et al. EMT-induced metabolite signature identifies poor clinical outcome. Oncotarget 2015; 6(40): 42651-60.
[http://dx.doi.org/10.18632/oncotarget.4765] [PMID: 26315396]
[115]
Bonuccelli G, Tsirigos A, Whitaker-Menezes D, et al. Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 2010; 9(17): 3506-14.
[http://dx.doi.org/10.4161/cc.9.17.12731] [PMID: 20818174]
[116]
Tan AS, Baty JW, Dong LF, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 2015; 21(1): 81-94.
[http://dx.doi.org/10.1016/j.cmet.2014.12.003] [PMID: 25565207]
[117]
Shi LZ, Wang R, Huang G, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011; 208(7): 1367-76.
[http://dx.doi.org/10.1084/jem.20110278] [PMID: 21708926]
[118]
Ostuni R, Kratochvill F, Murray PJ, Natoli G. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 2015; 36(4): 229-39.
[http://dx.doi.org/10.1016/j.it.2015.02.004] [PMID: 25770924]
[119]
Mauer J, Denson JL, Brüning JC. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol 2015; 36(2): 92-101.
[http://dx.doi.org/10.1016/j.it.2014.12.008] [PMID: 25616716]
[120]
Al-Zoughbi W, Huang J, Paramasivan GS, et al. Tumor macroenvironment and metabolism. Semin Oncol 2014; 41(2): 281-95.
[http://dx.doi.org/10.1053/j.seminoncol.2014.02.005] [PMID: 24787299]
[121]
Sehl ME, Shimada M, Landeros A, Lange K, Wicha MS. Modeling of cancer stem cell state transitions predicts therapeutic response. PLoS One 2015; 10(9): e0135797.
[http://dx.doi.org/10.1371/journal.pone.0135797] [PMID: 26397099]
[122]
Jia CC, Wang TT, Liu W, et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One 2013; 8(5)e63243
[http://dx.doi.org/10.1371/journal.pone.0063243] [PMID: 23667593]
[123]
Wang X, Zhang W, Sun X, Lin Y, Chen W. Cancer-associated fibroblasts induce epithelial-mesenchymal transition through secreted cytokines in endometrial cancer cells. Oncol Lett 2018; 15(4): 5694-702.
[http://dx.doi.org/10.3892/ol.2018.8000] [PMID: 29563996]
[124]
Calon A, Tauriello DV, Batlle E. TGF-beta in CAF-mediated tumor growth and metastasis. Semin Cancer Biol 2014; 25: 15-22.
[http://dx.doi.org/10.1016/j.semcancer.2013.12.008] [PMID: 24412104]
[125]
Jung DW, Che ZM, Kim J, et al. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: A pivotal role of CCL7. Int J Cancer 2010; 127(2): 332-44.
[http://dx.doi.org/10.1002/ijc.25060] [PMID: 19937793]
[126]
Glentis A, Oertle P, Mariani P, et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun 2017; 8(1): 924.
[http://dx.doi.org/10.1038/s41467-017-00985-8] [PMID: 29030636]
[127]
Sandoval P, Jiménez-Heffernan JA, Rynne-Vidal Á, et al. Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J Pathol 2013; 231(4): 517-31.
[http://dx.doi.org/10.1002/path.4281] [PMID: 24114721]
[128]
Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011; 19(2): 257-72.
[http://dx.doi.org/10.1016/j.ccr.2011.01.020] [PMID: 21316604]
[129]
Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 2007; 67(21): 10123-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-3127] [PMID: 17974953]
[130]
Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002; 110(3): 341-50.
[http://dx.doi.org/10.1172/JCI0215518] [PMID: 12163453]
[131]
Jotzu C, Alt E, Welte G, et al. Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Anal Cell Pathol (Amst) 2010; 33(2): 61-79.
[http://dx.doi.org/10.1155/2010/695162] [PMID: 20978328]
[132]
Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: A new probe for smooth muscle differentiation. J Cell Biol 1986; 103(6 Pt 2): 2787-96.
[http://dx.doi.org/10.1083/jcb.103.6.2787] [PMID: 3539945]
[133]
Lim KP, Cirillo N, Hassona Y, et al. Fibroblast gene expression profile reflects the stage of tumour progression in oral squamous cell carcinoma. J Pathol 2011; 223(4): 459-69.
[http://dx.doi.org/10.1002/path.2841] [PMID: 21294120]
[134]
Wonganu B, Berger BW. A specific, transmembrane interface regulates fibroblast activation protein (FAP) homodimerization, trafficking and exopeptidase activity. Biochim Biophys Acta 2016; 1858(8): 1876-82.
[http://dx.doi.org/10.1016/j.bbamem.2016.05.001] [PMID: 27155568]
[135]
Arts RJW, Netea MG. Adaptive characteristics of innate immune responses in macrophages. Microbiol Spectr 2016; 4(4)
[PMID: 27726767]
[136]
Lacavé-Lapalun JV, Benderitter M, Linard C. Flagellin or lipopolysaccharide treatment modified macrophage populations after colorectal radiation of rats. J Pharmacol Exp Ther 2013; 346(1): 75-85.
[http://dx.doi.org/10.1124/jpet.113.204040] [PMID: 23596059]
[137]
Duluc D, Corvaisier M, Blanchard S, et al. Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer 2009; 125(2): 367-73.
[http://dx.doi.org/10.1002/ijc.24401] [PMID: 19378341]
[138]
Makita N, Hizukuri Y, Yamashiro K, Murakawa M, Hayashi Y. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int Immunol 2015; 27(3): 131-41.
[http://dx.doi.org/10.1093/intimm/dxu090] [PMID: 25267883]
[139]
Awad F, Assrawi E, Jumeau C, et al. Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflammasome activation. PLoS One 2017; 12(4): e0175336.
[http://dx.doi.org/10.1371/journal.pone.0175336] [PMID: 28403163]
[140]
Seminerio I, Kindt N, Descamps G, et al. High infiltration of CD68+ macrophages is associated with poor prognoses of head and neck squamous cell carcinoma patients and is influenced by human papillomavirus. Oncotarget 2018; 9(13): 11046-59.
[http://dx.doi.org/10.18632/oncotarget.24306] [PMID: 29541395]
[141]
Welch DR, Schissel DJ, Howrey RP, Aeed PA. Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc Natl Acad Sci USA 1989; 86(15): 5859-63.
[http://dx.doi.org/10.1073/pnas.86.15.5859] [PMID: 2762301]
[142]
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303(5663): 1532-5.
[http://dx.doi.org/10.1126/science.1092385] [PMID: 15001782]
[143]
Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA 2012; 109(32): 13076-81.
[http://dx.doi.org/10.1073/pnas.1200419109] [PMID: 22826226]
[144]
Paneesha S, McManus A, Arya R, et al. VERITY Investigators. Frequency, demographics and risk (according to tumour type or site) of cancer-associated thrombosis among patients seen at outpatient DVT clinics. Thromb Haemost 2010; 103(2): 338-43.
[http://dx.doi.org/10.1160/TH09-06-0397] [PMID: 20024496]
[145]
Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 2010; 120(4): 1151-64.
[http://dx.doi.org/10.1172/JCI37223] [PMID: 20237412]
[146]
Andzinski L, Kasnitz N, Stahnke S, et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer 2016; 138(8): 1982-93.
[http://dx.doi.org/10.1002/ijc.29945] [PMID: 26619320]
[147]
Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 2008; 181(8): 5791-802.
[http://dx.doi.org/10.4049/jimmunol.181.8.5791] [PMID: 18832739]
[148]
Lechner MG, Liebertz DJ, Epstein AL. Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 2010; 185(4): 2273-84.
[http://dx.doi.org/10.4049/jimmunol.1000901] [PMID: 20644162]
[149]
Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 2010; 70(1): 68-77.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2587] [PMID: 20028852]
[150]
Cimen Bozkus C, Elzey BD, Crist SA, Ellies LG, Ratliff TL. Expression of Cationic Amino Acid Transporter 2 Is Required for Myeloid-Derived Suppressor Cell-Mediated Control of T Cell Immunity. J Immunol 2015; 195(11): 5237-50.
[http://dx.doi.org/10.4049/jimmunol.1500959] [PMID: 26491198]
[151]
Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014; 211(5): 781-90.
[http://dx.doi.org/10.1084/jem.20131916] [PMID: 24778419]
[152]
Hoechst B, Voigtlaender T, Ormandy L, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009; 50(3): 799-807.
[http://dx.doi.org/10.1002/hep.23054] [PMID: 19551844]
[153]
Lahl K, Loddenkemper C, Drouin C, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 2007; 204(1): 57-63.
[http://dx.doi.org/10.1084/jem.20061852] [PMID: 17200412]
[154]
Shah BH, Rasheed H, Rahman IH, et al. Molecular mechanisms involved in human platelet aggregation by synergistic interaction of platelet-activating factor and 5-hydroxytryptamine. Exp Mol Med 2001; 33(4): 226-33.
[http://dx.doi.org/10.1038/emm.2001.37] [PMID: 11795484]
[155]
Santos-Martínez MJ, Medina C, Jurasz P, Radomski MW. Role of metalloproteinases in platelet function. Thromb Res 2008; 121(4): 535-42.
[http://dx.doi.org/10.1016/j.thromres.2007.06.002] [PMID: 17681591]
[156]
King SM, Reed GL. Development of platelet secretory granules. Semin Cell Dev Biol 2002; 13(4): 293-302.
[http://dx.doi.org/10.1016/S1084952102000599] [PMID: 12243729]
[157]
Ruiz FA, Lea CR, Oldfield E, Docampo R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 2004; 279(43): 44250-7.
[http://dx.doi.org/10.1074/jbc.M406261200] [PMID: 15308650]
[158]
Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: A systematic review. Mol Cancer 2019; 18(1): 63.
[http://dx.doi.org/10.1186/s12943-019-0983-5] [PMID: 30927923]
[159]
Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009; 139(5): 891-906.
[http://dx.doi.org/10.1016/j.cell.2009.10.027] [PMID: 19931152]
[160]
Tatti O, Vehviläinen P, Lehti K, Keski-Oja J. MT1-MMP releases latent TGF-beta1 from endothelial cell extracellular matrix via proteolytic processing of LTBP-1. Exp Cell Res 2008; 314(13): 2501-14.
[http://dx.doi.org/10.1016/j.yexcr.2008.05.018] [PMID: 18602101]
[161]
Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2(10): 737-44.
[http://dx.doi.org/10.1038/35036374] [PMID: 11025665]
[162]
Rosenthal EL, McCrory A, Talbert M, Carroll W, Magnuson JS, Peters GE. Expression of proteolytic enzymes in head and neck cancer-associated fibroblasts. Arch Otolaryngol Head Neck Surg 2004; 130(8): 943-7.
[http://dx.doi.org/10.1001/archotol.130.8.943] [PMID: 15313864]
[163]
García-Palmero I, Torres S, Bartolomé RA, et al. Twist1-induced activation of human fibroblasts promotes matrix stiffness by upregulating palladin and collagen α1(VI). Oncogene 2016; 35(40): 5224-36.
[http://dx.doi.org/10.1038/onc.2016.57] [PMID: 26973246]
[164]
Chaudhuri O, Koshy ST, Branco da Cunha C, et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 2014; 13(10): 970-8.
[http://dx.doi.org/10.1038/nmat4009] [PMID: 24930031]
[165]
Adachi Y, Mio T, Takigawa K, et al. Fibronectin production by cultured human lung fibroblasts in three-dimensional collagen gel culture. In Vitro Cell Dev Biol Anim 1998; 34(3): 203-10.
[http://dx.doi.org/10.1007/s11626-998-0125-7] [PMID: 9557937]
[166]
Lou X, Han X, Jin C, et al. SOX2 targets fibronectin 1 to promote cell migration and invasion in ovarian cancer: New molecular leads for therapeutic intervention. OMICS 2013; 17(10): 510-8.
[http://dx.doi.org/10.1089/omi.2013.0058] [PMID: 23895273]
[167]
Knowles LM, Gurski LA, Engel C, Gnarra JR, Maranchie JK, Pilch J. Integrin αvβ3 and fibronectin upregulate Slug in cancer cells to promote clot invasion and metastasis. Cancer Res 2013; 73(20): 6175-84.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0602] [PMID: 23966293]
[168]
Garrett WS. Cancer and the microbiota. Science 2015; 348(6230): 80-6.
[http://dx.doi.org/10.1126/science.aaa4972] [PMID: 25838377]
[169]
Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo JA, Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol 2018; 15(6): 382-96.
[http://dx.doi.org/10.1038/s41571-018-0006-2] [PMID: 29636538]
[170]
Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol 2015; 45(1): 17-31.
[http://dx.doi.org/10.1002/eji.201444972] [PMID: 25328099]
[171]
Le Bars P, Matamoros S, Montassier E, et al. The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract. Can J Microbiol 2017; 63(6): 475-92.
[http://dx.doi.org/10.1139/cjm-2016-0603] [PMID: 28257583]
[172]
Pushalkar S, Ji X, Li Y, et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol 2012; 12: 144.
[http://dx.doi.org/10.1186/1471-2180-12-144] [PMID: 22817758]
[173]
Wu JY, Yi C, Chung HR, et al. Potential biomarkers in saliva for oral squamous cell carcinoma. Oral Oncol 2010; 46(4): 226-31.
[http://dx.doi.org/10.1016/j.oraloncology.2010.01.007] [PMID: 20138569]
[174]
Hooper SJ, Wilson MJ, Crean SJ. Exploring the link between microorganisms and oral cancer: A systematic review of the literature. Head Neck 2009; 31(9): 1228-39.
[http://dx.doi.org/10.1002/hed.21140] [PMID: 19475550]
[175]
Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget 2016; 7(32): 51320-34.
[http://dx.doi.org/10.18632/oncotarget.9710] [PMID: 27259999]
[176]
Hayes RB, Ahn J, Fan X, et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol 2018; 4(3): 358-65.
[http://dx.doi.org/10.1001/jamaoncol.2017.4777] [PMID: 29327043]
[177]
Guerrero-Preston R, White JR, Godoy-Vitorino F, et al. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation. Oncotarget 2017; 8(67): 110931-48.
[http://dx.doi.org/10.18632/oncotarget.20677] [PMID: 29340028]
[178]
Lee WH, Chen HM, Yang SF, et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci Rep 2017; 7(1): 16540.
[http://dx.doi.org/10.1038/s41598-017-16418-x] [PMID: 29184122]
[179]
Galvão-Moreira LV, da Cruz MC. Oral microbiome, periodontitis and risk of head and neck cancer. Oral Oncol 2016; 53: 17-9.
[http://dx.doi.org/10.1016/j.oraloncology.2015.11.013] [PMID: 26684542]
[180]
Nagy KN, Sonkodi I, Szöke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral Oncol 1998; 34(4): 304-8.
[http://dx.doi.org/10.1016/S1368-8375(98)80012-2] [PMID: 9813727]
[181]
Sasaki M, Yamaura C, Ohara-Nemoto Y, et al. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis 2005; 11(3): 151-6.
[http://dx.doi.org/10.1111/j.1601-0825.2005.01051.x] [PMID: 15888105]
[182]
Zhang Y, Wang X, Li H, Ni C, Du Z, Yan F. Human oral microbiota and its modulation for oral health. Biomed Pharmacother 2018; 99: 883-93.
[http://dx.doi.org/10.1016/j.biopha.2018.01.146] [PMID: 29710488]
[183]
Karpiński TM. Role of oral microbiota in cancer development. Microorganisms 2019; 7(1): E20.
[http://dx.doi.org/10.3390/microorganisms7010020] [PMID: 30642137]
[184]
Voronov E, Shouval DS, Krelin Y, et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 2003; 100(5): 2645-50.
[http://dx.doi.org/10.1073/pnas.0437939100] [PMID: 12598651]
[185]
Kossakowska AE, Edwards DR, Prusinkiewicz C, et al. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin’s lymphomas. Blood 1999; 94(6): 2080-9.
[http://dx.doi.org/10.1182/blood.V94.6.2080] [PMID: 10477738]
[186]
Yilmaz O, Jungas T, Verbeke P, Ojcius DM. Activation of the phosphatidylinositol 3-kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect Immun 2004; 72(7): 3743-51.
[http://dx.doi.org/10.1128/IAI.72.7.3743-3751.2004] [PMID: 15213114]
[187]
Yilmaz O, Yao L, Maeda K, et al. ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X7-mediated host-cell apoptosis. Cell Microbiol 2008; 10(4): 863-75.
[http://dx.doi.org/10.1111/j.1462-5822.2007.01089.x] [PMID: 18005240]
[188]
Choi CH, Spooner R, DeGuzman J, Koutouzis T, Ojcius DM, Yilmaz Ö. Porphyromonas gingivalis-nucleoside-diphosphate-kinase inhibits ATP-induced reactive-oxygen-species via P2X7 receptor/NADPH-oxidase signalling and contributes to persistence. Cell Microbiol 2013; 15(6): 961-76.
[http://dx.doi.org/10.1111/cmi.12089] [PMID: 23241000]
[189]
Spooner R, Yilmaz O. The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci 2011; 12(1): 334-52.
[http://dx.doi.org/10.3390/ijms12010334] [PMID: 21339989]
[190]
Binder Gallimidi A, Fischman S, Revach B, et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2015; 6(26): 22613-23.
[http://dx.doi.org/10.18632/oncotarget.4209] [PMID: 26158901]
[191]
Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14(2): 195-206.
[http://dx.doi.org/10.1016/j.chom.2013.07.012] [PMID: 23954158]
[192]
Piao JY, Lee HG, Kim SJ, et al. Helicobacter pylori activates IL-6-STAT3 signaling in human gastric cancer cells: Potential roles for reactive oxygen species. Helicobacter 2016; 21(5): 405-16.
[http://dx.doi.org/10.1111/hel.12298] [PMID: 26910614]
[193]
Martin D, Abba MC, Molinolo AA, et al. The head and neck cancer cell oncogenome: A platform for the development of precision molecular therapies. Oncotarget 2014; 5(19): 8906-23.
[http://dx.doi.org/10.18632/oncotarget.2417] [PMID: 25275298]
[194]
Saleh K, Eid R, Haddad FGH, Khalife-Saleh N, Kourie HR. New developments in the management of head and neck cancer - impact of pembrolizumab. Ther Clin Risk Manag 2018; 14: 295-303.
[http://dx.doi.org/10.2147/TCRM.S125059] [PMID: 29497306]
[195]
Alsahafi E, Begg K, Amelio I, et al. Clinical update on head and neck cancer: Molecular biology and ongoing challenges. Cell Death Dis 2019; 10(8): 540.
[http://dx.doi.org/10.1038/s41419-019-1769-9] [PMID: 31308358]
[196]
Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016; 375(19): 1856-67.
[http://dx.doi.org/10.1056/NEJMoa1602252] [PMID: 27718784]
[197]
Moskovitz JM, Moy J, Seiwert TY, Ferris RL. Immunotherapy for head and neck squamous cell carcinoma: A review of current and emerging therapeutic options. Oncologist 2017; 22(6): 680-93.
[http://dx.doi.org/10.1634/theoncologist.2016-0318] [PMID: 28507203]
[198]
Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 2017; 127(8): 2930-40.
[http://dx.doi.org/10.1172/JCI91190] [PMID: 28650338]
[199]
Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: Building a framework for personalized cancer immunotherapy. J Clin Invest 2015; 125(9): 3413-21.
[http://dx.doi.org/10.1172/JCI80008] [PMID: 26258412]
[200]
Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy. Nat Rev Cancer 2014; 14(2): 135-46.
[http://dx.doi.org/10.1038/nrc3670] [PMID: 24457417]
[201]
Segal NH, Parsons DW, Peggs KS, et al. Epitope landscape in breast and colorectal cancer. Cancer Res 2008; 68(3): 889-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-3095] [PMID: 18245491]
[202]
Nathanson T, Ahuja A, Rubinsteyn A, et al. Somatic mutations and neoepitope homology in melanomas treated with CTLA-4 blockade. Cancer Immunol Res 2017; 5(1): 84-91.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0019] [PMID: 27956380]
[203]
Johanns TM, Ward JP, Miller CA, et al. Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol Res 2016; 4(12): 1007-15.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0156] [PMID: 27799140]
[204]
McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016; 351(6280): 1463-9.
[http://dx.doi.org/10.1126/science.aaf1490] [PMID: 26940869]
[205]
Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014; 515(7528): 577-81.
[http://dx.doi.org/10.1038/nature13988] [PMID: 25428507]
[206]
Yadav M, Jhunjhunwala S, Phung QT, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014; 515(7528): 572-6.
[http://dx.doi.org/10.1038/nature14001] [PMID: 25428506]
[207]
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018; 37(1): 163.
[http://dx.doi.org/10.1186/s13046-018-0817-0] [PMID: 30031396]
[208]
Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N. CAR T cell therapy: A new era for cancer treatment (Review). Oncol Rep 2019; 42(6): 2183-95. [Review].
[http://dx.doi.org/10.3892/or.2019.7335] [PMID: 31578576]
[209]
Park YP, Jin L, Bennett KB, et al. CD70 as a target for chimeric antigen receptor T cells in head and neck squamous cell carcinoma. Oral Oncol 2018; 78: 145-50.
[http://dx.doi.org/10.1016/j.oraloncology.2018.01.024] [PMID: 29496042]
[210]
Morandi F, Horenstein AL, Costa F, Giuliani N, Pistoia V, Malavasi F. CD38: A target for immunotherapeutic approaches in multiple myeloma. Front Immunol 2018; 9: 2722.
[http://dx.doi.org/10.3389/fimmu.2018.02722] [PMID: 30546360]
[211]
Engblom C, Pfirschke C, Pittet MJ. The role of myeloid cells in cancer therapies. Nat Rev Cancer 2016; 16(7): 447-62.
[http://dx.doi.org/10.1038/nrc.2016.54] [PMID: 27339708]
[212]
Marur S, Forastiere AA. Head and neck squamous cell carcinoma: Update on epidemiology, diagnosis, and treatment. Mayo Clin Proc 2016; 91(3): 386-96.
[http://dx.doi.org/10.1016/j.mayocp.2015.12.017] [PMID: 26944243]
[213]
Keysar SB, Le PN, Anderson RT, et al. Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer. Cancer Res 2013; 73(11): 3381-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4047] [PMID: 23576557]
[214]
Zhao ZL, Zhang L, Huang CF, et al. NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Sci Rep 2016; 6: 24704.
[http://dx.doi.org/10.1038/srep24704] [PMID: 27108536]
[215]
Han L, Shi SJ, Gong T, Zhang ZR, Sun X. Cancer stem cells: Therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B 2013; 3(2): 65-75.
[http://dx.doi.org/10.1016/j.apsb.2013.02.006]
[216]
Fayard E, Xue G, Parcellier A, Bozulic L, Hemmings BA. Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Curr Top Microbiol Immunol 2010; 346: 31-56.
[http://dx.doi.org/10.1007/82_2010_58] [PMID: 20517722]
[217]
Torre C, Wang SJ, Xia W, Bourguignon LYW. Reduction of hyaluronan-CD44-mediated growth, migration, and cisplatin resistance in head and neck cancer due to inhibition of Rho kinase and PI-3 kinase signaling. Arch Otolaryngol Head Neck Surg 2010; 136(5): 493-501.
[http://dx.doi.org/10.1001/archoto.2010.25] [PMID: 20479382]
[218]
Chen YC, Chang CJ, Hsu HS, et al. Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncol 2010; 46(3): 158-65.
[http://dx.doi.org/10.1016/j.oraloncology.2009.11.007] [PMID: 20036608]
[219]
Ogawa K, Yoshioka Y, Isohashi F, Seo Y, Yoshida K, Yamazaki H. Radiotherapy targeting cancer stem cells: Current views and future perspectives. Anticancer Res 2013; 33(3): 747-54.
[PMID: 23482741]
[220]
Becker M, Levy D. Modeling the transfer of drug resistance in solid tumors. Bull Math Biol 2017; 79(10): 2394-412.
[http://dx.doi.org/10.1007/s11538-017-0334-x] [PMID: 28852953]
[221]
Ng IO, Lam KY, Ng M, Kwong DL, Sham JS. Expression of P-glycoprotein, a multidrug-resistance gene product, is induced by radiotherapy in patients with oral squamous cell carcinoma. Cancer 1998; 83(5): 851-7.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980901)83:5<851::AID-CNCR8>3.0.CO;2-L] [PMID: 9731886]
[222]
Allegra E, Trapasso S, Pisani D, Puzzo L. The role of BMI1 as a biomarker of cancer stem cells in head and neck cancer: A review. Oncology 2014; 86(4): 199-205.
[http://dx.doi.org/10.1159/000358598] [PMID: 24800958]
[223]
Kulsum S, Sudheendra HV, Pandian R, et al. Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition. Mol Carcinog 2017; 56(2): 694-711.
[http://dx.doi.org/10.1002/mc.22526] [PMID: 27380877]
[224]
Lou H, Dean M. Targeted therapy for cancer stem cells: The patched pathway and ABC transporters. Oncogene 2007; 26(9): 1357-60.
[http://dx.doi.org/10.1038/sj.onc.1210200] [PMID: 17322922]
[225]
Bhaijee F, Pepper DJ, Pitman KT, Bell D. Cancer stem cells in head and neck squamous cell carcinoma: A review of current knowledge and future applications. Head Neck 2012; 34(6): 894-9.
[http://dx.doi.org/10.1002/hed.21801] [PMID: 21850700]
[226]
Habu N, Imanishi Y, Kameyama K, et al. Expression of Oct3/4 and Nanog in the head and neck squamous carcinoma cells and its clinical implications for delayed neck metastasis in stage I/II oral tongue squamous cell carcinoma. BMC Cancer 2015; 15: 730.
[http://dx.doi.org/10.1186/s12885-015-1732-9] [PMID: 26483189]
[227]
Ventelä S, Sittig E, Mannermaa L, et al. CIP2A is an Oct4 target gene involved in head and neck squamous cell cancer oncogenicity and radioresistance. Oncotarget 2015; 6(1): 144-58.
[http://dx.doi.org/10.18632/oncotarget.2670] [PMID: 25474139]
[228]
Deng P, Wang J, Zhang X, et al. AFF4 promotes tumorigenesis and tumor-initiation capacity of head and neck squamous cell carcinoma cells by regulating SOX2. Carcinogenesis 2018; 39(7): 937-47.
[http://dx.doi.org/10.1093/carcin/bgy046] [PMID: 29741610]
[229]
Lee SH, Oh SY, Do SI, et al. SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br J Cancer 2014; 111(11): 2122-30.
[http://dx.doi.org/10.1038/bjc.2014.528] [PMID: 25321191]
[230]
Huang CE, Yu CC, Hu FW, Chou MY, Tsai LL. Enhanced chemosensitivity by targeting Nanog in head and neck squamous cell carcinomas. Int J Mol Sci 2014; 15(9): 14935-48.
[http://dx.doi.org/10.3390/ijms150914935] [PMID: 25158233]
[231]
Spaeth EL, Dembinski JL, Sasser AK, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009; 4(4): e4992.
[http://dx.doi.org/10.1371/journal.pone.0004992] [PMID: 19352430]
[232]
De Boeck A, Narine K, De Neve W, Mareel M, Bracke M, De Wever O. Resident and bone marrow-derived mesenchymal stem cells in head and neck squamous cell carcinoma. Oral Oncol 2010; 46(5): 336-42.
[http://dx.doi.org/10.1016/j.oraloncology.2010.01.016] [PMID: 20219413]
[233]
Eisma RJ, Spiro JD, Kreutzer DL. Role of angiogenic factors: Coexpression of interleukin-8 and vascular endothelial growth factor in patients with head and neck squamous carcinoma. Laryngoscope 1999; 109(5): 687-93.
[http://dx.doi.org/10.1097/00005537-199905000-00002] [PMID: 10334214]
[234]
Lozito TP, Kuo CK, Taboas JM, Tuan RS. Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. J Cell Biochem 2009; 107(4): 714-22.
[http://dx.doi.org/10.1002/jcb.22167] [PMID: 19415687]
[235]
Oswald J, Boxberger S, Jørgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22(3): 377-84.
[http://dx.doi.org/10.1634/stemcells.22-3-377] [PMID: 15153614]
[236]
Hamou C, Callaghan MJ, Thangarajah H, et al. Mesenchymal stem cells can participate in ischemic neovascularization. Plast Reconstr Surg 2009; 123(2)(Suppl.): 45S-55S.
[http://dx.doi.org/10.1097/PRS.0b013e318191be4a] [PMID: 19182663]
[237]
Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature 2013; 501(7467): 328-37.
[http://dx.doi.org/10.1038/nature12624] [PMID: 24048065]
[238]
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-84.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[239]
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat Rev Cancer 2008; 8(10): 755-68.
[http://dx.doi.org/10.1038/nrc2499] [PMID: 18784658]
[240]
Clevers H. The cancer stem cell: Premises, promises and challenges. Nat Med 2011; 17(3): 313-9.
[http://dx.doi.org/10.1038/nm.2304] [PMID: 21386835]
[241]
de Thé H, Chen Z. Acute promyelocytic leukaemia: Novel insights into the mechanisms of cure. Nat Rev Cancer 2010; 10(11): 775-83.
[http://dx.doi.org/10.1038/nrc2943] [PMID: 20966922]
[242]
Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 1996; 17(4): 595-606.
[http://dx.doi.org/10.1016/S0896-6273(00)80193-2] [PMID: 8893018]
[243]
Matthay KK, Villablanca JG, Seeger RC, et al. Children’s Cancer Group. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. N Engl J Med 1999; 341(16): 1165-73.
[http://dx.doi.org/10.1056/NEJM199910143411601] [PMID: 10519894]
[244]
Chomienne C, Ballerini P, Balitrand N, et al. All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure-function relationship. Blood 1990; 76(9): 1710-7.
[http://dx.doi.org/10.1182/blood.V76.9.1710.1710] [PMID: 2224120]
[245]
Zou J, Wang E. Cancer biomarker discovery for precision medicine: New progress. Curr Med Chem 2019; 26(42): 7655-71.
[http://dx.doi.org/10.2174/0929867325666180718164712] [PMID: 30027846]
[246]
Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006; 354(6): 567-78.
[http://dx.doi.org/10.1056/NEJMoa053422] [PMID: 16467544]
[247]
Mesía R, Henke M, Fortin A, et al. Chemoradiotherapy with or without panitumumab in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-1): A randomised, controlled, open-label phase 2 trial. Lancet Oncol 2015; 16(2): 208-20.
[http://dx.doi.org/10.1016/S1470-2045(14)71198-2] [PMID: 25596660]
[248]
Reddy BK, Lokesh V, Vidyasagar MS, et al. Nimotuzumab provides survival benefit to patients with inoperable advanced squamous cell carcinoma of the head and neck: A randomized, open-label, phase IIb, 5-year study in Indian patients. Oral Oncol 2014; 50(5): 498-505.
[http://dx.doi.org/10.1016/j.oraloncology.2013.11.008] [PMID: 24613543]
[249]
Machiels JP, Subramanian S, Ruzsa A, et al. Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy: An open-label, randomised phase 3 trial. Lancet Oncol 2011; 12(4): 333-43.
[http://dx.doi.org/10.1016/S1470-2045(11)70034-1] [PMID: 21377930]
[250]
Machiels JP, Specenier P, Krauß J, et al. A proof of concept trial of the anti-EGFR antibody mixture Sym004 in patients with squamous cell carcinoma of the head and neck. Cancer Chemother Pharmacol 2015; 76(1): 13-20.
[http://dx.doi.org/10.1007/s00280-015-2761-4] [PMID: 25952795]
[251]
Calvo E, Cleary JM, Moreno V, et al. Preliminary results from a phase 1 study of the antibody-drug conjugate ABBV-221 in patients with solid tumors likely to express EGFR. J Clin Oncol 2017; 35(15)
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.2510]
[252]
Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004; 22(1): 77-85.
[http://dx.doi.org/10.1200/JCO.2004.06.075] [PMID: 14701768]
[253]
Kirby AM, A’Hern RP, D’Ambrosio C, et al. Gefitinib (ZD1839, Iressa) as palliative treatment in recurrent or metastatic head and neck cancer. Br J Cancer 2006; 94(5): 631-6.
[http://dx.doi.org/10.1038/sj.bjc.6602999] [PMID: 16495923]
[254]
Abdul Razak AR, Soulières D, Laurie SA, et al. A phase II trial of dacomitinib, an oral pan-human EGF receptor (HER) inhibitor, as first-line treatment in recurrent and/or metastatic squamous-cell carcinoma of the head and neck. Ann Oncol 2013; 24(3): 761-9.
[http://dx.doi.org/10.1093/annonc/mds503] [PMID: 23108949]
[255]
Cohen EEW, Licitra LF, Burtness B, et al. Biomarkers predict enhanced clinical outcomes with afatinib versus methotrexate in patients with second-line recurrent and/or metastatic head and neck cancer. Ann Oncol 2017; 28(10): 2526-32.
[http://dx.doi.org/10.1093/annonc/mdx344] [PMID: 28961833]
[256]
Garlich JR, De P, Dey N, et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res 2008; 68(1): 206-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0669] [PMID: 18172313]
[257]
Dunn LA, Riaz N, Fury MG, et al. A phase 1b study of cetuximab and BYL719 (Alpelisib) concurrent with intensity modulated radiation therapy in stage III-IVB head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2020; 106(3): 564-70.
[http://dx.doi.org/10.1016/j.ijrobp.2019.09.050] [PMID: 31678634]
[258]
Cai Y, Dodhia S, Su GH. Dysregulations in the PI3K pathway and targeted therapies for head and neck squamous cell carcinoma. Oncotarget 2017; 8(13): 22203-17.
[http://dx.doi.org/10.18632/oncotarget.14729] [PMID: 28108737]
[259]
Chen TH, Chang PM, Yang MH. Novel immune-modulating drugs for advanced head and neck cancer. Head Neck 2019; 41(Suppl. 1): 46-56.
[http://dx.doi.org/10.1002/hed.25929] [PMID: 31573750]
[260]
Day TA, Shirai K, O’Brien PE, et al. Inhibition of mTOR signaling and clinical activity of rapamycin in head and neck cancer in a window of opportunity trial. Clin Cancer Res 2019; 25(4): 1156-64.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2024] [PMID: 30420444]
[261]
Geiger JL, Bauman JE, Gibson MK, et al. Phase II trial of everolimus in patients with previously treated recurrent or metastatic head and neck squamous cell carcinoma. Head Neck 2016; 38(12): 1759-64.
[http://dx.doi.org/10.1002/hed.24501] [PMID: 27232378]
[262]
Dunn LA, Fury MG, Xiao H, et al. A phase II study of temsirolimus added to low-dose weekly carboplatin and paclitaxel for patients with recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). Ann Oncol 2017; 28(10): 2533-8.
[http://dx.doi.org/10.1093/annonc/mdx346] [PMID: 28961834]
[263]
Di JX, Zhang HY. C188-9, a small-molecule STAT3 inhibitor, exerts an antitumor effect on head and neck squamous cell carcinoma. Anticancer Drugs 2019; 30(8): 846-53.
[http://dx.doi.org/10.1097/CAD.0000000000000783] [PMID: 30870229]
[264]
Leong PL, Andrews GA, Johnson DE, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci USA 2003; 100(7): 4138-43.
[http://dx.doi.org/10.1073/pnas.0534764100] [PMID: 12640143]
[265]
Hong D, Kurzrock R, Kim Y, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 2015; 7(314): 314ra185.
[http://dx.doi.org/10.1126/scitranslmed.aac5272] [PMID: 26582900]
[266]
Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016; 17(7): 956-65.
[http://dx.doi.org/10.1016/S1470-2045(16)30066-3] [PMID: 27247226]
[267]
Schwab KS, Kristiansen G, Isaak A, Held SEA, Heine A, Brossart P. Long term remission and cardiac toxicity of a combination of ipilimumab and nivolumab in a patient with metastatic head and neck carcinoma after progression following nivolumab monotherapy. Front Oncol 2019; 9: 403.
[http://dx.doi.org/10.3389/fonc.2019.00403] [PMID: 31157170]
[268]
Gardai SJ, Epp A, Linares G, et al. A sugar engineered non-fucosylated anti-CD40 antibody, SEA-CD40, with enhanced immune stimulatory activity alone and in combination with immune checkpoint inhibitors. J Clin Oncol 2015; 33(15)
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.3074]
[269]
Ferris RL, Saba NF, Gitlitz BJ, et al. Effect of adding motolimod to standard combination chemotherapy and cetuximab treatment of patients with squamous cell carcinoma of the head and neck: The active8 randomized clinical trial. JAMA Oncol 2018; 4(11): 1583-8.
[http://dx.doi.org/10.1001/jamaoncol.2018.1888] [PMID: 29931076]
[270]
Cohen EEW, Algazi A, Laux D, et al. Phase Ib/II, open label, multicenter study of intratumoral SD-101 in combination with pembrolizumab in anti-PD-1 treatment naive patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Ann Oncol 2018; 29: 375.
[http://dx.doi.org/10.1093/annonc/mdy287.006]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy