Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Facile Synthesis of Quinolines in Water

Author(s): Gongutri Borah, Preetishmita Borah, Arnav Bhuyan and Bimal Krishna Banik*

Volume 25, Issue 1, 2021

Published on: 17 September, 2020

Page: [175 - 208] Pages: 34

DOI: 10.2174/1385272824999200917124400

Price: $65

Abstract

Reactions in water have demonstrated numerous surprising results. The effects of water in these reactions may include significant physical and chemical interactions with the substrates and catalysts through polar effects and hydrogen bonding ability. In some instances, water is also able to interact with the intermediates of reactions and possibly with the transition states of chemical processes. Organic synthesis in water encourages the researchers to follow the principles of green chemistry. Among heterocyclic compounds, quinoline scaffold has become an important motif for the development of new drugs. They are widely found in pharmaceuticals as well as in agrochemical industry. Over the last few decades, numerous reports have been documented to access quinoline derivatives with structural diversity, either by new annulation or by ring functionalization. This review summarizes an overview of the synthesis and functionalisation of quinoline scaffolds in an aqueous medium. This method may encourage researchers to adopt green chemistry and to apply these environmentally safe methods in designing important heterocyclic cores.

Keywords: Polar effects, hydrogen bonding, structural diversity, annulation, synthesis, agrochemical.

Graphical Abstract
[1]
Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 16365643]
[2]
(a)Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
(b)Li, C.J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem. Rev., 2005, 105(8), 3065-3165.
[http://dx.doi.org/10.1021/cr030009u] [PMID: 16092827]
(c)Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
[3]
Butler, R.N.; Coyne, A.G. Water: nature’s reaction enforcer--comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev., 2010, 110(10), 6302-6337.
[http://dx.doi.org/10.1021/cr100162c] [PMID: 20815348]
[4]
Chooljian, H.S.; Kauffmann, G.B. Wohler’s synthesis of artificial urea: a modern version of a classic experiment. J. Chem. Educ., 1979, 56(3), 197-200.
[http://dx.doi.org/10.1021/ed056p197]
[5]
Baeyer, A.; Drewson, V. Baeyer-Drewson indigo synthesis. Ber. Dtsch. Chem. Ges., 1882, 15, 2856-2864.
[http://dx.doi.org/10.1002/cber.188201502274]
[6]
Grieco, P.A. Organic Synthesis in Water; Thomson Science: London, 1998, pp. 1-278.
[http://dx.doi.org/10.1007/978-94-011-4950-1]
[7]
(a)Breslow, R.; Maitra, U. On the origin of product selectivity in aqueous diels-alder reactions. Tetrahedron Lett., 1984, 25(12), 1239-1240.
[http://dx.doi.org/10.1016/S0040-4039(01)80122-2]
(b)Rideout, D.C.; Breslow, R. Hydrophobic acceleration of Diels-Alder reactions. J. Am. Chem. Soc., 1980, 102(26), 7816-7817.
[http://dx.doi.org/10.1021/ja00546a048]
[8]
Narayan, S.; Muldoon, J.; Finn, M.G.; Fokin, V.V.; Kolb, H.C.; Sharpless, K.B. “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. Engl., 2005, 44(21), 3275-3279.
[http://dx.doi.org/10.1002/anie.200462883] [PMID: 15844112]
[9]
(a)Croft, A.; Garner, P. Mefloquine to prevent malaria: a systematic review of trials. BMJ, 1997, 315(7120), 1412-1416.
[http://dx.doi.org/10.1136/bmj.315.7120.1412] [PMID: 9418088]
(b)Mouscadet, J.F.; Desmaële, D. Chemistry and structure-activity relationship of the styrylquinoline-type HIV integrase inhibitors. Molecules, 2010, 15(5), 3048-3078.
[http://dx.doi.org/10.3390/molecules15053048] [PMID: 20657464]
(c)Sestili, I.; Borioni, A.; Mustazza, C.; Rodomonte, A.; Turchetto, L.; Sbraccia, M.; Riitano, D.; Del Giudice, M.R. A new synthetic approach of N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl)benzamide (JTC-801) and its analogues and their pharmacological evaluation as nociceptin receptor (NOP) antagonists. Eur. J. Med. Chem., 2004, 39(12), 1047-1057.
[http://dx.doi.org/10.1016/j.ejmech.2004.09.009] [PMID: 15571866]
[10]
(a)Suri, O.P.; Suri, K.A.; Gupta, B.D.; Satti, N.K. An unequivocal synthesis of 4-methyl-2-oxo-(2H)-pyrido-[1,2-a]pyrimidines. Synth. Commun., 2002, 32, 741-746.
[http://dx.doi.org/10.1081/SCC-120002513]
(b)Jadhav, A.G.; Halikar, N.K. Synthesis and biological activity of pyrimido[1,2a]quinoline moiety and its 2-substituted derivatives. J. Phys. Conf. Ser., 2013, 42312007
[http://dx.doi.org/10.1088/1742-6596/423/1/012007]
(c)Elattar, K.M.; Rabie, R.; Hammouda, M.M. Recent progress in the chemistry of bicyclic 6-6 systems: chemistry of pyrido[1,2-a]pyrimidines. Monatsh. Chem., 2017, 148, 601-627.
[http://dx.doi.org/10.1007/s00706-016-1852-1]
(d)Chen, L.; Huang, R.; Kong, L.B.; Lin, J.; Yan, S.J. Facile route to the synthesis of 1,3-diazahetero-cycle-fused [1,2-a]quinoline derivatives via Cascade reactions. ACS Omega, 2018, 3(1), 1126-1136.
[http://dx.doi.org/10.1021/acsomega.7b01856] [PMID: 31457955]
[11]
Craig, J.C.; Pearson, D.E. Potential antimalarials. 7. Tribromomethylquinolines and positive halogen compounds. J. Med. Chem., 1971, 14(12), 1221-1222.
[http://dx.doi.org/10.1021/jm00294a022] [PMID: 5116239]
[12]
Vartale, S.P.; Halikar, N.K.; Pawar, Y.D. Design synthesis, reactions and pharmacological properties of some novel fused pyrimido[1,2-a] quinolines moiety. J. Pharm. Res., 2012, 5, 2672-2675.
[13]
Dillard, R.D.; Pavey, D.E.; Benslay, D.N. Synthesis and antiinflammatory activity of some 2,2-dimethyl-1,2-dihydroquinolines. J. Med. Chem., 1973, 16(3), 251-253.
[http://dx.doi.org/10.1021/jm00261a019] [PMID: 4733107]
[14]
Moro-oka, Y.; Iwakiri, S.; Fukuda, T.; Iwao, M. Remarkable effect of water in a regioselective lithiation of 5-(tert-butoxycarbonyl)-7-methoxy-1-methyl-1,3,4,5- tetrahydropyrrolo[4,3,2-de]quinoline. Tetrahedron Lett., 2000, 41(27), 5225-5228.
[http://dx.doi.org/10.1016/S0040-4039(00)00822-4]
[15]
Zhang, J.; Li, C.J. InCl3-catalyzed domino reaction of aromatic amines with cyclic enol ethers in water: a highly efficient synthesis of new 1,2,3,4-tetrahydroquinoline derivatives. J. Org. Chem., 2002, 67(11), 3969-3971.
[http://dx.doi.org/10.1021/jo020131d] [PMID: 12027728]
[16]
Lautens, M.; Tayama, E.; Herse, C. Palladium-catalyzed intramolecular coupling between aryl iodides and allyl moieties via thermal and microwave-assisted conditions. J. Am. Chem. Soc., 2005, 127(1), 72-73.
[http://dx.doi.org/10.1021/ja043898r] [PMID: 15631454]
[17]
Wang, X.S.; Zhang, M.M.; Zeng, Z.S.; Shi, D.Q.; Tu, S.J.; Wei, X.Y.; Zong, Z.M. A simple and clean procedure for the synthesis of polyhydroacridine and quinoline derivatives: reaction of Schiff base with 1,3-dicarbonyl compounds in aqueous medium. Tetrahedron Lett., 2005, 46(42), 7169-7173.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.091]
[18]
Wang, G.W.; Jia, C.S.; Dong, Y.W. Benign and highly efficient synthesis of quinolines from 2-aminoarylketone or 2-aminoarylaldehyde and carbonyl compounds mediated by hydrochloric acid in water. Tetrahedron Lett., 2006, 47(7), 1059-1063.
[http://dx.doi.org/10.1016/j.tetlet.2005.12.053]
[19]
Zolfigol, M.A.; Salehi, P.; Ghaderi, A.; Shiri, M.; Tanbakouchian, Z. An eco-friendly procedure for the synthesis of polysubstituted quinolines under aqueous media. J. Mol. Catal. Chem., 2006, 259, 1-2, 253-258.
[http://dx.doi.org/10.1016/j.molcata.2006.06.031]
[20]
Selvam, N.P.; Saravanan, C.; Muralidharan, D.; Perumal, P.T. Water mediated synthesis of substituted quinolines - a new green approach to the Friedländer annulation. J. Heterocycl. Chem., 2006, 43(5), 1379-1382.
[http://dx.doi.org/10.1002/jhet.5570430537]
[21]
Zolfigol, M.A.; Salehi, P.; Ghaderi, A.; Shiri, M. A catalytic and green procedure for Friedlander quinoline synthesis in aqueous media. Catal. Commun., 2007, 8(8), 1214-1218.
[http://dx.doi.org/10.1016/j.catcom.2006.11.004]
[22]
Hekmatshoar, R.; Sajadi, S.; Sadjadi, S.; Heravi, M.M.; Beheshtihaa, Y.S.; Bamoharramb, F.F. Multifunctional catalysis of heteropoly acid: one-pot synthesis of quinolines from nitroarene and various aldehydes in the presence of hydrazine. J. Chin. Chem. Soc. (Taipei), 2008, 55, 1195-1198.
[http://dx.doi.org/10.1002/jccs.200800177]
[23]
Bandgar, B.P.; More, P.E.; Kamble, V.T.; Totre, J.V. Synthesis of polyhydroquinoline derivatives under aqueous media. ARKIVOC, 2008, 15, 1-8.
[24]
Shi, D.Q.; Niu, L.H.; Yao, H.; Jiang, H. An efficient synthesis of pyrimido[4,5-b]quinoline derivatives via three-component reaction in aqueous media. J. Heterocycl. Chem., 2009, 46(2), 237-242.
[http://dx.doi.org/10.1002/jhet.57]
[25]
Chai, D.I.; Lautens, M. Tandem Pd-catalyzed double C-C bond formation: effect of water. J. Org. Chem., 2009, 74(8), 3054-3061.
[http://dx.doi.org/10.1021/jo900053b] [PMID: 19320457]
[26]
Akbari, J.; Heydari, A.; Reza Kalhor, H.; Kohan, S.A. Sulfonic acid functionalized ionic liquid in combinatorial approach, a recyclable and water tolerant-acidic catalyst for one-pot Friedlander quinoline synthesis. J. Comb. Chem., 2010, 12(1), 137-140.
[http://dx.doi.org/10.1021/cc9001313] [PMID: 19883051]
[27]
Zhu, H.; Yang, R.F.; Yun, L.H.; Li, J. Facile and efficient synthesis of quinoline-4-carboxylic acids under microwave irradiation. Chin. Chem. Lett., 2010, 21, 35-38.
[http://dx.doi.org/10.1016/j.cclet.2009.09.012]
[28]
Ahmed, N.; Brahmbhatt, K.G.; Singh, I.P.; Bhutani, K.K. Efficient chemoselective alkylation of quinoline 2,4-diol derivatives in water. J. Heterocycl. Chem., 2011, 48(1), 237-240.
[http://dx.doi.org/10.1002/jhet.364]
[29]
Khaleghi, F.; Din, L.B.; Jantan, I.; Yaacob, W.A.; Khalilzadeh, M.A. A facile synthesis of novel 1,4-benzoxazepin-2-one derivatives. Tetrahedron Lett., 2011, 52(52), 7182-7184.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.129]
[30]
Ma, N.; Lu, H.; Wu, F.; Zhang, G.; Jiang, B.; Shi, F.; Gao, Y.; Tu, S. Green chemistry approach to the synthesis of 2-aryl-4- ferrocenyl-quinoline derivatives under microwave irradiation. J. Heterocycl. Chem., 2011, 48(4), 803-807.
[http://dx.doi.org/10.1002/jhet.594]
[31]
Zhao, B.C.; Zhang, Q.Z.; Zhou, W.Y.; Tao, H.C.; Li, Z.G. Silver catalyzed synthesis of 4-trifluoromethyl substituted quinolines in water. RSC Advances, 2013, 3, 13106-13109.
[http://dx.doi.org/10.1039/c3ra41991f]
[32]
Wang, X.S.; Li, Q.; Wu, J.R.; Zhang, M.M. Green method for the synthesis of benzo[f]pyrimido[4,5-b]quinoline derivatives catalyzed by iodine in aqueous media. Synth. Commun., 2009, 39(17), 3069-3080.
[http://dx.doi.org/10.1080/00397910902730929]
[33]
Varma, P.P.; Srinivasa, A.; Mahadevan, K.M. Efficient InCl3/H2O-catalyzed one-pot stereoselective synthesis of cis-2-methyl-4-amido-1,2,3,4tetrahydro-quinoline derivatives. Synth. Commun., 2011, 41(15), 2186-2194.
[http://dx.doi.org/10.1080/00397911003650453]
[34]
Sarkar, S.; Pal, R.; Chatterjee, N.; Dutta, S.; Naskar, S.; Sen, A.K. A green approach for highly regioselective syntheses of furo[3,2-h]quinolines in aqueous medium. Tetrahedron Lett., 2013, 54(29), 3805-3809.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.038]
[35]
Jiang, Z.; Zhang, L.; Dong, C.; Su, X.; Li, H.; Tang, W.; Xu, L.; Fan, Q. Direct synthesis of 8-aryl tetrahydroquinolines via pdcatalyzed ortho-arylation of aryl ureas in water. RSC Advances, 2013, 3, 1025-1028.
[http://dx.doi.org/10.1039/C2RA22901C]
[36]
Tabatabaeian, K.; Shojaei, A.F.; Shirini, F.; Hejazi, S.Z.; Rassa, M. A green multicomponent synthesis of bioactive pyrimido[4,5-b] quinoline derivatives as antibacterial agents in water catalyzed by RuCl3.xH2O. Chin. Chem. Lett., 2014, 25(2), 308-312.
[http://dx.doi.org/10.1016/j.cclet.2013.10.021]
[37]
Mosslemina, M.H.; Zarenezhada, E.; Shamsa, N.; Rad, M.N.S.; Hossein, A-A.; Fayazipoora, R. Green synthesis of 5-aryl-(1H,3H,5H,10H)-pyrimido-[4,5-b]quinoline-2,4- diones catalysed by 1,4-diazabicyclo[2.2.2]octane in water. J. Chem. Res., 2014, 38, 169-171.
[http://dx.doi.org/10.3184/174751914X13917105358323]
[38]
Baghbanian, S.M.; Farhang, M. CuFe2O4 nanoparticles: a magnetically recoverable and reusable catalyst for the synthesis of quinoline and quinazoline derivatives in aqueous media. RSC Advances, 2014, 4, 11624-11633.
[http://dx.doi.org/10.1039/c3ra46119j]
[39]
Zhu, M.; Wang, C.; Tang, W.; Xiao, J. Transition-metal-free synthesis of quinolines from 2-nitrobenzyl alcohol in water. Tetrahedron Lett., 2015, 56(48), 6758-6761.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.062]
[40]
Debnath, K.; Pramanik, A. Heterogeneous bimetallic ZnFe2O4 nanopowder catalysed facile four component reaction for the synthesis of spiro[indoline-3,2′-quinoline] derivatives from isatins in water medium. Tetrahedron Lett., 2015, 56(13), 1654-1660.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.030]
[41]
Siddiqui, I.R.; Rai, P.R.; Sagira, H.; Singh, P. Sustainable construction: admicellar catalysed synthesis of pyrimido[4,5-b] quinolines in an aqueous system. RSC Advances, 2015, 5, 27603-27609.
[http://dx.doi.org/10.1039/C5RA00791G]
[42]
Wang, S-S.; Fu, H.; Shen, Y.; Sun, M.; Li, Y-M. Oxidative radical addition/cyclization cascade for the construction of carbonyl-containing quinoline-2,4(1H,3H)-diones. J. Org. Chem., 2016, 81(7), 2920-2929.
[http://dx.doi.org/10.1021/acs.joc.6b00210] [PMID: 26938786]
[43]
Yahya, S.; Beheshtiha, S.H.; Majid, M.; Dehghani, M. Sulfamic acid: an efficient and recyclable solid acid catalyst for the synthesis of quinoline-4-carboxylic acid derivatives in water. Mod. Chem. Appl., 2016, 4, 4.
[http://dx.doi.org/10.4172/2329-6798.1000195]
[44]
Sun, X.T.; Zhu, J.; Xia, Y.T.; Wu, L. Metal-carbon covalent bonds stabilized palladium nanoparticles as expeditious heterogeneous catalyst for oxidative dehydrogenation of N-heterocycles. ChemCatChem, 2017, 9(13), 2463-2466.
[http://dx.doi.org/10.1002/cctc.201700370]
[45]
Czerwiński, P.; Michalak, M. NHC-Cu(I)-catalyzed Friedländer-type annulation of fluorinated o-aminophenones with alkynes on water: competitive base-catalyzed dibenzo[b,f][1,5]diazocine formation. J. Org. Chem., 2017, 82(15), 7980-7997.
[http://dx.doi.org/10.1021/acs.joc.7b01235] [PMID: 28686022]
[46]
Tiwari, K.N.; Prabhakaran, S.M.; Kumar, V.; Rajendra, T.S.; Mathew, S. An expeditious access of 2,50 -dioxo-50, 60, 70, 80 -tetrahydro-10 H-spiro [indoline-3,40 -quinoline]-30 -carboxylate by reaction of isatin, ethyl cyanoacetate and enaminone in water. Tetrahedron, 2018, 74(27), 3596-3601.
[http://dx.doi.org/10.1016/j.tet.2018.05.020]
[47]
Zhu, G.; Gao, L.; Yu, Q.; Qin, Y.; Xi, J.; Rong, L. An efficient synthesis of 1′,7′,8′,9′-tetrahydrospiro[indoline-3,4‘pyrazolo[3,4-b]quinoline]-2,5’(6’H)- dione derivatives in aqueous medium. J. Heterocycl. Chem.,
[http://dx.doi.org/10.1002/jhet.3111]
[48]
Nongthombam, G.S.; Kharmawlong, G.K.; Kumar, J.E.; Nongkhlaw, R. UV365 light promoted catalyst-free synthesis of pyrimido [4,5-b] quinoline-2,4-diones in aqueous-glycerol medium. New J. Chem., 2018, 42, 9436-9442.
[http://dx.doi.org/10.1039/C8NJ01459K]
[49]
Mou, R.Q.; Zhao, M.; Lv, X.X.; Zhang, S.Y.; Guo, D.S. An efficient and green synthesis of ferrocenylquinoline conjugates via a TsOH-catalyzed threecomponent reaction in water. RSC Advances, 2018, 8, 9555-9563.
[http://dx.doi.org/10.1039/C8RA01004H]
[50]
Rahimzadeh, G.; Soheilizad, M.; Kianmehr, E.; Larijani, B.; Mahdavi, M. Copper-catalyzed intramolecular domino synthesis of 6H-chromeno-[4,3b]quinolines in green condition. ARKIVOC, 2018, 2018(5), 20-28.
[http://dx.doi.org/10.24820/ARK.5550190.P010.406 ]
[51]
Lee, S.Y.; Cheon, C.H. On-water synthesis of 2-substituted quinolines from 2-aminochalcones using benzylamine as the nucleophilic catalyst. J. Org. Chem., 2018, 83(21), 13036-13044.
[http://dx.doi.org/10.1021/acs.joc.8b01675] [PMID: 30295479]
[52]
Geesi, M.H. AL-Hadedi, A.A.M.; Bakht, M.A.; Kaiba, A.; Boukili, M.; Alshammari, M.B.; Dehbi, O.; Riadi, Y. A simple and eco-friendly microwave mediated route the synthesis of novel antimicrobial substituted quinoline-2-thiones. Green Chem. Lett. Rev., 2018, 11(4), 469-475.
[http://dx.doi.org/10.1080/17518253.2018.1536228]
[53]
Yang, N.; Zhang, D.; Zhou, J.; Qi, C.; Li, C.; Zhang, F. Green synthesis of poly-substituted pyrano[4,3-b] quinoline-1,9-(5H)-dione derivatives using solid acid as catalyst in water. ChemistrySelect, 2020, 5(12), 3613-3617.
[http://dx.doi.org/10.1002/slct.201904552]
[54]
Maji, M.; Chakrabarti, K.; Panda, D.; Kundu, S. Sustainable synthesis of N-heterocycles in water using alcohols following the double dehydrogenation strategy. J. Catal., 2019, 373, 93-102.
[http://dx.doi.org/10.1016/j.jcat.2019.03.028]
[55]
Pawar, S.A.; Chand, A.N.; Kumar, A.V. Polydopamine: an amine oxidase mimicking sustainable catalyst for the synthesis of nitrogen heterocycles under aqueous conditions. ACS Sustain. Chem.& Eng., 2019, 7(9), 8274-8286.
[http://dx.doi.org/10.1021/acssuschemeng.8b06677]
[56]
Rayudu, S.V.; Karmakar, D.; Kumar, P. Water-acetic acid mediated an efficient one-pot eco-friendly synthesis of novel bis-isoxazolopyrrolo-quinoline derivatives. Tetrahedron Lett., 2019, 60(36)151025
[http://dx.doi.org/10.1016/j.tetlet.2019.151025]
[57]
Sahoo, M.K.; Balaraman, E. Room temperature catalytic dehydrogenation of cyclic amines with the liberation of H2 using water as a solvent. Green Chem., 2019, 21, 2119-2128.
[http://dx.doi.org/10.1039/C9GC00201D]
[58]
Zhang, J.T.; Wang, L.X.; Xiang, J.F.; Cui, J.; Hu, B.Q.; Yang, L.; Tang, Y.L. HOAc-Assisted synthesis of 2,3-disubstituted quinolines from arylamine and aliphatic aldehyde in water. ChemistrySelect, 2019, 4(32), 9392-9395.
[http://dx.doi.org/10.1002/slct.201901686]
[59]
Kundu, A.; Bhattacharyya, B.; Dhara, K.; Paul, S.; Majumdere, I.; Kundu, R. An unorthodox metal-free synthesis of dihydro6H-quinoline-5-ones in ethanol/water using a non-nucleophilic base and their cytotoxic studies on human cancer cell line. New J. Chem., 2020, 44, 4898-4906.
[http://dx.doi.org/10.1039/C9NJ06346C]
[60]
Liao, H.; Zhu, Q. Water-DMSO-promoted one-pot synthesis of two new series of dihydropyrrolo[2,3-h]quinolines. Org. Biomol. Chem., 2020, 18(2), 215-219.
[http://dx.doi.org/10.1039/C9OB02342A] [PMID: 31815997]
[61]
Naruto, H.; Togo, H. Preparation of 2-arylquinolines from 2-arylethyl bromides and aromatic nitriles with magnesium and N-iodosuccinimide. Synthesis, 2020, 52, 1122-1130.
[http://dx.doi.org/10.1055/s-0039-1691642]
[62]
Reddy, E.A.; Barange, D.K.; Islam, A.; Mukkanti, K.; Pal, M. Synthesis of 2-alkynylquinolines from 2-chloro and 2,4-dichloroquinoline via Pd/C-catalyzed coupling reaction in water. Tetrahedron, 2008, 64, 7143-7150.
[http://dx.doi.org/10.1016/j.tet.2008.05.097]
[63]
Singh, R.M.; Sharma, N.; Kumar, R.; Asthana, M.; Upadhyay, S. An alternative synthesis of pyrimido[4,5-b] quinoline-4-ones via metal-free amination in water and VilsmeiereHaack cyclization. Tetrahedron, 2012, 68(50), 10318-10325.
[http://dx.doi.org/10.1016/j.tet.2012.10.004]
[64]
Yan, M.; Jin, T.; Chen, Q.; Ho, H.E.; Fujita, T.; Chen, L.Y.; Bao, M.; Chen, M.W.; Asao, N.; Yamamoto, Y. Unsupported nanoporous gold catalyst for highly selective hydrogenation of quinolines. Org. Lett., 2013, 15(7), 1484-1487.
[http://dx.doi.org/10.1021/ol400229z] [PMID: 23496325]
[65]
Jamal, Z.; Teo, Y.C. Cobalt-catalyzed direct alkenylation of 2-methylquinolines with aldehydes via Csp3–H functionalization in water. Synlett, 2014, 25(14), 2049-2053.
[http://dx.doi.org/10.1055/s-0034-1378355]
[66]
Kamal, A.; Rahim, A.; Riyaz, S.; Poornachandra, Y.; Balakrishna, M.; Kumar, C.G.; Hussaini, S.M.A.; Sridhar, B.; Machiraju, P.K. Regioselective synthesis, antimicrobial evaluation and theoretical studies of 2-styryl quinolines. Org. Biomol. Chem., 2015, 13(5), 1347-1357.
[http://dx.doi.org/10.1039/C4OB02277G] [PMID: 25465871]
[67]
Shiri, M.; Arani, A.N.; Faghihi, Z. Synthesis of novel quinoline-substituted 1,4-dihydropyridine derivatives via Hantzsch reaction in aqueous medium: potential bioactive compounds. J. Heterocycl. Chem., 2017, 54(1), 131-136.
[http://dx.doi.org/10.1002/jhet.2553]
[68]
Zhou, L.; Okugawa, N.; Togo, H. Hydroxymethylation of Quinolines with Na2S2O8 by a radical pathway. Eur. J. Org. Chem., 2017, 2017(41), 6239-6245.
[http://dx.doi.org/10.1002/ejoc.201701321]
[69]
Kong, D.; Wang, Q.; Zhu, Z.; Wang, X.; Shi, Z.; Lin, Q.; Wu, M. Convenient one-pot synthesis of thiobarbituro-quinoline derivatives via catalyst-free multicomponent reactions in water. Tetrahedron Lett., 2017, 58(27), 2644-2647.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.047]
[70]
Jadhav, S.J.; Patil, R.B.; Kumbhar, D.R.; Patravale, A.A.; Chandam, D.R.; Deshmukha, M.B. Sulfamic acid catalyzed atom economic, eco-friendly synthesis of novel 7-(aryl)-1′-thioxo-7,9,1′,11-tetrahedro-6H-pyrimido-[5′4′:5,6] pyrano[3,2-c]quinoline-6,8(5H)-dione and its derivatives. J. Heterocycl. Chem., 2017, 54(4), 2206-2215.
[http://dx.doi.org/10.1002/jhet.2807]
[71]
Ding, X.; Zhang, F.; Bai, Y.; Zhao, J.; Chen, X.; Ge, M.; Sun, W. Quinoline-based highly selective and sensitive fluorescent probe specific for Cd2+ detection in mixed aqueous media. Tetrahedron Lett., 2017, 58(40), 3868-3874.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.068]
[72]
Yao, X.; Weng, X.; Wang, K.; Xiang, H.; Zhou, X. Transition metal free oxygenation of 8-aminoquinoline amides in water. Green Chem., 2018, 20, 2472-2476.
[http://dx.doi.org/10.1039/C8GC00191J]
[73]
Xie, L.Y.; Peng, S.; Tan, J.X.; Sun, R.X.; Yu, X.; Dai, N.N.; Tang, Z.L.; Xu, X.; He, W.M. Waste-minimized protocol for the synthesis of sulfonylated N-heteroaromatics in water. ACS Sustain. Chem.& Eng., 2018, 6(12), 16976-16981.
[http://dx.doi.org/10.1021/acssuschemeng.8b04339]
[74]
Trofimov, B.A.; Belyaeva, K.V.; Nikitina, L.P.; Afonin, A.V.; Vashchenko, A.V.; Muzalevskiy, V.M.; Nenajdenko, V.G. Metal-free stereoselective annulation of quinolines with trifluoroacetylacetylenes and water: an access to fluorinated oxazinoquinolines. Chem. Commun. (Camb.), 2018, 54(18), 2268-2271.
[http://dx.doi.org/10.1039/C7CC09725E] [PMID: 29435528]
[75]
Qiao, L.; Cao, X.; Chai, K.; Shen, J.; Xu, J.; Zhang, P. Synthesis of ethyl 2-amino-4-benzoyl-5-oxo-5,6-dihydro-4H-pyrano[3,2c]quinoline-3-carboxylates by a one-pot, three-component reaction in the presence of TPAB. Tetrahedron Lett., 2018, 59(23), 2243-2247.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.036]
[76]
Marjani, A.P.; Khalafy, J.; Farajollahi, A. Synthesis of ethyl 2-amino-4-benzoyl-5-oxo-5,6-dihydro-4H-pyrano[3,2- c]quinoline-3-carboxylates by a one-pot, three-component reaction in the presence of TPAB. J. Heterocycl. Chem., 2019, 56(1), 268-274.
[http://dx.doi.org/10.1002/jhet.3404]
[77]
Daggupati, V.R.; Chandrasekharam, M. Copper-catalyzed direct oxidative α-functionalization of tetrahydroquinoline in water under mild conditions. Adv. Synth. Catal., 2018, 360(21), 4080-4083.
[http://dx.doi.org/10.1002/adsc.201800684]
[78]
Zumbrägel, N.; Sako, M.; Takizawa, S.; Sasai, H.; Gröger, H. Vanadium-catalyzed dehydrogenation of N-heterocycles in water. Org. Lett., 2018, 20(16), 4723-4727.
[http://dx.doi.org/10.1021/acs.orglett.8b01484] [PMID: 30067034]
[79]
Wu, Y.; Lu, X.; Wang, H.; Liang, E.; Yuan, Y.; Zhao, Q.; Zhu, Z.; Huang, J.; Tang, X. Acid-catalyzed synthesis of quinoline derivatives from 2- methylquinolines and 2-aryloxy/alkoxybenzaldehyde in aqueous medium. Eur. J. Org. Chem., 2019, 45, 7452-7462.
[http://dx.doi.org/10.1002/ejoc.201901331]
[80]
Belyaeva, K.V.; Nikitina, L.P.; Mal’kina, A.G.; Afonin, A.V.; Vashchenko, A.V.; Trofimov, B.A. Cyanoacetylenes as triggers and partners in KOH-assisted assemblies of quinoline-based dihydropyrimido[1,2-a]quinolin-3-ones on water. J. Org. Chem., 2019, 84(15), 9726-9733.
[http://dx.doi.org/10.1021/acs.joc.9b01482] [PMID: 31262176]
[81]
Muzalevskiy, V.M.; Belyaeva, K.V.; Trofimov, B.A.; Nenajdenko, V.G. Diastereoselective synthesis of CF3-oxazinoquinolines in water. Green Chem., 2019, 21, 6353-6360.
[http://dx.doi.org/10.1039/C9GC03044A]
[82]
Peng, S.; Song, Y.X.; He, J.Y.; Tang, S.S.; Tan, J.X.; Cao, Z.; Lin, Y.W.; He, W.M. TsCl-promoted sulfonylation of quinoline N-oxides with sodium sulfinates in water. Chin. Chem. Lett., 2019, 30, 2287-2290.
[http://dx.doi.org/10.1016/j.cclet.2019.08.002]
[83]
Wang, Y.; Dong, B.; Wang, Z.; Cong, X.; Bi, X. Silver-catalyzed reduction of quinolines in water. Org. Lett., 2019, 21(10), 3631-3634.
[http://dx.doi.org/10.1021/acs.orglett.9b01055] [PMID: 31062984]
[84]
Xie, L.Y.; Peng, S.; Liu, F.; Liu, Y.F.; Sun, M.; Tang, Z.L.; Jiang, S.; Cao, Z.; He, W.M. Clean preparation of quinolin-2-yl substituted ureas in water. ACS Sustain. Chem.& Eng., 2019, 7(7), 7193-7199.
[http://dx.doi.org/10.1021/acssuschemeng.9b00200]
[85]
Kazi, I.; Guha, S.; Sekar, G. Halogen bond-assisted electron-catalyzed atom economic iodination of heteroarenes at room temperature. J. Org. Chem., 2019, 84(11), 6642-6654.
[http://dx.doi.org/10.1021/acs.joc.9b00174] [PMID: 31042042]
[86]
Qian, P.; Yan, Z.; Zhou, Z.; Hu, K.; Wang, J.; Li, Z.; Zha, Z.; Wang, Z. Electrocatalytic tandem synthesis of 1,3-disubstituted imidazo[1,5- a]quinolines via sequential dual oxidative Csp3-H amination in aqueous medium. J. Org. Chem., 2019, 84(6), 3148-3157.
[http://dx.doi.org/10.1021/acs.joc.8b03014] [PMID: 30648866]
[87]
Batista, V.F.; Pinto, D.C.G.A.; Silva, A.M.S. Synthesis of quinolines: a green perspective. ACS Sustain. Chem. Eng., 2016, 4(8), 4064-4078.
[http://dx.doi.org/10.1021/acssuschemeng.6b01010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy