Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Letter Article

Sulfolane Mediated Highly Selective Synthesis of Mono and Bis-aryl-2-Methyl-6- Fluoro-Indoles and Their Halogenated Synthons

Author(s): Koppada Masthan Raju, Ravi Kumar Cheedarala* and Arumugam Pandurangan*

Volume 24, Issue 19, 2020

Page: [2283 - 2291] Pages: 9

DOI: 10.2174/1385272824999200914111909

Price: $65

Abstract

A simple, efficient, and cheap strategy has been developed for N-arylation of indoles with hexafloro benzene (1) via incorporating sulfolane as an eco-friendly solvent. NMonopentafluoroarylindole (3) at ambient conditions and N, N-bistetrafluoroaryl indole (4) at elevated temperatures were conveniently obtained by simple nucleophilic substitution using NaOH as the base and sulfolane as a reaction medium to obtain in moderately good yields, respectively. Subsequently, 3-chloro, 3-bromo, and 3-iodomono-pentafluoroarylindoles and 3, 3’-dichloro, 3, 3’-dibromo and 3, 3’-diIodobistetrafluoroaryl indoles were prepared in good yields by using respective halogenating reagents and solvents. All the chemical transformations were confirmed by analytical tools such as 1HNMR, FR-IR and HRMS analysis.

Keywords: 2-Methyl-6-fluoro-indole, hexafluorobezene, indole derivative, mono fluoroaryl indoles and bisfluoroaryl indoles, nucleophilic substitution, 1HNMR.

« Previous
Graphical Abstract
[1]
(a) Shafir, A.; Buchwald, S.L. Highly selective room-temperature coppercatalyzed C-N coupling reactions. J. Am. Chem. Soc., 2006, 128(27), 8742-8743.
[http://dx.doi.org/10.1021/ja063063b] [PMID: 16819863]
(b) Balraju, V.; Iqbal, J. Synthesis of cyclic peptides constrained with biarylamine linkers using Buchwald-Hartwig C-N coupling. J. Org. Chem. 2006, 71(23), 8954-8956.
[http://dx.doi.org/10.1021/jo061366i ] [PMID: 17081028]
(c) Djakovitch, L.; Dufaud, V.; Zaidi, R. Heterogeneous palladium catalysts applied to the synthesis of 2- and 2,3-functionalised indoles. Adv. Synth. Catal. 2006, 348, 715-724.
[http://dx.doi.org/10.1002/adsc.200505283 ]
(d) Cacchi, S.; Fabrizi, G. Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem. Rev., 2005, 105(7), 2873-2920.
[http://dx.doi.org/10.1021/cr040639b ] [PMID: 16011327]
(e) Buchwald, S.L.; Mauger, C.; Mignani, G.; Scholz, U. Industrial-scale palladium-catalyzed coupling of aryl halides and amines –a personal account. Adv. Synth. Catal., 2006, 348, 23-39.
[http://dx.doi.org/10.1002/adsc.200505158]
[2]
(a) Buckingham, J.B. Dictionary of Natural Products; CRC Press, 1994.
(b) Newer, M. Organic-Chemical Drugs and their synonyms: An International Survey, 7th ed; Akademic: Berlin, 1994.
(c) Ontgomery, J.H. Agrochemicals Desk Reference: Environmental Data; Lewis Publishers: Chelsea, 1993.
(d) Kundu, N.G.; Mahanty, J.S.; Chowdhurry, C.; Dasgupta, S.K.; Das, B.; Spears, C.P.; Balzarini, J.; De Clercq, E. 5-(Acylethynyl)uracils, 5- (Acylethynyl)-2'-deoxyuridines and 5-(Acylethynyl)-1-(2-hydroxyethoxy)- methyluracils. Their synthesis, antiviral and cytotoxic activities. Eur. J. Med. Chem., 1999, 34, 389-398.
[http://dx.doi.org/10.1016/S0223-5234(99)80088-9]
(e) Almansa, C.; Bartrolí, J.; Belloc, J.; Cavalcanti, F.L.; Ferrando, R.; Gómez, L.A.; Ramis, I.; Carceller, E.; Merlos, M.; García-Rafanell, J. New water-soluble sul-fonylphosphoramidic acid derivatives of the COX-2 selective inhibitor cimicoxib. A novel approach to sulfonamide prodrugs. J. Med. Chem., 2004, 47(22), 5579-5582.
[http://dx.doi.org/10.1021/jm040844j] [PMID: 15481993]
[3]
von Angerer, E.; Strohmeier, J. 2-Phenylindoles. Effect of N-benzylation on estrogen receptor affinity, estrogenic properties, and mammary tumor inhibiting activity. J. Med. Chem., 1987, 30(1), 131-136.
[http://dx.doi.org/10.1021/jm00384a022] [PMID: 3806590]
[4]
Glamkowski, E.J.; Fortunato, J.M.; Spaulding, T.C.; Wilker, J.C.; Ellis, D.B. 3-(1-Indolinyl)benzylamines: a new class of analgesic agents. J. Med. Chem., 1985, 28(1), 66-73.
[http://dx.doi.org/10.1021/jm00379a014] [PMID: 3965715]
[5]
(a) Unangst, P.C.; Carethers, M.E.; Webster, K.; Janik, G.M.; Robichaud, L.J. Acidic furo[3,2-b]indoles. A new series of potent antiallergy agents. J. Med. Chem. 1984, 27(12), 1629-1633.
[http://dx.doi.org/10.1021/jm00378a017] [PMID: 6150113]
(b) Unangst, P.C.; Connor, D.T.; Stabler, S.R.; Weikert, R.J.; Carethers, M.E.; Kennedy, J.A.; Thueson, D.O.; Chestnut, J.C.; Adolphson, R.L.; Conroy, M.C. Novel indole-carboxamidotetrazoles as potential antiallergy agents. J. Med. Chem., 1989, 32(6), 1360-1366.
[http://dx.doi.org/10.1021/jm00126a036] [PMID: 2470904]
[6]
(a) Perregaard, J.; Arnt, J.; Bøgesø, K.P.; Hyttel, J.; Sánchez, C. Noncataleptogenic, centrally acting dopamine D-2 and serotonin 5-HT2 antagonists within a series of 3-substituted 1-(4-fluorophenyl)-1H-indoles. J. Med. Chem., 1992, 35(6), 1092-1101.
[http://dx.doi.org/10.1021/jm00084a014] [PMID: 1348090]
(b) Andersen, K.; Liljefors, T.; Hyttel, J.; Perregaard, J. Serotonin 5-HT2 receptor, dopamine D2 receptor, and alpha 1 adrenoceptor antagonists. Conformationally flexible analogues of the atypical antipsychotic sertindole. J. Med. Chem., 1996, 39(19), 3723-3738.
[http://dx.doi.org/10.1021/jm960159f] [PMID: 8809161]
[7]
Spadoni, G.; Balsamini, C.; Bedini, A.; Diamantini, G.; Di Giacomo, B.; Tontini, A.; Tarzia, G.; Mor, M.; Plazzi, P.V.; Rivara, S.; Nonno, R.; Pannacci, M.; Lucini, V.; Fraschini, F.; Stankov, B.M. 2-[N-Acylamino(C1-C3)alkyl]indoles as MT1 melatonin receptor partial agonists, antagonists, and putative inverse agonists. J. Med. Chem., 1998, 41(19), 3624-3634.
[http://dx.doi.org/10.1021/jm970721h] [PMID: 9733487]
[8]
Sano, H.; Noguchi, T.; Miyajima, A.; Hashimoto, Y.; Miyachi, H. Anti-angiogenic activity of basic-type, selective cyclooxygenase (COX)-1 inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(11), 3068-3072.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.021] [PMID: 16513348]
[9]
(a) Cheedrala, R.K.; Rachna, S.; Palakodety, P.K. Lipase mediated kinetic resolution of benzimidazolyl ethanols. Tetrahedron: Asymmetry, , 2008, 19, 901-905.
[http://dx.doi.org/10.1016/j.tetasy.2008.03.021]
(b) Cheedrala, R.K.; Vijaya, S.; Park, J.W. Facile synthesis of second-generation dendrons with an orthogonal functional group at the focal point. Synth. Commun., 2009, 39, 1966-1980.
[http://dx.doi.org/10.1080/00397910802627076]
(c) Cheedrala, R.K.; Kim, G.H.; Cho, S.; Lee, J.H.; Kim, J.; Song, H.K.; Kim, J.Y.; Yang, C. Ladder-type heteroacene polymers bearing carbazole and thiophene ring units and their use in field-effect transistors and photovoltaic cells. J. Mater. Chem., 2011, 21, 843-850.
[http://dx.doi.org/10.1039/C0JM01897J]
(d) Cheedarala, R.K.; Park, E.J.; Kong, K.; Park, Y.B.; Park, H.W. Experimental study on critical heat flux of highly efficient soft hydrophilic CuO–chitosan nanofluid templates. Int. J. Heat Mass Trasfer, , 2016, 100, 396-406.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.04.096]
(e) Cheedarala, R.K.; Duy, L.C.; Ahn, K.K. Double characteristic BNO-SPITENGs for robust contact electrification by vertical contact separation mode through ion and electron charge transfer. Nano Energy 2018, 44, 430-437.
[http://dx.doi.org/10.1016/j.nanoen.2017.12.019]
(f) Cheedarala, R.K.; Parvez, A.N.; Ahn, K.K. Electric impulse spring-assisted contact separation mode triboelectric nanogenerator fabricated from polyaniline emeraldine salt and woven carbon fibers. Nano Energy,, 2018, 53, 362-372.
[http://dx.doi.org/10.1016/j.nanoen.2018.08.066]
(g) Cheedarala, R.K.; Shahriar, M.; Ahn, J.H.; Hwang, J.Y.; Ahn, K.K. Harvesting liquid stream energy from unsteady peristaltic flow induced pulsatile Flow-TENG (PF-TENG) using slipping polymeric surface inside elastomeric tubing. Nano Energy, 2019, 65, 104017.
[http://dx.doi.org/10.1016/j.nanoen.2019.104017]
(h) Cheedarala, R.K.; Song, J.L. In situ generated hydrophobic micro ripples via π–π stacked pop-up reduced graphene oxide nanoflakes for extended critical heat flux and thermal conductivities. RSC Adv., 2019, 9, 31735-31746.
[http://dx.doi.org/10.1039/C9RA04563E]
(i) Cheedarala, R.K.; Kee, C.D.; Oh, I.K. Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv. Funct. Mater., 2013, 23, 6007-6018.
[http://dx.doi.org/10.1002/adfm.201203550]
(j) Cheedarala, R.K.; Jeon, J.J.; Kee, C.D.; Oh, I.K. Bio-inspired all-organic soft actuator based on a π–π stacked 3D ionic network membrane and ultrafast solution processing. Adv. Funct. Mater. 2014, 24, 6005-6015.
[http://dx.doi.org/10.1002/adfm.201401136]
(k) Rao, T.N.; Cheedarala, R.K. Determination of dithiocarbamate mancozeb residues in milk samples using GC-MS method. Analyt. Chem. Lett., 2019, 9(6), 845-852.
[http://dx.doi.org/10.1080/22297928.2019.1710563]
(l) Cheedarala, R.K.; Park, E.J.; Park, Y.B.; Park, H.W. Highly wettable CuO: graphene oxide core–shell porous nanocomposites for enhanced critical heat flux. Phys. Status Solidi (a), 2015, 212, 1756-1766.
[10]
Sano, H.; Noguchi, T.; Tanatani, A.; Hashimoto, Y.; Miyachi, H. Design and synthesis of subtype-selective cyclooxygenase (COX) inhibitors derived from thalidomide. Bioorg. Med. Chem., 2005, 13(9), 3079-3091.
[http://dx.doi.org/10.1016/j.bmc.2005.03.002] [PMID: 15809144]
[11]
Xu, H.; Liu, W.Q.; Fan, L.L.; Chen, Y.; Yang, L.M.; Lv, L.; Zheng, Y.T. Synthesis and HIV-1 integrase inhibition activity of some N-arylindoles. Chem. Pharm. Bull. (Tokyo), 2008, 56(5), 720-722.
[http://dx.doi.org/10.1248/cpb.56.720] [PMID: 18451566]
[12]
(a) Hulcoop, D.G.; Lautens, M. Palladium-catalyzed annulation of aryl heterocycles with strained alkenes. Org. Lett.,, 2007, 9(9), 1761-1764.
[http://dx.doi.org/10.1021/ol070475w ] [PMID: 17407300]
(b) Xie, C.; Zhang, Y.; Huang, Z.; Xu, P. Synthesis of indolo[1,2-f]phenanthridines from palladium-catalyzed reactions of arynes. J. Org. Chem., 2007, 72(14), 5431-5434.
[http://dx.doi.org/10.1021/jo070625g] [PMID: 17555357]
[13]
(a) Ullmann, F. Ueber eine neue Bildungsweise von Diphenylaminderivaten. Ber. Dtsch. Chem. Ges., 1903, 36, 2382-2384.
[http://dx.doi.org/10.1002/cber.190303602174]
(b) Ullmann, F. Ueber eine neue Darstellungsweise von Phenyläthersalicylsäure. Ber. Dtsch. Chem. Ges., 1904, 37, 853-854.
[http://dx.doi.org/10.1002/cber.190403701141]
[14]
(a) Hartwig, J.F.; Kawatsura, M.; Hauck, S.I.; Shaughnessy, K.H.; Alcazar-Roman, L.M. Room-temperature palladium-catalyzed amination of aryl bromidesand chlorides and extended scope of aromatic C-N bond formationwith a commercial ligand. J. Org. Chem. 1999, 64(15), 5575-5580.
[http://dx.doi.org/10.1021/jo990408i ] [PMID: 11674624 ]
(b) Yadav, D.K.T.; Rajak, S.S.; Bhanage, B.M. N-arylation of indoles with aryl halides using copper/glycerol as a mild and highly efficient recyclable catalytic system. Tetrahedron Lett., 2014, 55, 931-935.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.053]
[15]
Jon, C.A.; Artis, K.; Stephen, L.B. The copper-catalyzed N-arylation of indoles. J. Am. Chem. Soc., 2002, 124, 11684-11688.
[http://dx.doi.org/10.1021/ja027433h] [PMID: 12296734]
[16]
(a) Mann, G.; Hartwig, J.F.; Driver, M.S.; Fernandez-Rivas, C.J. Palladiumcatalyzed C−N(sp2) bond formation:′ N-arylation of aromatic and unsaturated nitrogen and the reductive elimination chemistry of palladium azolyl and methyleneamido complexes. Am. Chem. Soc., 1998, 120, 827-828.
[http://dx.doi.org/10.1021/ja973524g]
(b) Old, D.W.; Harris, M.C.; Buchwald, S.L. Efficient palladium-catalyzed N-arylation of indoles. Org. Lett. 2000, 2(10), 1403-1406.
[http://dx.doi.org/10.1021/ol005728z] [PMID: 10814458]
(c) Watanabe, M.; Nishiyama, M.; Yamamoto, T.; Koie, Y. Palladium/P(t- Bu)3-catalyzed synthesis of N-aryl azoles and application to the synthesis of 4,4′,4′′-tris(N-azolyl)triphenylamines. Tetrahedron Lett 2000, 41, 481-483.
[http://dx.doi.org/10.1016/S0040-4039(99)02096-1]
(d) Grasa, G.A.; Viciu, M.S.; Huang, J.; Nolan, S.P. Amination reactions of aryl halides with nitrogen-containing reagents mediated by palladium/imidazolium salt systems. J. Org. Chem., 2001, 66(23), 7729-7737.
[http://dx.doi.org/10.1021/jo010613+] [PMID: 11701028]
[17]
Michael, C. Palladium-catalyzed tandem alkenyl and aryl C-N bond formation: a cascade N-annulation route to 1-functionalized indoles. Angew. Chemi. Int., 2004, 44, 403-406.
[http://dx.doi.org/10.1002/anie.200461598]]
[18]
(a) Lam, P.Y.S.; Clark, C.G.; Saubern, S.; Adams, J.; Winters, M.P.; Chan, D.M.T.; Combs, A. New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett. 1998, 39, 2941-2944.
[http://dx.doi.org/10.1016/S0040-4039(98)00504-8]
(b) Mederski, W.W.K.R.; Lefort, M.; Germann, M.; Kux, D. N-aryl heterocycles via coupling reactions with arylboronic acids. Tetrahedron, 1999, 55, 12757-12770.
[http://dx.doi.org/10.1016/S0040-4020(99)00752-8]
(c) Collman, J.P.; Zhong, M. An efficient diamine.copper complex-catalyzed coupling of arylboronic acids with imidazoles. Org. Lett., 2000, 2(9), 1233-1236.
[http://dx.doi.org/10.1021/ol000033j ] [PMID: 10810715]
(d) Yu, S.; Saenz, J.; Srirangam, K.J. Facile synthesis of N-aryl pyrroles via Cu(II)-mediated cross coupling of electron deficient pyrroles and arylboronic acids. Org. Chem., 2002, 5, 1699-1702.
[http://dx.doi.org/10.1021/jo016131f]
[19]
(a) Barton, D.H.R.; Finet, J.P.; Khamsi, J. Copper catalysed phenylation of indoles by triphenylbismuth bis-trifluoroacetate. Tetrahedron Lett., , 1998, 29, 1115-1118.
[http://dx.doi.org/10.1016/S0040-4039(00)86664-2]
(b) Sorenson, R.J. Selective N-arylation of aminobenzanilides under mild conditions using triarylbismuthanes. J. Org. Chem., 2000, 65(23), 7747-7749.
[http://dx.doi.org/10.1021/jo000614m] [PMID: 11073575]
[20]
(a) Lopez-Alvarado, P.; Avendano, C.; Menendez, J.C. New synthetic applications of aryllead triacetates. N-arylation of azoles. J. Org. Chem. 1995, 60, 5678-5682.
[http://dx.doi.org/10.1021/jo00122a060]
(b) Elliott, G.I.; Konopelski, J.P. Complete N-1 regiocontrol in the formation of N-arylimidazoles. Synthesis of the active site His-Tyr side chain coupled dipeptide of cytochrome C oxidase. Org. Lett., 2000, 2(20), 3055-3057.
[http://dx.doi.org/10.1021/ol006271w] [PMID: 11009344]
[21]
(a) Smith, W.J.; Sawyer, J.S. A novel and selective method for the Narylation of indoles mediated by KFAl2O3. Tetrahedron Lett. 1996, 37, 299-302.
[http://dx.doi.org/10.1016/0040-4039(95)02157-4]
(b) Maiorana, S.; Baldoli, C.; Del Buttero, P.; Di Ciolo, M.; Papagni, A. Aromatic nucleophilic substitution on haloarene chromium tricarbonyl complexes: mild N-arylation of indoles. Synthesis, 1998, 1998(5), 735-738.
[http://dx.doi.org/10.1002/chin.199835160]
(c) Smith, W.J. Sawyer. J.S. An SnAr-based preparation of 1-(2-, 3-, and 4-pyridyl) indoles using potassium fluoride/alumina. Heterocycles, 1999, 51, 157-160.
[22]
Yang, Q. Wang. Y; Yang. L; Zhang. M. N-Arylation of heterocycles promoted by tetraethylenepentamine in water. Tetrahedron, 2013, 69, 6230-6233.
[http://dx.doi.org/10.1016/j.tet.2013.05.027]
[23]
Tilstam, U. Sulfolane: a versatile dipolar aprotic solvent. Org. Process Res. Dev., 2012, 16, 1273-1278.
[http://dx.doi.org/10.1021/op300108w]
[24]
Kolleth, A.; Müller, S.; Lumbroso, A.; Tanriver, G.; Catak, S.; Sulzer-Mossé, S. De Mesmaeker, A. Access to 3-aminobenzothiophenes and 3- aminothiophenes fused to 5-membered heteroaromatic rings through 6pelectrocyclization reaction of keteniminium salts;
Tetrahedron Lett, 2018, 59, 3242-3248.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.049]
[25]
Kwong, F.Y.; Klapars, A.; Buchwald, S.L. Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere. Org. Lett., 2002, 4, 581-583; (c) Strieter, E.R.; Bhayana, B.; Buchwald, S.L. Mechanistic studies on the copper-catalyzed N-arylation of amides. J. Am. Chem. Soc., 2009, 131, 78-88.
[26]
Leilei, S.; Dongmei, Z.; Riyuan, L.; Chun, Z.; Xun, L.; Ning, J. The direct C–H halogenations of indoles. Tet. Lett., 2014, 55, 2243-2245.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.071]
[27]
Natacha, D.; Terry, T.; Rodolphe, B.; Cyrille, K.; Guillaume, V. Synthesis of 3-arylated indolines from dearomatization of indoles. Tet. Lett., 2015, 56, 4413-4429.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.078]
[28]
Emiliya, V.N.; Galina, N.L.; Valery, N.C.; Oleg, N.C. Fluorine-containing indoles: synthesis and biological activity. J. Fluor. Chem., 2018, 212, 51-106.
[http://dx.doi.org/10.1016/j.jfluchem.2018.05.012]
[29]
Shen, F.; Tyagarajan, S.; Perera, D.; Krska, S.W.; Maligres, P.E.; Smith, M.R., III; Maleczka, R.E., Jr Bismuth acetate as a catalyst for the sequential protodeboronation of di- and triborylated indoles. Org. Lett., 2016, 18(7), 1554-1557.
[http://dx.doi.org/10.1021/acs.orglett.6b00356] [PMID: 26998615]
[30]
Tonin, M.D.L.; Zell, D.; Muller, V.; Ackermann, L. Ruthenium (II)-catalyzed C−H methylation with trifluoroborates. Synthesis, 2017, 49, 127-134.
[http://dx.doi.org/10.1055/s-0036-1588890]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy