Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Cosmos Caudatus: A Possible Drug Candidate for Oral Squamous Cell Carcinoma

Author(s): Alhakam A. Ahmed and Wan Nazatul. Shima Shahidan*

Volume 17, Issue 6, 2021

Published on: 11 September, 2020

Article ID: e010621185853 Pages: 5

DOI: 10.2174/1573407216999200911120311

Price: $65

Abstract

Oral squamous cell carcinoma (OSCC) is considered the most common neoplasm of the oral cavity and ranked the sixth most prevalent cancer worldwide. Risk factors correlated with the disease are smoking and alcohol drinking as well as HPV-16 infection. Bioactive compounds such as ascorbic acid, quercetin, kaempferol, chlorogenic acid, caffeic acid, ferulic acid, anthocyanins, and β-carotene are authenticated and shown to possess anti-oral cancer activity. Not to mention, anti- oxidant, anti-inflammatory, anti-oxidant, anti-viral, psychostimulant activities, and anti-carcinogenic effects. All of the referred constituents are abundantly found in a plant called Ulam raja, scientifically known as Cosmos caudatus (C. caudatus). C. caudatus is a plant traditionally used in Southeast Asia as an anti-diabetic, anti-arthritic, and anti-hypertensive remedy. This paper describes the substances of C. caudatus that have anti- oral cancer properties. Their properties, mechanism of action, and their most notable bioactive constituents against OSCC and their potential as chemotherapeutic drugs are discussed in this paper.

Keywords: Oral squamous cell carcinoma, cosmos caudatus, ulam raja, bioactive compounds, traditional medicine.

Graphical Abstract
[1]
Cheng S-H, Barakatun-Nisak MY, Anthony J, Ismail A. Potential medicinal benefits of Cosmos caudatus (Ulam Raja): A scoping review. J Res Med Sci 2015; 20(10): 1000-6.
[http://dx.doi.org/10.4103/1735-1995.172796] [PMID: 26929767]
[2]
Wan-Nadilah WA, Akhtar MT, Shaari K, Khatib A, Hamid AA, Hamid M. Variation in the metabolites and α-glucosidase inhibitory activity of Cosmos caudatus at different growth stages. BMC Complement Altern Med 2019; 19(1): 245-5.
[http://dx.doi.org/10.1186/s12906-019-2655-9] [PMID: 31488132]
[3]
Machiels JP, Lambrecht M, Hanin FX, et al. Advances in the management of squamous cell carcinoma of the head and neck. F1000Prime Rep 2014; 6: 44.
[http://dx.doi.org/10.12703/P6-44] [PMID: 24991421]
[4]
Decker J, Goldstein JC. Risk factors in head and neck cancer. N Engl J Med 1982; 306(19): 1151-5.
[http://dx.doi.org/10.1056/NEJM198205133061905] [PMID: 7040958]
[5]
Tee E, Ismail M, Nasir M, Khatijah I J I f M R. Kuala Lumpur, Nutrient Composition of Malaysian Foods Malaysian Food Composition Database Programme 1997.
[6]
Sumazian Y, Syahida A, Hakiman M, Maziah M J J M P R. Antioxidant activities, flavonoids, ascorbic acid and phenolic contents of Malaysian vegetables 2010; 4(10): 881-90.
[7]
Kandarkar SV, Reade PC. The effect of topical vitamin C on palatal oral mucosal carcinogenesis using 4-nitroquinoline-1-oxide. J Biol Buccale 1991; 19(3): 199-204.
[PMID: 1939042]
[8]
Potdar PD, Kandarkar SV, Sirsat SM. Modulation by vitamin C of tumour incidence and inhibition in oral carcinogenesis. Funct Dev Morphol 1992; 2(3): 167-72.
[PMID: 1490011]
[9]
Sies H, Stahl W, Sundquist AR. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci 1992; 669: 7-20.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb17085.x] [PMID: 1444060]
[10]
Haghiac M, Walle T. Quercetin induces necrosis and apoptosis in SCC-9 oral cancer cells. Nutr Cancer 2005; 53(2): 220-31.
[http://dx.doi.org/10.1207/s15327914nc5302_11] [PMID: 16573383]
[11]
Huang CY, Chan CY, Chou IT, Lien CH, Hung HC, Lee MF. Quercetin induces growth arrest through activation of FOXO1 transcription factor in EGFR-overexpressing oral cancer cells. J Nutr Biochem 2013; 24(9): 1596-603.
[http://dx.doi.org/10.1016/j.jnutbio.2013.01.010] [PMID: 23618529]
[12]
Yao S, Wang X, Li C, Zhao T, Jin H, Fang W. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway. Tumour Biol 2016; 37(8): 10247-56.
[http://dx.doi.org/10.1007/s13277-016-4912-6] [PMID: 26831667]
[13]
Jiang Y, Kusama K, Satoh K, Takayama E, Watanabe S, Sakagami H. Induction of cytotoxicity by chlorogenic acid in human oral tumor cell lines Phytomedicine : international journal of phytotherapy and phytopharmacology 2000; 7(6): 483-91.
[http://dx.doi.org/10.1016/S0944-7113(00)80034-3]
[14]
Bodhade AS, Dive AM. Chemoprevention of premalignant and malignant lesions of oral cavity: Recent trends. Eur J Dent 2013; 7(2): 246-50.
[http://dx.doi.org/10.4103/1305-7456.110198] [PMID: 24883036]
[15]
Dziedzic A, Kubina R, Kabała-Dzik A, Wojtyczka RD, Morawiec T, Bułdak RJ. Caffeic acid reduces the viability and migration rate of oral carcinoma cells (SCC-25) exposed to low concentrations of ethanol. Int J Mol Sci 2014; 15(10): 18725-41.
[http://dx.doi.org/10.3390/ijms151018725] [PMID: 25329614]
[16]
Celińska-Janowicz K, Zaręba I, Lazarek U, et al. Constituents of Propolis: Chrysin, Caffeic Acid, p-Coumaric Acid, and Ferulic Acid Induce PRODH/POX-Dependent Apoptosis in Human Tongue Squamous Cell Carcinoma Cell (CAL-27). Front Pharmacol 2018; 9: 336-6.
[http://dx.doi.org/10.3389/fphar.2018.00336] [PMID: 29681859]
[17]
Man SM, Karki R, Kanneganti T-D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 2017; 277(1): 61-75.
[http://dx.doi.org/10.1111/imr.12534] [PMID: 28462526]
[18]
Yue E, Tuguzbaeva G, Chen X, et al. Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma Phytomedicine : international journal of phytotherapy and phytopharmacology 2019; 56: 286-94.
[http://dx.doi.org/10.1016/j.phymed.2018.09.223]
[19]
Sankaranarayanan R, Mathew B, Varghese C, et al. Chemoprevention of oral leukoplakia with vitamin A and beta carotene: an assessment. Oral Oncol 1997; 33(4): 231-6.
[http://dx.doi.org/10.1016/S0964-1955(97)00010-9] [PMID: 9307711]
[20]
Barikbin B, Yousefi M, Rahimi H, Hedayati M, Razavi SM, Lotfi S. Antioxidant status in patients with lichen planus. Clin Exp Dermatol 2011; 36(8): 851-4.
[http://dx.doi.org/10.1111/j.1365-2230.2011.04152.x] [PMID: 21883397]
[21]
Glatthaar BE, Hornig DH, Moser U. The role of ascorbic acid in carcinogenesis. Adv Exp Med Biol 1986; 206: 357-77.
[http://dx.doi.org/10.1007/978-1-4613-1835-4_27] [PMID: 3591529]
[22]
Yang Y, Lu X, Liu Q, et al. Palmitoyl ascorbate and doxorubicin co-encapsulated liposome for synergistic anticancer therapy Europ J Pharma Sci 2017; 105: 219-29.
[http://dx.doi.org/10.1016/j.ejps.2017.05.038]
[23]
Bhat S, Babu SG, Bhat SK, Castelino RL, Rao K, Madi M. Status of Serum and Salivary Ascorbic Acid in Oral Potentially Malignant Disorders and Oral Cancer. Indian J Med Paediatr Oncol 2017; 38(3): 306-10.
[http://dx.doi.org/10.4103/ijmpo.ijmpo_67_16] [PMID: 29200679]
[24]
Marakala V, Malathi M, Shivashankara AR. Lipid peroxidation and antioxidant vitamin status in oral cavity and oropharyngeal cancer patients. Asian Pac J Cancer Prev 2012; 13(11): 5763-5.
[http://dx.doi.org/10.7314/APJCP.2012.13.11.5763] [PMID: 23317253]
[25]
Gupta A, Bhatt ML, Misra MK. Lipid peroxidation and antioxidant status in head and neck squamous cell carcinoma patients. Oxid Med Cell Longev 2009; 2(2): 68-72.
[http://dx.doi.org/10.4161/oxim.2.2.8160] [PMID: 20357927]
[26]
Kandarkar SV, Sawant SS. The effect of vitamin C on the hamster cheek pouch treated with the water soluble carcinogen 4-nitroquinoline-1-oxide (4NQO). Eur J Cancer B Oral Oncol 1996; 32B(4): 230-7.
[http://dx.doi.org/10.1016/0964-1955(96)00013-9] [PMID: 8776418]
[27]
Li Y, Yao J, Han C, et al. Quercetin, Inflammation and Immunity. Nutrients 2016; 8(3): 167-7.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[28]
Ma Y-S, Yao C-N, Liu H-C, et al. Quercetin induced apoptosis of human oral cancer SAS cells through mitochondria and endoplasmic reticulum mediated signaling pathways. Oncol Lett 2018; 15(6): 9663-72.
[http://dx.doi.org/10.3892/ol.2018.8584] [PMID: 29928342]
[29]
Kang JW, Kim JH, Song K, Kim SH, Yoon JH, Kim KS. Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase-3-dependent apoptosis in oral cavity cancer cells. Phytother Res 2010; 24(Suppl. 1): S77-82.
[http://dx.doi.org/10.1002/ptr.2913] [PMID: 19585476]
[30]
Sharifi-Rad M, Fokou PVT, Sharopov F, et al. Antiulcer Agents: From Plant Extracts to Phytochemicals in Healing Promotion. Molecules 2018; 23(7)E1751
[http://dx.doi.org/10.3390/molecules23071751] [PMID: 30018251]
[31]
Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 2011; 11(4): 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[32]
Naveed M, Hejazi V, Abbas M, et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother 2018; 97: 67-74.
[http://dx.doi.org/10.1016/j.biopha.2017.10.064] [PMID: 29080460]
[33]
Peng C Y, Yang H W, Chu Y H, et al. Caffeic Acid phenethyl ester inhibits oral cancer cell metastasis by regulating matrix metalloproteinase-2 and the mitogen-activated protein kinase pathway Evidence-based complementary and alternative medicine : eCAM 2012; 732578.
[http://dx.doi.org/10.1155/2012/732578]
[34]
Sgarbossa A, Giacomazza D, di Carlo M. Ferulic Acid: A Hope for Alzheimer’s Disease Therapy from Plants. Nutrients 2015; 7(7): 5764-82.
[http://dx.doi.org/10.3390/nu7075246] [PMID: 26184304]
[35]
Kanski J, Aksenova M, Stoyanova A, Butterfield DA. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 2002; 13(5): 273-81.
[http://dx.doi.org/10.1016/S0955-2863(01)00215-7] [PMID: 12015157]
[36]
Zhang X, Lin D, Jiang R, Li H, Wan J, Li H. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol Rep 2016; 36(1): 271-8.
[http://dx.doi.org/10.3892/or.2016.4804] [PMID: 27177074]
[37]
Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Front Chem 2018; 6(52): 52.
[http://dx.doi.org/10.3389/fchem.2018.00052] [PMID: 29594099]
[38]
He J, Giusti MM. Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 2010; 1: 163-87.
[http://dx.doi.org/10.1146/annurev.food.080708.100754] [PMID: 22129334]
[39]
Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014; 6(2): 466-88.
[http://dx.doi.org/10.3390/nu6020466] [PMID: 24473231]
[40]
Grune T, Lietz G, Palou A, et al. Beta-carotene is an important vitamin A source for humans. J Nutr 2010; 140(12): 2268S-85S.
[http://dx.doi.org/10.3945/jn.109.119024] [PMID: 20980645]
[41]
Garewal HS. Beta-carotene and vitamin E in oral cancer prevention. J Cell Biochem Suppl 1993; 17F: 262-9.
[http://dx.doi.org/10.1002/jcb.240531039] [PMID: 8412203]
[42]
Garewal HS, Schantz S. Emerging role of β-carotene and antioxidant nutrients in prevention of oral cancer. Arch Otolaryngol Head Neck Surg 1995; 121(2): 141-4.
[http://dx.doi.org/10.1001/archotol.1995.01890020005002] [PMID: 7840919]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy