Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Madhuca longifolia Embedded Silver Nanoparticles Attenuate Diethylnitrosamine (DEN)-Induced Renal Cancer via Regulating Oxidative Stress

Author(s): Deepika Singh*, Ekta Yadav, Vikas Kumar and Amita Verma

Volume 18, Issue 5, 2021

Published on: 10 September, 2020

Page: [634 - 644] Pages: 11

DOI: 10.2174/1567201817666200910154301

Price: $65

Abstract

Objective: Madhuca longifolia has been used for the treatment of renal cancer. Therefore, the current study describes the protective effects of biofabricated silver nanoparticles (MLAg- NPs) using Madhuca longifolia aqueous leaves extract against diethylnitrosamine (DEN) induced Renal Cell Carcinoma (RCC) in rats.

Methods: Animals were categorized into five groups and treated with doses of silver nanoparticles for 16 weeks. Antineoplastic effect in renal cancer was dose dependent to control the macroscopical variations when compared to DEN induced group. Significant changes were observed in biochemical parameters and dose graded improvement in the level of antioxidants parameters were accountable for its protective nature.

Results: Silver nanoparticles in dose dependent manner was effective to modify the raised levels of pro-inflammatory cytokines and inflammatory mediators during renal cancer. Alteration in renal histopathology were also detected in the silver nanoparticles treated group, which show its safety concern. Biofabricated silver nanoparticles (MLAgNPs) using Madhuca longifolia can convey significant chemo-protective effect against renal cancer by suppressing the IL-6, TNF-α and IL-1β by nuclear factor-kappa B (NF-κB) pathway.

Conclusion: Our outcomes implicates that biofabricated MLAgNPs exhibited a chemoprotective potential in the prevention and intervention of RCC.

Keywords: Madhuca longifolia, diethylnitrosamine, biofabricated silver nanoparticles, anti-neoplastic, renal cancer, antioxidants.

Graphical Abstract
[1]
Maher, E.R. Genomics and epigenomics of renal cell carcinoma. Semin. Cancer Biol., 2013, 23(1), 10-17.
[http://dx.doi.org/10.1016/j.semcancer.2012.06.003] [PMID: 22750267]
[2]
Bopp, A.; Wartlick, F.; Henninger, C.; Schwarz, M.; Kaina, B.; Fritz, G. Rac1 promotes diethylnitrosamine (DEN)-induced formation of liver tumors. Carcinogenesis, 2015, 36(3), 378-389.
[http://dx.doi.org/10.1093/carcin/bgu323] [PMID: 25556150]
[3]
Jang, K-J.; Mehr, A.P.; Hamilton, G.A.; McPartlin, L.A.; Chung, S.; Suh, K-Y.; Ingber, D.E. Integr. Biol., 2013, 5, 1119.
[http://dx.doi.org/10.1039/c3ib40049b]
[4]
Saratale, R.G.; Saratale, G.D.; Shin, H.S.; Jacob, J.M.; Pugazhendhi, A.; Bhaisare, M.; Kumar, G. Environ. Sci. Pollut. Res. Int., 2017, 1-20.
[5]
Zhang, G.; Liu, Y.; Gao, X.; Chen, Y. Nanoscale Res. Lett., 2014, 9, 1-8.
[http://dx.doi.org/10.1186/1556-276X-9-1] [PMID: 24380376]
[6]
Annalakshmi, R.; Mahalakshmi, S.; Charles, A.; Sahayam, C.S. Drug Invent. Today, 2013, 5, 76-80.
[http://dx.doi.org/10.1016/j.dit.2013.05.004]
[7]
Singh, D.; Singh, M.;Yadav, N.; Falls, N.; Komal, U.; Dangi, D.S.; Kumar, V.; Verma,A. Amelioration of diethylnitrosamine (DEN)-induced hepatocellular carcinogenesis in animal models via knockdown oxidative stress and proinflammatory markers by Madhuca longifolia embedded silver nanoparticles. RSC Adv., 2018, 8, 6940-6953.
[8]
Atanassova, M.; Georgieva, S.; Ivancheva, K. Ivancheva J. Univ. Chem. Technol. Metall., 2011, 46, 81-88.
[9]
Samatha, T.; Shyamsundarachary, R.; Srinivas, P.; Swamy, N.R.; Asian, J. Pharm. Clin. Res., 2012, 5, 177-179.
[10]
Chen, J-C.; Yeh, J-Y.; Chen, P-C.; Hsu, C-K.; Asian, J. Heal. Inf. Sci., 2007, 2, 1-11.
[11]
Li, S.; Li, S.K.; Gan, R.Y.; Song, F.L.; Kuang, L.; Bin Li, H. Ind. Crops Prod., 2013, 51, 289-298.
[http://dx.doi.org/10.1016/j.indcrop.2013.09.017]
[12]
Anwar, F.; Al-Abbasi, F.A.; Bhatt, P.C.; Ahmad, A.; Sethi, N.; Kumar, V. Toxicol. Res. (Camb.), 2015, 4, 1308-1323.
[http://dx.doi.org/10.1039/C5TX00146C]
[13]
Kanter, M. Clinical Chemistry; The Bobber Merrill Company Inc.: USA, 1975.
[14]
Bevc, S.; Ekart, R.; Hojs, R. Creatinine: Production; Diagnostic Uses and Role in Renal Disease, 2013, pp. 151-160.
[15]
Filiopoulos, V.; Hadjiyannakos, D.; Vlassopoulos, D. New insights into uric acid effects on the progression and prognosis of chronic kidney disease. Ren. Fail., 2012, 34(4), 510-520.
[http://dx.doi.org/10.3109/0886022X.2011.653753] [PMID: 22260409]
[16]
Della Corte, F. Unique amino acids cluster for switching from the dehydrogenase to oxidase form of xanthine oxidoreductase. Biochem. journal, 1972, 126, 739-745.
[17]
Chan, F.K.M.; Moriwaki, K.; De Rosa, M.J. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol. Biol., 2013, 979, 65-70.
[http://dx.doi.org/10.1007/978-1-62703-290-2_7] [PMID: 23397389]
[18]
Mancinelli, E.; Shaw, D.J.; Meredith, A.L. γ-Glutamyl-transferase (GGT) activity in the urine of clinically healthy domestic rabbits (Oryctolagus cuniculus). Vet. Rec., 2012, 171(19), 475.
[http://dx.doi.org/10.1136/vr.101081] [PMID: 23092973]
[19]
C. H. D. and M. P. Wright J.R. and R.. Arch. Biochem. Biophys., 1981, 206, 296-304.
[http://dx.doi.org/10.1016/0003-9861(81)90095-3] [PMID: 7224639]
[20]
Claiborne, A. Handbook of methods for oxygen radical research; CRC: Boca Raton, FL, 1985, pp. 283-284.
[21]
Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc., 2010, 5(1), 51-66.
[http://dx.doi.org/10.1038/nprot.2009.197] [PMID: 20057381]
[22]
Saydam, N.; Kirb, A.; Demir, O.; Hazan, E.; Oto, O.; Saydam, O.; Güner, G. Determination of glutathione, glutathione reductase, glutathione peroxidase and glutathione S-transferase levels in human lung cancer tissues. Cancer Lett., 1997, 119(1), 13-19.
[http://dx.doi.org/10.1016/S0304-3835(97)00245-0] [PMID: 18372516]
[23]
Flohé, L.; Günzler, W.A. Assays of glutathione peroxidase. Methods Enzymol., 1984, 105, 114-121.
[http://dx.doi.org/10.1016/S0076-6879(84)05015-1] [PMID: 6727659]
[24]
Mannervik, B. Depierre and B. Mannervik. Biochim. Biophys. Acta, 1999, 582, 67-78.
[25]
Moron, M.S.; Depierre, J.W.; Mannervik, B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta, 1979, 582(1), 67-78.
[http://dx.doi.org/10.1016/0304-4165(79)90289-7] [PMID: 760819]
[26]
K. Y. Pick A. Secretory IgA antibodies synergize with IgG in promoting ADCC by human polymorphonuclear cells, monocytes, and lymphocytes. Cell. Immunol., 1981, 59, 301-318.
[http://dx.doi.org/10.1016/0008-8749(81)90411-1] [PMID: 6269759]
[27]
Rosas-Arreguín, P.; Arteaga-Nieto, P.; Reynoso-Orozco, R.; Villagómez-Castro, J.C.; Sabanero-López, M.; Puebla-Pérez, A.M.; Calvo-Méndez, C. Bursera fagaroides, effect of an ethanolic extract on ornithine decarboxylase (ODC) activity in vitro and on the growth of Entamoeba histolytica. Exp. Parasitol., 2008, 119(3), 398-402.
[http://dx.doi.org/10.1016/j.exppara.2008.04.003] [PMID: 18501354]
[28]
C. A. Smart RC. Huang MT. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-Tetradecanoylphorbol-13-acetate. Carcinogenesis, 1986, 7, 1865-1870.
[29]
Cavallo, F.; De Giovanni, C.; Nanni, P.; Forni, G.; Lollini, P.L. 2011: the immune hallmarks of cancer. Cancer Immunol. Immunother., 2011, 60(3), 319-326.
[http://dx.doi.org/10.1007/s00262-010-0968-0] [PMID: 21267721]
[30]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[31]
Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem., 2009, 57(5), 1768-1774.
[http://dx.doi.org/10.1021/jf803011r] [PMID: 19199445]
[32]
Kim, S.; Choi, I.H. Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages. Yonsei Med. J., 2012, 53(3), 654-657.
[http://dx.doi.org/10.3349/ymj.2012.53.3.654] [PMID: 22477013]
[33]
Cruz-Vega, D.; Verde-Star, M.J.; Salinas-Gonzalez, N.R.; Rosales-Hernandez, B.; Estrada-Garcia, I.; Mendez-Aragon, P.; Carranza-Rosales, P.; Gonzalez-Garza, M.; Castro-Garza, J. Zhongguo Zhongyao Zazhi, 2009, 22, 557-559.
[34]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[35]
J. a Kellum, N. Lameire, P. Aspelin, R. S. Barsoum, E. a Burdmann, S. L. Goldstein, C. a Herzog, M. Joannidis, A. Kribben, A. S. Levey, A. M. MacLeod, R. L. Mehta, P. T. Murray, S. Naicker, S. M. Opal, F. Schaefer, M. Schetz and S. Uchino. Kidney Int. Suppl., 2012, 2, 1-138.
[36]
Khan, M.A.; Tania, M.; Zhang, D.Z.; Chen, H.C. Chin. J. Cancer Res., 2010, 22, 87-92.
[http://dx.doi.org/10.1007/s11670-010-0087-7]
[37]
Ganguli, A.; Kohli, H.S.; Khullar, M.; Lal Gupta, K.; Jha, V.; Sakhuja, V. Lipid peroxidation products formation with various intravenous iron preparations in chronic kidney disease. Ren. Fail., 2009, 31(2), 106-110.
[http://dx.doi.org/10.1080/08860220802599106] [PMID: 19212906]
[38]
Wu, D.; Kaan, H.Y.K.; Zheng, X.; Tang, X.; He, Y.; Vanessa Tan, Q.; Zhang, N.; Song, H. Structural basis of Ornithine Decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1. Sci. Rep., 2015, 5, 14738.
[http://dx.doi.org/10.1038/srep14738] [PMID: 26443277]
[39]
Raisz, L. G.; Lorenzo, J. A. Dynamics of Bone and Cartilage Metabolism, 2006, 115-128.
[40]
Liu, T.; Zhang, L.; Joo, D.; Sun, S-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy