Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

Effect of pH and Temperature on the Growth and Laccases Production in the Cultivation of Pleurotus sajor-caju PS-2001 in Stirred-tank Bioreactor

Author(s): Fernanda Bettin*, Letícia O. da Rosa, Queli Montanari, Aldo J. P. Dillon and Mauricio M. da Silveira

Volume 9, Issue 3, 2020

Page: [219 - 229] Pages: 11

DOI: 10.2174/2211550109999200908090053

Price: $65

Abstract

Background: Laccases are multi-copper enzymes that oxidize phenolic/aromatic compounds and represent a promising alternative to environmental decontamination processes and biotechnological applications.

Objective: The effects of pH and temperature on the growth and the production of laccases during the cultivation of Pleurotus sajor-caju PS-2001 in stirred-tank bioreactor were assessed.

Methods: Assays were performed at fixed pH values from 4.5 to 7.5 (28°C) and at temperatures from 24 to 36°C (pH 6.5).

Results: In pH testing, larger biomass concentration (4.5 g L-1) was reached at pH 5.5, whereas concentrations of 3.7, 3.1 and 1.7 g L-1 were measured at pH 4.5, 6.5 and 7.5, respectively. With ABTS as substrate, peaks of laccases activity of 50, 30 and 24 U mL-1, at pH 6.5, 5.5 and 7.5, respectively, were detected. Under different temperatures, higher mycelial concentrations (3.0 g L-1) were quantified at 66 hours at 28°C, while concentrations below 2.0 g L-1 were observed at 24, 32, and 36°C. Maximum laccases activities of 50, 42, 6 and 5 U mL-1 were obtained at 28, 32, 24, and 36°C, respectively. In all tests, the presence of other phenol oxidases – total peroxidase, manganese peroxidase, lignin peroxidase and veratryl alcohol oxidase – was observed.

Conclusion: The results indicate that variations in pH and temperature during fungal cultivation strongly affect the enzymatic activity and growth kinetics of P. sajor-caju PS-2001 in a stirredtank bioreactor.

Keywords: Pleurotus sajor-caju, laccases, phenol oxidases, pH, temperature, submerged process, growth kinetics, stirred-tank bioreactor.

Graphical Abstract
[1]
Cohen R, Persky L, Hadar Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol 2002; 58(5): 582-94.
[http://dx.doi.org/10.1007/s00253-002-0930-y] [PMID: 11956739]
[2]
Stajic M, Persky L, Friesem D, et al. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microb Technol 2006; 38: 65-73.
[http://dx.doi.org/10.1016/j.enzmictec.2005.03.026]
[3]
Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 2000; 35: 1153-69.
[http://dx.doi.org/10.1016/S0032-9592(00)00152-7]
[4]
Gill K, Arora S. Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi. J Ind Microbiol Biotechnol 2003; 30(1): 28-33.
[http://dx.doi.org/10.1007/s10295-002-0002-4] [PMID: 12545383]
[5]
Gianfreda L, Xu F, Bollag JM. Laccases: A useful group of oxidoreductive enzymes. Bioremediat J 1999; 3: 253-9.
[http://dx.doi.org/10.1080/10889869991219163]
[6]
Soden DM, Dobson ADW. Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 2001; 147(Pt 7): 1755-63.
[http://dx.doi.org/10.1099/00221287-147-7-1755] [PMID: 11429453]
[7]
Gasser CA, Ammann EM, Shahgaldian P, Corvini PFX. Laccases to take on the challenge of emerging organic contaminants in wastewater. Appl Microbiol Biotechnol 2014; 98(24): 9931-52.
[http://dx.doi.org/10.1007/s00253-014-6177-6] [PMID: 25359481]
[8]
Breen A, Singleton FL. Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 1999; 10(3): 252-8.
[http://dx.doi.org/10.1016/S0958-1669(99)80044-5] [PMID: 10361070]
[9]
Tinoco R, Pickard MA, Vazquez-Duhalt R. Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Lett Appl Microbiol 2001; 32(5): 331-5.
[http://dx.doi.org/10.1046/j.1472-765X.2001.00913.x] [PMID: 11328500]
[10]
Bettin F, Cousseau F, Martins K, et al. Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures. J Environ Manage 2019; 236: 581-90.
[http://dx.doi.org/10.1016/j.jenvman.2019.02.011] [PMID: 30771677]
[11]
Bettin F, Cousseau F, Martins K, et al. Effects of pH, temperature and agitation on the decolourisation of dyes by laccase-containing enzyme preparation from Pleurotus sajor-caju. Braz Arch Biol Technol 2019; 62: e19180338.
[http://dx.doi.org/10.1590/1678-4324-2019180338]
[12]
Zaccaria S, Boff NA, Bettin F, Dillon AJP. Use of micro- and ultrafiltration membranes for concentration of laccase-rich enzymatic extract of Pleurotus sajor-caju PS-2001 and application in dye decolorization. Chem Pap 2019; 73: 3085-94.
[http://dx.doi.org/10.1007/s11696-019-00845-3]
[13]
Dhawan S, Lal R, Hanspal M, Kuhad RC. Effect of antibiotics on growth and laccase production from Cyathus bulleri and Pycnoporus cinnabarinus. Bioresour Technol 2005; 96(12): 1415-8.
[http://dx.doi.org/10.1016/j.biortech.2004.11.014] [PMID: 15792590]
[14]
Rodríguez Couto S, Toca Herrera JL. Industrial and biotechnological applications of laccases: A review. Biotechnol Adv 2006; 24(5): 500-13.
[http://dx.doi.org/10.1016/j.biotechadv.2006.04.003] [PMID: 16716556]
[15]
Zheng F, An Q, Meng G, et al. A novel laccase from white rot fungus Trametes orientalis: Purification, characterization, and application. Int J Biol Macromol 2017; 102: 758-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.089] [PMID: 28455255]
[16]
Márquez-Rocha FJ, Guillén NGK, Sánchez VJE, Vázquez-Duhalt R. Growth characteristics of Pleurotus ostreatus in bioreactors. Biotechnol Tech 1999; 13: 29-32.
[http://dx.doi.org/10.1023/A:1008861432337]
[17]
Mikiashvili N, Wasser SP, Nevo E, Elisashvili V. Effects of carbon and nitrogen sources on Pleurotus ostreatus ligninolytic enzyme activity. World J Microbiol Biotechnol 2006; 22: 999-1002.
[http://dx.doi.org/10.1007/s11274-006-9132-6]
[18]
Tang YJ, Zhu LW, Li HM, Li DS. Submerged culture of mushrooms in bioreactors: Challenges, current state-of-the-art, and future prospects. Food Technol Biotechnol 2007; 45: 221-9.
[19]
Elisashvili V. Submerged cultivation of medicinal mushrooms: Bioprocesses and products. [review] Int J Med Mushrooms 2012; 14(3): 211-39.
[http://dx.doi.org/10.1615/IntJMedMushr.v14.i3.10] [PMID: 22577974]
[20]
Bettin F, Rosa LO, Montanari Q, Zaccaria S, Dillon AJP, Silveira MM. Influence of oxygen supply on growth and laccases production by Pleurotus sajor-caju PS-2001 in submerged process. Braz Arch Biol Technol 2020; 63.
[http://dx.doi.org/10.1590/1678-4324-2020190015]
[21]
Bettin F, Rosa LO, Montanari Q, et al. Growth, kinetics, production, and characterization of extracellular laccases from Pleurotus sajor-caju PS-2001. Process Biochem 2011; 46: 758-64.
[http://dx.doi.org/10.1016/j.procbio.2010.12.002]
[22]
Bettin F, Montanari Q, Calloni R, Gaio TA, Silveira MM, Dillon AJP. Additive effects of CuSO4 and aromatic compounds on laccase production by Pleurotus sajor-caju PS-2001 using sucrose as a carbon source. Braz J Chem Eng 2014; 31: 335-46.
[http://dx.doi.org/10.1590/0104-6632.20140312s00002241]
[23]
Majeau JA, Brar SK, Tyagi RD. Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 2010; 101(7): 2331-50.
[http://dx.doi.org/10.1016/j.biortech.2009.10.087] [PMID: 19948398]
[24]
Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 2004; 22(3): 189-259.
[http://dx.doi.org/10.1016/j.biotechadv.2003.09.005] [PMID: 14665401]
[25]
Galhaup C, Wagner H, Hinterstoisser B, Haltrich D. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microb Technol 2002; 30: 529-36.
[http://dx.doi.org/10.1016/S0141-0229(01)00522-1]
[26]
Songulashvili G, Flahaut S, Demarez M, et al. High yield production in seven days of Coriolopsis gallica 1184 laccase at 50 L scale; enzyme purification and molecular characterization. Fungal Biol 2016; 120(4): 481-8.
[http://dx.doi.org/10.1016/j.funbio.2016.01.008] [PMID: 27020150]
[27]
Tuomela M, Vikman M, Hatakka A, Itävaara M. Biodegradation of lignin in a compost environment: A review. Bioresour Technol 2000; 72: 169-83.
[http://dx.doi.org/10.1016/S0960-8524(99)00104-2]
[28]
Bettin F, Montanari Q, Calloni R, Gaio TA, Silveira MM, Dillon AJP. Production of laccases in submerged process by Pleurotus sajor-caju PS-2001 in relation to carbon and organic nitrogen sources, antifoams and Tween 80. J Ind Microbiol Biotechnol 2009; 36(1): 1-9.
[http://dx.doi.org/10.1007/s10295-008-0463-1] [PMID: 18758836]
[29]
Mandels M, Reese ET. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 1957; 73(2): 269-78.
[http://dx.doi.org/10.1128/JB.73.2.269-278.1957] [PMID: 13416182]
[30]
Sobotka M, Prokop A, Dunn II, Einsele A. Review of methods for the measurement of oxygen transfer in microbial systems Annual reports on fermentation process London: Academic Press. 1982; pp. 127-210.
[http://dx.doi.org/10.1016/B978-0-12-040305-9.50009-1]
[31]
Miller GL. Use of dinitrosalicilic acid reagent for determination of reducing sugar. Anal Chem 1959; 31: 426-8.
[http://dx.doi.org/10.1021/ac60147a030]
[32]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[33]
Wolfenden BS, Willson RL. Radical-cations as reference chromogens in the kinetic studies of one-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J Chem Soc Perkin Trans II 1982; 2: 805-12.
[http://dx.doi.org/10.1039/P29820000805]
[34]
Heinzkill M, Bech L, Halkier T, Schneider P, Anke T. Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl Environ Microbiol 1998; 64(5): 1601-6.
[http://dx.doi.org/10.1128/AEM.64.5.1601-1606.1998] [PMID: 9572923]
[35]
Kuwahara M, Glenn JK, Morgan MA, Gold MH. Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 1984; 169: 247-50.
[http://dx.doi.org/10.1016/0014-5793(84)80327-0]
[36]
Bourbonnais R, Paice MG. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J 1988; 255(2): 445-50.
[http://dx.doi.org/10.1042/bj2550445] [PMID: 3060110]
[37]
Tien M, Kirk TK. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci USA 1984; 81(8): 2280-4.
[http://dx.doi.org/10.1073/pnas.81.8.2280] [PMID: 16593451]
[38]
Shu CH, Lin KJ, Wen BJ. Effects of culture pH on the production of bioactive polysaccharides by Agaricus blazei in batch cultures. J Chem Technol Biotechnol 2004; 79: 998-1002.
[http://dx.doi.org/10.1002/jctb.1083]
[39]
Borràs E, Blánquez P, Sarrà M, Caminal G, Vincent T. Trametes versicolor pellets production: Low-cost medium and scale-up. Biochem Eng J 2008; 42: 61-6.
[http://dx.doi.org/10.1016/j.bej.2008.05.014]
[40]
Thurston CF. The structure and function of fungal laccases. Microbiol 1994; 140: 19-26.
[http://dx.doi.org/10.1099/13500872-140-1-19]
[41]
Arora DS, Gill PK. Laccase production by some white rot fungi under different nutritional conditions. Bioresour Technol 2000; 73: 283-5.
[http://dx.doi.org/10.1016/S0960-8524(99)00141-8]
[42]
Pointing SB, Jones EBG, Vrijmoed LLP. Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 2000; 92: 139-44.
[http://dx.doi.org/10.1080/00275514.2000.12061138]
[43]
Vasconcelos AF, Barbosa AM, Dekker RFH, Scarminio IS, Rezende MI. Optimization of laccase production by Botryospaeria sp. in the presence of veratryl alcohol by the response- surface method. Process Biochem 2000; 35: 1131-8.
[http://dx.doi.org/10.1016/S0032-9592(00)00149-7]
[44]
Adejoye OD, Fasidi IO. Effect of cultural conditions on biomass and laccase production in submerged medium by Schizophyllum commune (Fr.), a nigerian edible mushroom. Electron J Environ Agric Food Chem 2009; 8: 1186-93.
[45]
Ryu DY, Mandels M. Cellulases: Biosynthesis and applications. Enzyme Microb Technol 1980; 2: 91-102.
[http://dx.doi.org/10.1016/0141-0229(80)90063-0]
[46]
Koroleva OV, Stepanova EV, Gavrilova VP, et al. Laccase and Mn-peroxidase production by Coriolus hirsutus strain 075 in a jar fermentor. J Biosci Bioeng 2002; 93(5): 449-55.
[http://dx.doi.org/10.1016/S1389-1723(02)80091-3] [PMID: 16233231]
[47]
Gaden EL. Fermentation process kinetics. J Biochem Microbiol Technol Eng 1959; 1: 413-9.
[http://dx.doi.org/10.1002/jbmte.390010407]
[48]
Thiruchelvam AT, Ramsay JA. Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor. Appl Microbiol Biotechnol 2007; 74(3): 547-54.
[http://dx.doi.org/10.1007/s00253-006-0695-9] [PMID: 17216467]
[49]
Fu SY, Yu HS, Buswell JA. Effect of a nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor-caju. FEMS Microbiol Lett 1997; 147: 133-7.
[http://dx.doi.org/10.1111/j.1574-6968.1997.tb10232.x]
[50]
Saparrat MCN, Martínez MJ, Cabello MN, Arambarri AM. Screening for ligninolytic enzymes in autochthonous fungal strains from Argentina isolated from different substrata. Rev Iberoam Micol 2002; 19(3): 181-5.
[PMID: 12826000]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy