Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Exploring the Potential Inhibition of Candidate Drug Molecules for Clinical Investigation Based on their Docking or Crystallographic Analyses against M. tuberculosis Enzyme Targets

Author(s): Rishita Dey, Sisir Nandi*, Asmita Samadder, Aaruni Saxena and Anil Kumar Saxena*

Volume 20, Issue 29, 2020

Page: [2662 - 2680] Pages: 19

DOI: 10.2174/1568026620666200903163921

Price: $65

Abstract

Tuberculosis (TB) is a devastating disease responsible for millions of humans’ deaths worldwide. It is caused by a mycobacterial organism, the tubercle bacillus or Mycobacterium tuberculosis. Although TB can be treated, cured and can be prevented if patients take prescribed medicines, scientists have never come close to wiping it out due to a sharp rise in the incidence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) mycobacterium strains. Due to long regimen treatment and emergence of MDR and XDR-TB, it is urgent to re-engineer and reposition old drugs for developing new antimycobacterial entities with novel mechanisms of action to achieve effective TB control even against the resistant forms of TB. To combat the dreadful MDR and XDR-TB, potential targets are being extensively searched for the last couple of years for the design and discovery of active potential antitubercular chemotherapeutics. To explore the disease virulence, potential new tubercular target enzymes such as InhA, MmpL3, ATP synthase, DprE1, QcrB and MenA have been taken into consideration in the present study and the structure-based design of the corresponding target inhibitors which are under clinical investigation has been attempted to identify structural features for the discovery of new chemical entities (NCEs) having specificity towards MDR and XDR Mycobacterium tuberculosis (M. tuberculosis).

Keywords: Potential anti-tubercular targets, InhA, MmpL3, ATP synthase, DprE1, QcrB, MenA, Structure-based drug design.

Graphical Abstract
[1]
WHO Tuberculosis Fact sheet No 104; World Health Organization: Geneva, 2015.
[2]
Mandell, G.; Bennett, J.; Dolin, R. Douglas, and Bennett’s principles and practice of infectious diseases; Elsevier: Amsterdam, 2010.
[3]
Manina, G.; Pasca, M.R.; Buroni, S.; De Rossi, E.; Riccardi, G. Decaprenylphosphoryl-β-D-ribose 2′-epimerase from Mycobac-terium tuberculosis is a magic drug target. Curr. Med. Chem., 2010, 17(27), 3099-3108.
[http://dx.doi.org/10.2174/092986710791959693] [PMID: 20629622]
[4]
Liu, C.H.; Li, L.; Chen, Z.; Wang, Q.; Hu, Y.L.; Zhu, B.; Woo, P.C. Characteristics and treatment outcomes of patients with MDR and XDR tuberculosis in a TB referral hospital in Beijing: a 13-year experience. PLoS One, 2011, 6(4)e19399
[http://dx.doi.org/10.1371/journal.pone.0019399] [PMID: 21559362]
[5]
Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; van Soolingen, D.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet, 2010, 375(9728), 1830-1843.
[http://dx.doi.org/10.1016/S0140-6736(10)60410-2] [PMID: 20488523]
[6]
WHO. Tuberculosis, 2020. Available from: 2020.https://www.who.int/news-room/fact-sheets/detail/tuberculosis
[7]
Delogu, G.; Sali, M.; Fadda, G. The biology of mycobacterium tuberculosis infection. Mediterr. J. Hematol. Infect. Dis., 2013, 5(1)e2013070
[http://dx.doi.org/10.4084/mjhid.2013.070] [PMID: 24363885]
[8]
CDC Treatment of Tuberculosis, American Thoracic Society, CDC and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med., 2003, 167.
[9]
Marrakchi, H.; Lanéelle, G.; Quémard, A.K. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology, 2000, 146(Pt 2), 289-296.
[http://dx.doi.org/10.1099/00221287-146-2-289] [PMID: 10708367]
[10]
Daffé, M.; Draper, P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol., 1998, 39, 131-203.
[http://dx.doi.org/10.1016/S0065-2911(08)60016-8] [PMID: 9328647]
[11]
Vilchèze, C.; Morbidoni, H.R.; Weisbrod, T.R.; Iwamoto, H.; Kuo, M.; Sacchettini, J.C.; Jacobs, W.R., Jr Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol., 2000, 182(14), 4059-4067.
[http://dx.doi.org/10.1128/JB.182.14.4059-4067.2000] [PMID: 10869086]
[12]
Campaniço, A.; Moreira, R.; Lopes, F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur. J. Med. Chem., 2018, 150, 525-545.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.020] [PMID: 29549838]
[13]
Li, W.; Upadhyay, A.; Fontes, F.L.; North, E.J.; Wang, Y.; Crans, D.C.; Grzegorzewicz, A.E.; Jones, V.; Franzblau, S.G.; Lee, R.E.; Crick, D.C.; Jackson, M. Novel insights into the mechanism of inhibition of MmpL3, a target of multiple pharmacophores in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(11), 6413-6423.
[http://dx.doi.org/10.1128/AAC.03229-14] [PMID: 25136022]
[14]
Nataraj, V.; Varela, C.; Javid, A.; Singh, A.; Besra, G.S.; Bhatt, A. Mycolic acids: deciphering and targeting the Achilles’ heel of the tubercle bacillus. Mol. Microbiol., 2015, 98(1), 7-16.
[http://dx.doi.org/10.1111/mmi.13101] [PMID: 26135034]
[15]
Bailo, R.; Bhatt, A.; Aínsa, J.A. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem. Pharmacol., 2015, 96(3), 159-167.
[http://dx.doi.org/10.1016/j.bcp.2015.05.001] [PMID: 25986884]
[16]
Li, W.; Obregón-Henao, A.; Wallach, J.B.; North, E.J.; Lee, R.E.; Gonzalez-Juarrero, M.; Schnappinger, D.; Jackson, M. Therapeutic potential of the mycobacterium tuberculosis mycolic acid transporter, mmpl3. Antimicrob. Agents Chemother., 2016, 60(9), 5198-5207.
[http://dx.doi.org/10.1128/AAC.00826-16] [PMID: 27297488]
[17]
Belardinelli, J.M.; Yazidi, A.; Yang, L.; Fabre, L.; Li, W.; Jacques, B.; Angala, S.K.; Rouiller, I.; Zgurskaya, H.I.; Sygusch, J.; Jackson, M. Structure-function profile of mmpl3, the essential mycolic acid transporter from mycobacterium tuberculosis. ACS Infect. Dis., 2016, 2(10), 702-713.
[http://dx.doi.org/10.1021/acsinfecdis.6b00095] [PMID: 27737557]
[18]
Saier, M.H., Jr; Paulsen, I.T. Phylogeny of multidrug transporters. Semin. Cell Dev. Biol., 2001, 12(3), 205-213.
[http://dx.doi.org/10.1006/scdb.2000.0246] [PMID: 11428913]
[19]
Domenech, P.; Reed, M.B.; Barry, C.E., III Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun., 2005, 73(6), 3492-3501.
[http://dx.doi.org/10.1128/IAI.73.6.3492-3501.2005] [PMID: 15908378]
[20]
Zhang, B.; Li, J.; Yang, X.; Wu, L.; Zhang, J.; Yang, Y.; Zhao, Y.; Zhang, L.; Yang, X.; Yang, X.; Cheng, X.; Liu, Z.; Jiang, B.; Jiang, H.; Guddat, L.W.; Yang, H.; Rao, Z. Crystal structures of membrane transporter mmpl3, an anti-tb drug target. Cell, 2019, 176(3), 636-648.e13.
[http://dx.doi.org/10.1016/j.cell.2019.01.003] [PMID: 30682372]
[21]
Li, W.; Yazidi, A.; Pandya, A.N.; Hegde, P.; Tong, W.; Calado Nogueira de Moura, V.; North, E.J.; Sygusch, J.; Jackson, M.; Jackson, M. Mmpl3 as a target for the treatment of drug-resistant nontuberculous mycobacterial infections. Front. Microbiol., 2018, 9, 1547.
[http://dx.doi.org/10.3389/fmicb.2018.01547] [PMID: 30042757]
[22]
Weber, J.; Senior, A.E. Catalytic mechanism of F1-ATPase. Biochim. Biophys. Acta, 1997, 1319(1), 19-58.
[http://dx.doi.org/10.1016/S0005-2728(96)00121-1] [PMID: 9107315]
[23]
Boyer, P.D. The ATP synthase--a splendid molecular machine. Annu. Rev. Biochem., 1997, 66, 717-749.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.717] [PMID: 9242922]
[24]
Fillingame, R.H. The Bacteria; Krulwich, T.A., Ed.; Academic: New York, 1990, Vol. XII, pp. 345-391.
[25]
Yasuda, R.; Noji, H.; Yoshida, M.; Kinosita, K., Jr; Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature, 2001, 410(6831), 898-904.
[http://dx.doi.org/10.1038/35073513] [PMID: 11309608]
[26]
Fillingame, R.H.; Angevine, C.M.; Dmitriev, O.Y. Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett., 2003, 555(1), 29-34.
[http://dx.doi.org/10.1016/S0014-5793(03)01101-3] [PMID: 14630314]
[27]
Mikusova, K.; Makarov, V.; Neres, J. DprE1 - from the discovery to the promising tuberculosis drug target. Curr. Pharm. 2014, 20(27)
[28]
Gong, H. Li. J.; Xu, A.; Tang, Y.; Ji, W.; Gao, R.; Wang, S.; Yu, L.; Tian, C.; Li, J.; Yen, H.; Lam, S.M.; Shui, G.; Yang, X.; Sun, Y.; Li, X.; Jia, M.; Yang, C.; Jiang, B.; Lou, Z.; Robinson, C.V.; Wong, L.; Guddat, L.W.; Sun, F.; Wang, Q.; Rao, Z. An electron transfer path connects subunits of a mycobacterial respiratory super complex. Science, 2018, 362(6418)eaat8923
[http://dx.doi.org/10.1126/science.aat8923] [PMID: 30361386]
[29]
Bishop, D.H.; Pandya, K.P.; King, H.K. Ubiquinone and vitamin K in bacteria. Biochem. J., 1962, 83, 606-614.
[http://dx.doi.org/10.1042/bj0830606] [PMID: 13869492]
[30]
Kurosu, M.; Crick, D.C. MenA is a promising drug target for developing novel lead molecules to combat Mycobacterium tuberculosis. Med. Chem., 2009, 5(2), 197-207.
[http://dx.doi.org/10.2174/157340609787582882] [PMID: 19275719]
[31]
Hirokawa, T.; Boon-Chieng, S.; Mitaku, S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics, 1998, 14(4), 378-379.
[http://dx.doi.org/10.1093/bioinformatics/14.4.378] [PMID: 9632836]
[32]
Minnikin, D.E. Lipids: complex lipids, their chemistry, biosynthesis and roles. InThe Biology of Mycobacteria; Ratledge, C.; Stanford, J., Eds.; Academic Press: London, 1982, pp. 95-184.
[33]
Truglio, J.J.; Theis, K.; Feng, Y.; Gajda, R.; Machutta, C.; Tonge, P.J.; Kisker, C. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. J. Biol. Chem., 2003, 278(43), 42352-42360.
[http://dx.doi.org/10.1074/jbc.M307399200] [PMID: 12909628]
[34]
Bernstein, J.; Lott, W.A.; Steinberg, B.A.; Yale, H.L. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. Am. Rev. Tuberc., 1952, 65(4), 357-364.
[PMID: 14903503]
[35]
Lei, B.; Wei, C.J.; Tu, S.C. Action mechanism of antitubercular isoniazid. Activation by Mycobacterium tuberculosis KatG, isolation, and characterization of inha inhibitor. J. Biol. Chem., 2000, 275(4), 2520-2526.
[http://dx.doi.org/10.1074/jbc.275.4.2520] [PMID: 10644708]
[36]
Nguyen, M.; Quémard, A.; Broussy, S.; Bernadou, J.; Meunier, B. Mn(III) pyrophosphate as an efficient tool for studying the mode of action of isoniazid on the InhA protein of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46(7), 2137-2144.
[http://dx.doi.org/10.1128/AAC.46.7.2137-2144.2002] [PMID: 12069966]
[37]
Rawat, R.; Whitty, A.; Tonge, P.J. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 13881-13886.
[http://dx.doi.org/10.1073/pnas.2235848100] [PMID: 14623976]
[38]
Vilchèze, C.; Wang, F.; Arai, M.; Hazbón, M.H.; Colangeli, R.; Kremer, L.; Weisbrod, T.R.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R., Jr Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat. Med., 2006, 12(9), 1027-1029.
[http://dx.doi.org/10.1038/nm1466] [PMID: 16906155]
[39]
Wilming, M.; Johnsson, K. Spontaneous formation of the bioactive form of the tuberculosis drug isoniazid. Angew. Chem. Int. Ed. Engl., 1999, 38(17), 2588-2590.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990903)38:17<2588:AID-ANIE2588>3.0.CO;2-8] [PMID: 10508348]
[40]
Johnsson, K.; Schultz, P.G. Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J. Am. Chem. Soc., 1994, 116, 7425-7426.
[http://dx.doi.org/10.1021/ja00095a063]
[41]
Rozwarski, D.A.; Grant, G.A.; Barton, D.H.; Jacobs, W.R., Jr; Sacchettini, J.C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science, 1998, 279(5347), 98-102.
[http://dx.doi.org/10.1126/science.279.5347.98] [PMID: 9417034]
[42]
Heym, B.; Alzari, P.M.; Honoré, N.; Cole, S.T. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol. Microbiol., 1995, 15(2), 235-245.
[http://dx.doi.org/10.1111/j.1365-2958.1995.tb02238.x] [PMID: 7746145]
[43]
Musser, J.M.; Kapur, V.; Williams, D.L.; Kreiswirth, B.N.; van Soolingen, D.; van Embden, J.D. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J. Infect. Dis., 1996, 173(1), 196-202.
[http://dx.doi.org/10.1093/infdis/173.1.196] [PMID: 8537659]
[44]
Chollet, A.; Mourey, L.; Lherbet, C.; Delbot, A.; Julien, S.; Baltas, M.; Bernadou, J.; Pratviel, G.; Maveyraud, L.; Bernardes-Génisson, V. Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. J. Struct. Biol., 2015, 190(3), 328-337.
[http://dx.doi.org/10.1016/j.jsb.2015.04.008] [PMID: 25891098]
[45]
Parikh, S.L.; Xiao, G.; Tonge, P.J. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry, 2000, 39(26), 7645-7650.
[http://dx.doi.org/10.1021/bi0008940] [PMID: 10869170]
[46]
Pajk, S.; Živec, M.; Šink, R.; Sosič, I.; Neu, M.; Chung, C.W.; Martínez-Hoyos, M.; Pérez-Herrán, E.; Álvarez-Gómez, D.; Álvarez-Ruíz, E.; Mendoza-Losana, A.; Castro-Pichel, J.; Barros, D.; Ballell-Pages, L.; Young, R.J.; Convery, M.A.; Encinas, L.; Gobec, S. New direct inhibitors of InhA with antimycobacterial activity based on a tetrahydropyran scaffold. Eur. J. Med. Chem., 2016, 112, 252-257.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.008] [PMID: 26900657]
[47]
Freundlich, J.S.; Wang, F.; Vilchèze, C.; Gulten, G.; Langley, R.; Schiehser, G.A.; Jacobus, D.P.; Jacobs, W.R., Jr; Sacchettini, J.C. Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem, 2009, 4(2), 241-248.
[http://dx.doi.org/10.1002/cmdc.200800261] [PMID: 19130456]
[48]
Sullivan, T.J.; Truglio, J.J.; Boyne, M.E.; Novichenok, P.; Zhang, X.; Stratton, C.F.; Li, H.J.; Kaur, T.; Amin, A.; Johnson, F.; Slayden, R.A.; Kisker, C.; Tonge, P.J. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol., 2006, 1(1), 43-53.
[http://dx.doi.org/10.1021/cb0500042] [PMID: 17163639]
[49]
Manjunatha, U.H.; Rao, S.P.S.; Kondreddi, R.R.; Noble, C.G.; Camacho, L.R.; Tan, B.H.; Ng, S.H.; Ng, P.S.; Ma, N.L.; Lakshminarayana, S.B.; Herve, M.; Barnes, S.W.; Yu, W.; Kuhen, K.; Blasco, F.; Beer, D.; Walker, J.R.; Tonge, P.J.; Glynne, R.; Smith, P.W.; Diagana, T.T. Direct inhibitors of InhA are active against Mycobacterium tuberculosis. Sci. Transl. Med., 2015, 7269ra3
[http://dx.doi.org/10.1126/scitranslmed.3010597]
[50]
McNeil, M.B.; Dennison, D.; Shelton, C.; Flint, L.; Korkegian, A.; Parish, T. Mechanisms of resistance against NITD-916, a direct inhibitor of Mycobacterium tuberculosis InhA. Tuberculosis (Edinb.), 2017, 107, 133-136.
[http://dx.doi.org/10.1016/j.tube.2017.09.003] [PMID: 29050761]
[51]
Yagishita, K. Studies on the pyridomycin production by Streptomyces albidofuscus. I. On pyridomycin production of a lactose-utilizing mutant. J. Antibiot., 1954, 7(5), 143-148.
[PMID: 14353805]
[52]
Yagishita, K. Studies on the pyridomycin production. II. X-ray irradiation on the pyridomycin-producing strain. J. Antibiot., 1955, 8(6), 201-204.
[PMID: 13319224]
[53]
Yagishita, K. Studies on the pyridomycin production. III. Medium selection and a device of a method of detecting the precursor. J. Antibiot., 1957, 10(1), 5-14.
[PMID: 13449002]
[54]
Yagishita, K. Studies on the pyridomycin production. IV. Metabolic studies on Streptomyces pyridomyceticus. J. Antibiot., 1957, 10(1), 15-20.
[PMID: 13449003]
[55]
Shomura, T.; Amano, S.; Yoshida, J.; Kojima, M. Dactylosporangium-fulvum Sp.nov. Int. J. Syst. Bacteriol., 1986, 36, 166-169.
[http://dx.doi.org/10.1099/00207713-36-2-166]
[56]
Maeda, K.; Kosaka, H.; Okami, Y.; Umezawa, H. A new antibiotic, pyridomycin. J. Antibiot., 1953, 6(3), 140.
[PMID: 13096450]
[57]
Hartkoorn, R.C.; Pojer, F.; Read, J.A.; Gingell, H.; Neres, J.; Horlacher, O.P.; Altmann, K.H.; Cole, S.T. Pyridomycin bridges the NADH- and substrate-binding pockets of the enoyl reductase InhA. Nat. Chem. Biol., 2014, 10(2), 96-98.
[http://dx.doi.org/10.1038/nchembio.1405] [PMID: 24292073]
[58]
Wang, H.; Liu, L.; Lu, Y.; Pan, P.; Hooker, J.M.; Fowler, J.S.; Tonge, P.J. Radiolabelling and positron emission tomography of PT70, a time-dependent inhibitor of InhA, the Mycobacterium tuberculosis enoyl-ACP reductase. Bioorg. Med. Chem. Lett., 2015, 25(21), 4782-4786.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.019] [PMID: 26227776]
[59]
Luckner, S.R.; Liu, N. am Ende, C.W.; Tonge, P.J.; Kisker, C. A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis. J. Biol. Chem., 2010, 285(19), 14330-14337.
[http://dx.doi.org/10.1074/jbc.M109.090373] [PMID: 20200152]
[60]
Chouchane, S.; Lippai, I.; Magliozzo, R.S. Catalase-peroxidase (Mycobacterium tuberculosis KatG) catalysis and isoniazid activation. Biochemistry, 2000, 39(32), 9975-9983.
[http://dx.doi.org/10.1021/bi0005815] [PMID: 10933818]
[61]
Lu, H.; Tonge, P.J. Drug-target residence time: critical information for lead optimization. Curr. Opin. Chem. Biol., 2010, 14(4), 467-474.
[http://dx.doi.org/10.1016/j.cbpa.2010.06.176] [PMID: 20663707]
[62]
Tummino, P.J.; Copeland, R.A. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry, 2008, 47(20), 5481-5492.
[http://dx.doi.org/10.1021/bi8002023] [PMID: 18412369]
[63]
Swinney, D.C. Biochemical mechanisms of drug action: what does it take for success? Nat. Rev. Drug Discov., 2004, 3(9), 801-808.
[http://dx.doi.org/10.1038/nrd1500] [PMID: 15340390]
[64]
Copeland, R.A.; Pompliano, D.L.; Meek, T.D. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov., 2006, 5(9), 730-739.
[http://dx.doi.org/10.1038/nrd2082] [PMID: 16888652]
[65]
Schroeder, E.K.; Basso, L.A.; Santos, D.S.; de Souza, O.N. Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. Biophys. J., 2005, 89(2), 876-884.
[http://dx.doi.org/10.1529/biophysj.104.053512] [PMID: 15908576]
[66]
Lu, H.; England, K. am Ende, C.; Truglio, J.J.; Luckner, S.; Reddy, B.G.; Marlenee, N.L.; Knudson, S.E.; Knudson, D.L.; Bowen, R.A.; Kisker, C.; Slayden, R.A.; Tonge, P.J. Slow-onset inhibition of the FabI enoyl reductase from francisella tularensis: residence time and in vivo activity. ACS Chem. Biol., 2009, 4(3), 221-231.
[http://dx.doi.org/10.1021/cb800306y] [PMID: 19206187]
[67]
Xia, Y.; Zhou, Y.; Carter, D.S.; McNeil, M.B.; Choi, W.; Halladay, J.; Berry, P.W.; Mao, W.; Hernandez, V.; O’Malley, T.; Korkegian, A.; Sunde, B.; Flint, L.; Woolhiser, L.K.; Scherman, M.S.; Gruppo, V.; Hastings, C.; Robertson, G.T.; Ioerger, T.R.; Sacchettini, J.; Tonge, P.J.; Lenaerts, A.J.; Parish, T.; Alley, M. Discovery of a cofactor-independent inhibitor of Mycobacterium tuberculosis InhA. Life Sci Alliance, 2018, 1(3)e201800025
[http://dx.doi.org/10.26508/lsa.201800025] [PMID: 30456352]
[68]
Robertson, G.T.; Ektnitphong, V.A.; Scherman, M.S.; McNeil, M.B.; Dennison, D.; Korkegian, A.; Smith, A.J.; Halladay, J.; Carter, D.S.; Xia, Y.; Zhou, Y.; Choi, W.; Berry, P.W.; Mao, W.; Hernandez, V.; Alley, M.R.K.; Parish, T.; Lenaerts, A.J. Efficacy and improved resistance potential of a cofactor-independent InhA inhibitor of Mycobacterium tuberculosis in a C3HeB/FeJ mouse model. Antimicrob. Agents Chemother., 2019, 63(4), e02071-e18.
[http://dx.doi.org/10.1128/AAC.02071-18] [PMID: 30745397]
[69]
Martínez-Hoyos, M.; Perez-Herran, E.; Gulten, G.; Encinas, L.; Álvarez-Gómez, D.; Alvarez, E.; Ferrer-Bazaga, S.; García-Pérez, A.; Ortega, F.; Angulo-Barturen, I.; Rullas-Trincado, J.; Blanco Ruano, D.; Torres, P.; Castañeda, P.; Huss, S.; Fernández Menéndez, R.; González Del Valle, S.; Ballell, L.; Barros, D.; Modha, S.; Dhar, N.; Signorino-Gelo, F.; McKinney, J.D.; García-Bustos, J.F.; Lavandera, J.L.; Sacchettini, J.C.; Jimenez, M.S.; Martín-Casabona, N.; Castro-Pichel, J.; Mendoza-Losana, A. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. EBioMedicine, 2016, 8, 291-301.
[http://dx.doi.org/10.1016/j.ebiom.2016.05.006] [PMID: 27428438]
[70]
Vasilyev, D.; Merrill, T.; Iwanow, A.; Dunlop, J.; Bowlby, M. A novel method for patch-clamp automation. Pflugers Arch., 2006, 452(2), 240-247.
[http://dx.doi.org/10.1007/s00424-005-0029-2] [PMID: 16596408]
[71]
Kamsri, P.; Hanwarinroj, C.; Phusi, N.; Pornprom, T.; Chayajarus, K.; Punkvang, A.; Suttipanta, N.; Srimanote, P.; Suttisintong, K.; Songsiriritthigul, C.; Saparpakorn, P.; Hannongbua, S.; Rattanabunyong, S.; Seetaha, S.; Choowongkomon, K.; Sureram, S.; Kittakoop, P.; Hongmanee, P.; Santanirand, P.; Chen, Z.; Zhu, W.; Blood, R.A.; Takebayashi, Y.; Hinchliffe, P.; Mulholland, A.J.; Spencer, J.; Pungpo, P. Discovery of new and potent inha inhibitors as antituberculosis agents: structure-based virtual screening validated by biological assays and x-ray crystallography. J. Chem. Inf. Model., 2020, 60(1), 226-234.
[http://dx.doi.org/10.1021/acs.jcim.9b00918] [PMID: 31820972]
[72]
Brown, J.R.; North, E.J.; Hurdle, J.G.; Morisseau, C.; Scarborough, J.S.; Sun, D.; Korduláková, J.; Scherman, M.S.; Jones, V.; Grzegorzewicz, A.; Crew, R.M.; Jackson, M.; McNeil, M.R.; Lee, R.E. The structure-activity relationship of urea derivatives as anti-tuberculosis agents. Bioorg. Med. Chem., 2011, 19(18), 5585-5595.
[http://dx.doi.org/10.1016/j.bmc.2011.07.034] [PMID: 21840723]
[73]
Grzegorzewicz, A.E.; Pham, H.; Gundi, V.A.K.B.; Scherman, M.S.; North, E.J.; Hess, T.; Jones, V.; Gruppo, V.; Born, S.E.M.; Korduláková, J.; Chavadi, S.S.; Morisseau, C.; Lenaerts, A.J.; Lee, R.E.; McNeil, M.R.; Jackson, M. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat. Chem. Biol., 2012, 8(4), 334-341.
[http://dx.doi.org/10.1038/nchembio.794] [PMID: 22344175]
[74]
Remuiñán, M.J.; Pérez-Herrán, E.; Rullás, J.; Alemparte, C.; Martínez-Hoyos, M.; Dow, D.J.; Afari, J.; Mehta, N.; Esquivias, J.; Jiménez, E.; Ortega-Muro, F.; Fraile-Gabaldón, M.T.; Spivey, V.L.; Loman, N.J.; Pallen, M.J.; Constantinidou, C.; Minick, D.J.; Cacho, M.; Rebollo-López, M.J.; González, C.; Sousa, V.; Angulo-Barturen, I.; Mendoza-Losana, A.; Barros, D.; Besra, G.S.; Ballell, L.; Cammack, N. Tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide and N-benzyl-6′,7′-dihydrospiro[piperidine-4,4′-thieno[3,2-c]pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3. PLoS One, 2013, 8(4)e60933
[http://dx.doi.org/10.1371/journal.pone.0060933] [PMID: 23613759]
[75]
Cox, J.A.; Abrahams, K.A.; Alemparte, C.; Ghidelli-Disse, S.; Rullas, J.; Angulo-Barturen, I.; Singh, A.; Gurcha, S.S.; Nataraj, V.; Bethell, S.; Remuiñán, M.J.; Encinas, L.; Jervis, P.J.; Cammack, N.C.; Bhatt, A.; Kruse, U.; Bantscheff, M.; Fütterer, K.; Barros, D.; Ballell, L.; Drewes, G.; Besra, G.S. THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria. Nat. Microbiol., 2016, 1, 15006.
[http://dx.doi.org/10.1038/nmicrobiol.2015.6] [PMID: 27571973]
[76]
Yokokawa, F.; Wang, G.; Chan, W.L.; Ang, S.H.; Wong, J.; Ma, I.; Rao, S.P.; Manjunatha, U.; Lakshminarayana, S.B.; Herve, M.; Kounde, C.; Tan, B.H.; Thayalan, P.; Ng, S.H.; Nanjundappa, M.; Ravindran, S.; Gee, P.; Tan, M.; Wei, L.; Goh, A.; Chen, P.Y.; Lee, K.S.; Zhong, C.; Wagner, T.; Dix, I.; Chatterjee, A.K.; Pethe, K.; Kuhen, K.; Glynne, R.; Smith, P.; Bifani, P.; Jiricek, J. Discovery of tetrahydropyrazolopyrimidine carboxamide derivatives as potent and orally active antitubercular agents. ACS Med. Chem. Lett., 2013, 4(5), 451-455.
[http://dx.doi.org/10.1021/ml400071a] [PMID: 24900693]
[77]
De Groote, M.A.; Jarvis, T.C.; Wong, C.; Graham, J.; Hoang, T.; Young, C.L.; Ribble, W.; Day, J.; Li, W.; Jackson, M.; Gonzalez-Juarrero, M.; Sun, X.; Ochsner, U.A. Optimization and lead selection of benzothiazole amide analogs toward a novel antimycobacterial agent. Front. Microbiol., 2018, 9, 2231.
[http://dx.doi.org/10.3389/fmicb.2018.02231] [PMID: 30294313]
[78]
Tahlan, K.; Wilson, R.; Kastrinsky, D.B.; Arora, K.; Nair, V.; Fischer, E.; Barnes, S.W.; Walker, J.R.; Alland, D.; Barry, C.E., III; Boshoff, H.I. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(4), 1797-1809.
[http://dx.doi.org/10.1128/AAC.05708-11] [PMID: 22252828]
[79]
Protopopova, M.; Hanrahan, C.; Nikonenko, B.; Samala, R.; Chen, P.; Gearhart, J.; Einck, L.; Nacy, C.A. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J. Antimicrob. Chemother., 2005, 56(5), 968-974.
[http://dx.doi.org/10.1093/jac/dki319] [PMID: 16172107]
[80]
Jia, L.; Tomaszewski, J.E.; Hanrahan, C.; Coward, L.; Noker, P.; Gorman, G.; Nikonenko, B.; Protopopova, M. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol., 2005, 144(1), 80-87.
[http://dx.doi.org/10.1038/sj.bjp.0705984] [PMID: 15644871]
[81]
Armstrong, J.A.; Hart, P.D. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med., 1971, 134(3 Pt 1), 713-740.
[http://dx.doi.org/10.1084/jem.134.3.713] [PMID: 15776571]
[82]
Lange, J.H.; Kruse, C.G. Keynote review: Medicinal chemistry strategies to CB1 cannabinoid receptor antagonists. Drug Discov. Today, 2005, 10(10), 693-702.
[http://dx.doi.org/10.1016/S1359-6446(05)03427-6] [PMID: 15896682]
[83]
Kang, J.G.; Park, C.Y. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab. J., 2012, 36(1), 13-25.
[http://dx.doi.org/10.4093/dmj.2012.36.1.13] [PMID: 22363917]
[84]
Jagerovic, N.; Fernandez-Fernandez, C.; Goya, P. CB1 cannabinoid antagonists: structure-activity relationships and potential therapeutic applications. Curr. Top. Med. Chem., 2008, 8(3), 205-230.
[http://dx.doi.org/10.2174/156802608783498050] [PMID: 18289089]
[85]
Gajbhiye, J.M.; More, N.A.; Patil, M.D.; Ummanni, R.; Kotapalli, S.S.; Yogeeswari, P.; Sriram, D.; Masand, V.H. Discovery of Rimonabant and its potential analogues as anti-TB drug candidates. Med. Chem. Res., 2015, 24(7), 2960-2971.
[http://dx.doi.org/10.1007/s00044-015-1346-4]
[86]
Dumas, V.G.; Defelipe, L.A.; Petruk, A.A.; Turjanski, A.G.; Marti, M.A. QM/MM study of the C-C coupling reaction mechanism of CYP121, an essential cytochrome p450 of Mycobacterium tuberculosis. Proteins, 2014, 82(6), 1004-1021.
[http://dx.doi.org/10.1002/prot.24474] [PMID: 24356896]
[87]
Sundaramurthi, J.C.; Kumar, S.; Silambuchelvi, K.; Hanna, L.E. Molecular docking of azole drugs and their analogs on CYP121 of Mycobacterium tuberculosis. Bioinformation, 2011, 7(3), 130-133.
[http://dx.doi.org/10.6026/97320630007130] [PMID: 22125383]
[88]
Belin, P.; Le Du, M.H.; Fielding, A.; Lequin, O.; Jacquet, M.; Charbonnier, J.B.; Lecoq, A.; Thai, R.; Courçon, M.; Masson, C.; Dugave, C.; Genet, R.; Pernodet, J.L.; Gondry, M. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2009, 106(18), 7426-7431.
[http://dx.doi.org/10.1073/pnas.0812191106] [PMID: 19416919]
[89]
Sumdstrom, C.; Milssom, K. Establishment and characterization of a human histiocytic lymphoma cell line (U937). Int. J. Cancer, 1976, 7, 565-577.
[http://dx.doi.org/10.1002/ijc.2910170504]
[90]
Deidda, D.; Lampis, G.; Fioravanti, R.; Biava, M.; Porretta, G.C.; Zanetti, S.; Pompei, R. Bactericidal activities of the pyrrole derivative BM212 against multidrug-resistant and intramacrophagic Mycobacterium tuberculosis strains. Antimicrob. Agents Chemother., 1998, 42(11), 3035-3037.
[http://dx.doi.org/10.1128/AAC.42.11.3035] [PMID: 9797251]
[91]
Biava, M. BM 212 and its derivatives as a new class of antimycobacterial active agents. Curr. Med. Chem., 2002, 9(21), 1859-1869.
[http://dx.doi.org/10.2174/0929867023368953] [PMID: 12369872]
[92]
Biava, M.; Porretta, G.C.; Poce, G.; Battilocchio, C.; Alfonso, S.; de Logu, A.; Manetti, F.; Botta, M. Developing pyrrole-derived antimycobacterial agents: a rational lead optimization approach. ChemMedChem, 2011, 6(4), 593-599.
[http://dx.doi.org/10.1002/cmdc.201000526] [PMID: 21341373]
[93]
de Jonge, M.R.; Koymans, L.H.; Guillemont, J.E.; Koul, A.; Andries, K. A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins, 2007, 67(4), 971-980.
[http://dx.doi.org/10.1002/prot.21376] [PMID: 17387738]
[94]
Saxena, A.K.; Singh, A. Mycobacterial Tuberculosis enzyme targets and their inhibitors. Curr. Top. Med. Chem., 2019, 19(5), 337-355.
[http://dx.doi.org/10.2174/1568026619666190219105722] [PMID: 30806318]
[95]
Hongmanee, P.; Rukseree, K.; Buabut, B.; Somsri, B.; Palittapongarnpim, P. In vitro activities of cloxyquin (5-chloroquinolin-8-ol) against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2007, 51(3), 1105-1106.
[http://dx.doi.org/10.1128/AAC.01310-06] [PMID: 17178795]
[96]
Worley, M.V.; Estrada, S.J. Bedaquiline: a novel antitubercular agent for the treatment of multidrug-resistant tuberculosis. Pharmacotherapy, 2014, 34(11), 1187-1197.
[http://dx.doi.org/10.1002/phar.1482] [PMID: 25203970]
[97]
Salfinger, M.; Somoskövi, A. Multidrug-resistant tuberculosis and bedaquiline. N. Engl. J. Med., 2014, 371(25), 2435-2436.
[http://dx.doi.org/10.1056/NEJMc1412235] [PMID: 25517715]
[98]
Kundu, S.; Biukovic, G.; Grüber, G.; Dick, T. Bedaquiline Targets the ε Subunit of Mycobacterial F-ATP Synthase. Antimicrob. Agents Chemother., 2016, 60(11), 6977-6979.
[http://dx.doi.org/10.1128/AAC.01291-16] [PMID: 27620476]
[99]
Andries, K.; Villellas, C.; Coeck, N.; Thys, K.; Gevers, T.; Vranckx, L.; Lounis, N.; de Jong, B.C.; Koul, A. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One, 2014, 9(7)e102135
[http://dx.doi.org/10.1371/journal.pone.0102135] [PMID: 25010492]
[100]
Huitric, E.; Verhasselt, P.; Andries, K.; Hoffner, S.E. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob. Agents Chemother., 2007, 51(11), 4202-4204.
[http://dx.doi.org/10.1128/AAC.00181-07] [PMID: 17709466]
[101]
Preiss, L.; Langer, J.D.; Yildiz, Ö.; Eckhardt-Strelau, L.; Guillemont, J.E.; Koul, A.; Meier, T. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv., 2015, 1(4), e1500106-e1500106.
[http://dx.doi.org/10.1126/sciadv.1500106] [PMID: 26601184]
[102]
Tong, A.S.T.; Choi, P.J.; Blaser, A.; Sutherland, H.S.; Tsang, S.K.Y.; Guillemont, J.; Motte, M.; Cooper, C.B.; Andries, K.; Van den Broeck, W.; Franzblau, S.G.; Upton, A.M.; Denny, W.A.; Palmer, B.D.; Conole, D. 6-Cyano analogues of bedaquiline as less lipophilic and potentially safer diarylquinolines for tuberculosis. ACS Med. Chem. Lett., 2017, 8(10), 1019-1024.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00196] [PMID: 29057044]
[103]
Choi, P.J.; Sutherland, H.S.; Tong, A.S.T.; Blaser, A.; Franzblau, S.G.; Cooper, C.B.; Lotlikar, M.U.; Upton, A.M.; Guillemont, J.; Motte, M.; Queguiner, L.; Andries, K.; Van den Broeck, W.; Denny, W.A.; Palmer, B.D. Synthesis and evaluation of analogues of the tuberculosis drug bedaquiline containing heterocyclic B-ring units. Bioorg. Med. Chem. Lett., 2017, 27(23), 5190-5196.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.042] [PMID: 29107541]
[104]
Sutherland, H.S.; Tong, A.S.T.; Choi, P.J.; Conole, D.; Blaser, A.; Franzblau, S.G.; Cooper, C.B.; Upton, A.M.; Lotlikar, M.U.; Denny, W.A.; Palmer, B.D. Structure-activity relationships for analogs of the tuberculosis drug bedaquiline with the naphthalene unit replaced by bicyclic heterocycles. Bioorg. Med. Chem., 2018, 26(8), 1797-1809.
[http://dx.doi.org/10.1016/j.bmc.2018.02.026] [PMID: 29482950]
[105]
Blaser, A.; Sutherland, H.S.; Tong, A.S.T.; Choi, P.J.; Conole, D.; Franzblau, S.G.; Cooper, C.B.; Upton, A.M.; Lotlikar, M.; Denny, W.A.; Palmer, B.D. Structure-activity relationships for unit C pyridyl analogues of the tuberculosis drug bedaquiline. Bioorg. Med. Chem., 2019, 27(7), 1283-1291.
[http://dx.doi.org/10.1016/j.bmc.2019.02.025] [PMID: 30792104]
[106]
Sutherland, H.S.; Tong, A.S.T.; Choi, P.J.; Blaser, A.; Conole, D.; Franzblau, S.G.; Lotlikar, M.U.; Cooper, C.B.; Upton, A.M.; Denny, W.A.; Palmer, B.D. 3,5-Dialkoxypyridine analogues of bedaquiline are potent antituberculosis agents with minimal inhibition of the hERG channel. Bioorg. Med. Chem., 2019, 27(7), 1292-1307.
[http://dx.doi.org/10.1016/j.bmc.2019.02.026] [PMID: 30803745]
[107]
Sarathy, J.P.; Ragunathan, P.; Shin, J.; Cooper, C.B.; Upton, A.M.; Grüber, G.; Dick, T. TBAJ-876 Retains Bedaquiline’s Activity against Subunits c and ε of Mycobacterium tuberculosis F-ATP Synthase. Antimicrob. Agents Chemother., 2019, 63(10), e01191-e19.
[http://dx.doi.org/10.1128/AAC.01191-19] [PMID: 31358589]
[108]
Candéa, A.L.P. Ferreira, Mde.L.; Pais, K.C.; Cardoso, L.N.; Kaiser, C.R.; Henriques, Md.; Lourenço, M.C.; Bezerra, F.A.; de Souza, M.V. Synthesis and antitubercular activity of 7-chloro-4-quinolinylhydrazones derivatives. Bioorg. Med. Chem. Lett., 2009, 19(22), 6272-6274.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.098] [PMID: 19819134]
[109]
Kumar, S.; Mehra, R.; Sharma, S.; Bokolia, N.P.; Raina, D.; Nargotra, A.; Singh, P.P.; Khan, I.A. Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2018, 108, 56-63.
[http://dx.doi.org/10.1016/j.tube.2017.10.008] [PMID: 29523328]
[110]
Khan, S.R.; Singh, S.; Roy, K.K.; Akhtar, M.S.; Saxena, A.K.; Krishnan, M.Y. Biological evaluation of novel substituted chloroquinolines targeting mycobacterial ATP synthase. Int. J. Antimicrob. Agents, 2013, 41(1), 41-46.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.09.012] [PMID: 23141113]
[111]
Singh, S.; Roy, K.K.; Khan, S.R.; Kashyap, V.K.; Sharma, A.; Jaiswal, S.; Sharma, S.K.; Krishnan, M.Y.; Chaturvedi, V.; Lal, J.; Sinha, S.; Dasgupta, A.; Srivastava, R.; Saxena, A.K. Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis. Bioorg. Med. Chem., 2015, 23(4), 742-752.
[http://dx.doi.org/10.1016/j.bmc.2014.12.060] [PMID: 25614114]
[112]
Kalia, D.; Kumar, A.; Meenaa, G.; Sethia, K.P.; Sharma, R.; Trivedi, P.; Khan, S.R.; Singh, A.; Singh, A.S.; Sharma, S.; Roy, K.K.; Kant, R.; Krishnan, M.Y.; Singh, B.N.; Sinha, S.; Chaturvedi, V Synthesis and anti-tubercular activity of conformationally-constrained and bisquinoline analogs of TMC207 Med. Chem. Commun. , 2015, 1554-1563.
[113]
Makarov, V.; Manina, G.; Mikusova, K.; Möllmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.P.; Milano, A.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324(5928), 801-804.
[http://dx.doi.org/10.1126/science.1171583] [PMID: 19299584]
[114]
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6(3), 372-383.
[http://dx.doi.org/10.1002/emmm.201303575] [PMID: 24500695]
[115]
Pasca, M.R.; Degiacomi, G.; Ribeiro, A.L.; Zara, F.; De Mori, P.; Heym, B.; Mirrione, M.; Brerra, R.; Pagani, L.; Pucillo, L.; Troupioti, P.; Makarov, V.; Cole, S.T.; Riccardi, G. Clinical isolates of Mycobacterium tuberculosis in four European hospitals are uniformly susceptible to benzothiazinones. Antimicrob. Agents Chemother., 2010, 54(4), 1616-1618.
[http://dx.doi.org/10.1128/AAC.01676-09] [PMID: 20086151]
[116]
Tiwari, R.; Moraski, G.C.; Krchňák, V.; Miller, P.A.; Colon-Martinez, M.; Herrero, E.; Oliver, A.G.; Miller, M.J. Thiolates chemically induce redox activation of BTZ043 and related potent nitroaromatic anti-tuberculosis agents. J. Am. Chem. Soc., 2013, 135(9), 3539-3549.
[http://dx.doi.org/10.1021/ja311058q] [PMID: 23402278]
[117]
Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12(5), 388-404.
[http://dx.doi.org/10.1038/nrd4001] [PMID: 23629506]
[118]
Richter, A.; Rudolph, I.; Möllmann, U.; Voigt, K.; Chung, C.W.; Singh, O.M.P.; Rees, M.; Mendoza-Losana, A.; Bates, R.; Ballell, L.; Batt, S.; Veerapen, N.; Fütterer, K.; Besra, G.; Imming, P.; Argyrou, A. Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1. Sci. Rep., 2018, 8(1), 13473-13473.
[http://dx.doi.org/10.1038/s41598-018-31316-6] [PMID: 30194385]
[119]
Brecik, M.; Centárová, I.; Mukherjee, R.; Kolly, G.S.; Huszár, S.; Bobovská, A.; Kilacsková, E.; Mokošová, V.; Svetlíková, Z.; Šarkan, M.; Neres, J.; Korduláková, J.; Cole, S.T.; Mikušová, K. DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization. ACS Chem. Biol., 2015, 10(7), 1631-1636.
[http://dx.doi.org/10.1021/acschembio.5b00237] [PMID: 25906160]
[120]
Peng, C.T.; Gao, C.; Wang, N.Y.; You, X.Y.; Zhang, L.D.; Zhu, Y.X.; Xv, Y.; Zuo, W.Q.; Ran, K.; Deng, H.X.; Lei, Q.; Xiao, K.J.; Yu, L.T. Synthesis and antitubercular evaluation of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives. Bioorg. Med. Chem. Lett., 2015, 25(7), 1373-1376.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.061] [PMID: 25754492]
[121]
Zhang, M.; Sala, C.; Hartkoorn, R.C.; Dhar, N.; Mendoza-Losana, A.; Cole, S.T. Streptomycin-starved Mycobacterium tuberculosis 18b, a drug discovery tool for latent tuberculosis. Antimicrob. Agents Chemother., 2012, 56(11), 5782-5789.
[http://dx.doi.org/10.1128/AAC.01125-12] [PMID: 22926567]
[122]
Lupien, A.; Vocat, A.; Foo, C.S.; Blattes, E.; Gillon, J.Y.; Makarov, V.; Cole, S.T. Optimized background regimen for treatment of active tuberculosis with the next-generation benzothiazinone macozinone (PBTZ169). Antimicrob. Agents Chemother., 2018, 62(11), e00840-e18.
[http://dx.doi.org/10.1128/AAC.00840-18] [PMID: 30126954]
[123]
Wang, F.; Sambandan, D.; Halder, R.; Wang, J.; Batt, S.M.; Weinrick, B.; Ahmad, I.; Yang, P.; Zhang, Y.; Kim, J.; Hassani, M.; Huszar, S.; Trefzer, C.; Ma, Z.; Kaneko, T.; Mdluli, K.E.; Franzblau, S.; Chatterjee, A.K.; Johnsson, K.; Mikusova, K.; Besra, G.S.; Fütterer, K.; Robbins, S.H.; Barnes, S.W.; Walker, J.R.; Jacobs, W.R., Jr; Schultz, P.G. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc. Natl. Acad. Sci. USA, 2013, 110(27), E2510-E2517.
[http://dx.doi.org/10.1073/pnas.1309171110] [PMID: 23776209]
[124]
Neres, J.; Hartkoorn, R.C.; Chiarelli, L.R.; Gadupudi, R.; Pasca, M.R.; Mori, G.; Venturelli, A.; Savina, S.; Makarov, V.; Kolly, G.S.; Molteni, E.; Binda, C.; Dhar, N.; Ferrari, S.; Brodin, P.; Delorme, V.; Landry, V.; de Jesus Lopes Ribeiro, A.L.; Farina, D.; Saxena, P.; Pojer, F.; Carta, A.; Luciani, R.; Porta, A.; Zanoni, G.; De Rossi, E.; Costi, M.P.; Riccardi, G.; Cole, S.T. 2-Carboxyquinoxalines kill mycobacterium tuberculosis through noncovalent inhibition of DprE1. ACS Chem. Biol., 2015, 10(3), 705-714.
[http://dx.doi.org/10.1021/cb5007163] [PMID: 25427196]
[125]
Batt, S.M.; Jabeen, T.; Bhowruth, V.; Quill, L.; Lund, P.A.; Eggeling, L.; Alderwick, L.J.; Fütterer, K.; Besra, G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11354-11359.
[http://dx.doi.org/10.1073/pnas.1205735109] [PMID: 22733761]
[126]
Foo, C.S.; Lupien, A.; Kienle, M.; Vocat, A.; Benjak, A.; Sommer, R.; Lamprecht, D.A.; Steyn, A.J.C.; Pethe, K.; Piton, J.; Altmann, K.H.; Cole, S.T. Arylvinylpiperazine amides, a new class of potent inhibitors targeting qcrb of mycobacterium tuberculosis. MBio, 2018, 9(5), e01276-e18.
[http://dx.doi.org/10.1128/mBio.01276-18] [PMID: 30301850]
[127]
Pethe, K.; Bifani, P.; Jang, J.; Kang, S.; Park, S.; Ahn, S.; Jiricek, J.; Jung, J.; Jeon, H.K.; Cechetto, J.; Christophe, T.; Lee, H.; Kempf, M.; Jackson, M.; Lenaerts, A.J.; Pham, H.; Jones, V.; Seo, M.J.; Kim, Y.M.; Seo, M.; Seo, J.J.; Park, D.; Ko, Y.; Choi, I.; Kim, R.; Kim, S.Y.; Lim, S.; Yim, S.A.; Nam, J.; Kang, H.; Kwon, H.; Oh, C.T.; Cho, Y.; Jang, Y.; Kim, J.; Chua, A.; Tan, B.H.; Nanjundappa, M.B.; Rao, S.P.; Barnes, W.S.; Wintjens, R.; Walker, J.R.; Alonso, S.; Lee, S.; Kim, J.; Oh, S.; Oh, T.; Nehrbass, U.; Han, S.J.; No, Z.; Lee, J.; Brodin, P.; Cho, S.N.; Nam, K.; Kim, J. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat. Med., 2013, 19(9), 1157-1160.
[http://dx.doi.org/10.1038/nm.3262] [PMID: 23913123]
[128]
O’Malley, T.; Alling, T.; Early, J.V.; Wescott, H.A.; Kumar, A.; Moraski, G.C.; Miller, M.J.; Masquelin, T.; Hipskind, P.A.; Parish, T. Imidazopyridine compounds inhibit mycobacterial growth by depleting atp levels. Antimicrob. Agents Chemother., 2018, 62(6), e02439-e17.
[http://dx.doi.org/10.1128/AAC.02439-17] [PMID: 29632008]
[129]
Matsoso, L.G.; Kana, B.D.; Crellin, P.K.; Lea-Smith, D.J.; Pelosi, A.; Powell, D.; Dawes, S.S.; Rubin, H.; Coppel, R.L.; Mizrahi, V. Function of the cytochrome bc1-aa3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption. J. Bacteriol., 2005, 187(18), 6300-6308.
[http://dx.doi.org/10.1128/JB.187.18.6300-6308.2005] [PMID: 16159762]
[130]
Small, J.L.; Park, S.W.; Kana, B.D.; Ioerger, T.R.; Sacchettini, J.C.; Ehrt, S. Perturbation of cytochrome c maturation reveals adaptability of the respiratory chain in Mycobacterium tuberculosis. MBio, 2013, 4(5), e00475-e13.
[http://dx.doi.org/10.1128/mBio.00475-13] [PMID: 24045640]
[131]
Kana, B.D.; Weinstein, E.A.; Avarbock, D.; Dawes, S.S.; Rubin, H.; Mizrahi, V. Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis. J. Bacteriol., 2001, 183(24), 7076-7086.
[http://dx.doi.org/10.1128/JB.183.24.7076-7086.2001] [PMID: 11717265]
[132]
Lu, P.; Heineke, M.H.; Koul, A.; Andries, K.; Cook, G.M.; Lill, H.; van Spanning, R.; Bald, D. The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress. Sci. Rep., 2015, 5, 10333.
[http://dx.doi.org/10.1038/srep10333] [PMID: 26015371]
[133]
Kunze, B.; Höfle, G.; Reichenbach, H. The aurachins, new quinoline antibiotics from myxobacteria: production, physico-chemical and biological properties. J. Antibiot. (Tokyo), 1987, 40(3), 258-265.
[http://dx.doi.org/10.7164/antibiotics.40.258] [PMID: 3106289]
[134]
Sandmann, A.; Dickschat, J.; Jenke-Kodama, H.; Kunze, B.; Dittmann, E.; Müller, R. A Type II polyketide synthase from the gram-negative Bacterium Stigmatella aurantiaca is involved in Aurachin alkaloid biosynthesis. Angew. Chem. Int. Ed. Engl., 2007, 46(15), 2712-2716.
[http://dx.doi.org/10.1002/anie.200603513] [PMID: 17335090]
[135]
Katsuyama, Y.; Harmrolfs, K.; Pistorius, D.; Li, Y.; Müller, R. A semipinacol rearrangement directed by an enzymatic system featuring dual-function FAD-dependent monooxygenase. Angew. Chem. Int. Ed. Engl., 2012, 51(37), 9437-9440.
[http://dx.doi.org/10.1002/anie.201204138] [PMID: 22907798]
[136]
Kalia, N.P.; Hasenoehrl, E.J.; Ab Rahman, N.B.; Koh, V.H.; Ang, M.L.T.; Sajorda, D.R.; Hards, K.; Grüber, G.; Alonso, S.; Cook, G.M.; Berney, M.; Pethe, K.P. Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection Natl., 2017, 114(28), 7426-7431.
[137]
Cleghorn, L.A.T.; Ray, P.C.; Odingo, J.; Kumar, A.; Wescott, H.; Korkegian, A.; Masquelin, T.; Lopez Moure, A.; Wilson, C.; Davis, S.; Huggett, M.; Turner, P.; Smith, A.; Epemolu, O.; Zuccotto, F.; Riley, J.; Scullion, P.; Shishikura, Y.; Ferguson, L.; Rullas, J.; Guijarro, L.; Read, K.D.; Green, S.R.; Hipskind, P.; Parish, T.; Wyatt, P.G. Identification of morpholino thiophenes as novel mycobacterium tuberculosis inhibitors, targeting qcrb. J. Med. Chem., 2018, 61(15), 6592-6608.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00172] [PMID: 29944372]
[138]
Arora, K.; Ochoa-Montaño, B.; Tsang, P.S.; Blundell, T.L.; Dawes, S.S.; Mizrahi, V.; Bayliss, T.; Mackenzie, C.J.; Cleghorn, L.A.; Ray, P.C.; Wyatt, P.G.; Uh, E.; Lee, J.; Barry, C.E., III; Boshoff, H.I. Respiratory flexibility in response to inhibition of cytochrome C oxidase in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(11), 6962-6965.
[http://dx.doi.org/10.1128/AAC.03486-14] [PMID: 25155596]
[139]
Berube, B.J.; Parish, T. Combinations of respiratory chain inhibitors have enhanced bactericidal activity against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2017, 62(1), e01677-e17.
[http://dx.doi.org/10.1128/AAC.01677-17] [PMID: 29061760]
[140]
Lamprecht, D.A.; Finin, P.M.; Rahman, M.A.; Cumming, B.M.; Russell, S.L.; Jonnala, S.R.; Adamson, J.H.; Steyn, A.J. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat. Commun., 2016, 7, 12393.
[http://dx.doi.org/10.1038/ncomms12393] [PMID: 27506290]
[141]
Koul, A.; Vranckx, L.; Dhar, N.; Göhlmann, H.W.; Özdemir, E.; Neefs, J.M.; Schulz, M.; Lu, P.; Mørtz, E.; McKinney, J.D.; Andries, K.; Bald, D. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat. Commun., 2014, 5, 3369.
[http://dx.doi.org/10.1038/ncomms4369] [PMID: 24569628]
[142]
Moosa, A.; Lamprecht, D.A.; Arora, K.; Barry, C.E., III; Boshoff, H.I.M.; Ioerger, T.R.; Steyn, A.J.C.; Mizrahi, V.; Warner, D.F. Susceptibility of Mycobacterium tuberculosis cytochrome bd oxidase mutants to compounds targeting the terminal respiratory oxidase, cytochrome c. Antimicrob. Agents Chemother., 2017, 61(10), e01338-e17.
[http://dx.doi.org/10.1128/AAC.01338-17] [PMID: 28760899]
[143]
Berube, B.J.; Russell, D.; Castro, L.; Choi, S.R.; Narayanasamy, P.; Parish, T. Novel mena inhibitors are bactericidal against mycobacterium tuberculosis and synergize with electron transport chain inhibitors. Antimicrob. Agents Chemother., 2019, 63(6), e02661-e18.
[http://dx.doi.org/10.1128/AAC.02661-18] [PMID: 30962346]
[144]
Moraski, G.C.; Cheng, Y.; Cho, S.; Cramer, J.W.; Godfrey, A.; Masquelin, T.; Franzblau, S.G.; Miller, M.J.; Schorey, J. Imidazo[1,2-a]pyridine-3-carboxamides are active antimicrobial agents against Mycobacterium avium infection in vivo. Antimicrob. Agents Chemother., 2016, 60(8), 5018-5022.
[http://dx.doi.org/10.1128/AAC.00618-16] [PMID: 27216051]
[145]
Li, X.; Liu, N.; Zhang, H.; Knudson, S.E.; Slayden, R.A.; Tonge, P.J. Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2010, 20(21), 6306-6309.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.076] [PMID: 20850304]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy