Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

In Silico Molecular Interaction Studies of Chitosan Polymer with Aromatase Inhibitor: Leads to Letrozole Nanoparticles for the Treatment of Breast Cancer

Author(s): Keerti Mishra, Sant K. Verma, Pooja Ratre, Laxmi Banjare, Abhishek Jain, Suresh Thareja and Akhlesh K. Jain*

Volume 21, Issue 9, 2021

Published on: 25 August, 2020

Page: [1191 - 1199] Pages: 9

DOI: 10.2174/1871520620666200825192652

Price: $65

Abstract

Background: It takes a lot more studies to evaluate the molecular interaction of nanoparticles with the drug, their drug delivery potential and release kinetics. Thus, we have taken in silico and in vitro approaches into account for the evaluation of the drug delivery ability of the chitosan nanoparticles.

Objective: The present work was aimed to study the interaction of chitosan nanoparticles with appropriate aromatase inhibitors using in silico tools. Further, synthesis and characterization of chitosan nanoparticles having optimal binding energy and affinity between drug and polymer in terms of size, encapsulation efficiency were carried out.

Methods: In the current study, molecular docking was used to map the molecular interactions and estimation of binding energy involved between the nanoparticles and the drug molecules in silico. Letrozole is used as a model cytotoxic agent currently being used clinically; hence Letrozole loaded chitosan nanoparticles were formulated and characterized using photomicroscope, particle size analyzer, scanning electron microscope and fourier transform infra-red spectroscopy.

Results: Letrozole had the second-highest binding affinity within the core of chitosan with MolDock (-102.470) and Re-rank (-81.084) scores. Further, it was investigated that formulated nanoparticles were having superior drug loading capacity and high encapsulation efficiency. In vitro drug release study exhibited prolonged release of the drug from chitosan nanoparticles.

Conclusion: Results obtained from the in silico and in vitro studies suggest that Letrozole loaded nanoparticles are ideal for breast cancer treatment.

Keywords: Breast cancer, molecular docking, aromatase inhibitors, chitosan, nanoparticles, polymers.

Graphical Abstract
[1]
Cooper, G.M. The Cell: A Molecular Approach, 2nd ed; Sinauer Associates: North Carolina, 2000.
[2]
Smith, I.E. Letrozole versus tamoxifen in the treatment of advanced breast cancer and as neoadjuvant therapy. J. Steroid Biochem. Mol. Biol., 2003, 86(3-5), 289-293.
[http://dx.doi.org/10.1016/S0960-0760(03)00369-8] [PMID: 14623523]
[3]
DeSantis, C.; Siegel, R.; Bandi, P.; Jemal, A. Breast cancer statistics, 2011. CA Cancer J. Clin., 2011, 61(6), 409-418.
[http://dx.doi.org/10.3322/caac.20134] [PMID: 21969133]
[4]
Gruber, C.J.; Tschugguel, W.; Schneeberger, C.; Huber, J.C. Production and actions of estrogens. N. Engl. J. Med., 2002, 346(5), 340-352.
[http://dx.doi.org/10.1056/NEJMra000471] [PMID: 11821512]
[5]
Yaghjyan, L.; Colditz, G.A. Estrogens in the breast tissue: A systematic review. Cancer Causes Control, 2011, 22(4), 529-540.
[http://dx.doi.org/10.1007/s10552-011-9729-4] [PMID: 21286801]
[6]
Santen, R.J.; Brodie, H.; Simpson, E.R.; Siiteri, P.K.; Brodie, A. History of aromatase: Saga of an important biological mediator and therapeutic target. Endocr. Rev., 2009, 30(4), 343-375.
[http://dx.doi.org/10.1210/er.2008-0016] [PMID: 19389994]
[7]
Dunkel, L. Use of aromatase inhibitors to increase final height. Mol. Cell. Endocrinol., 2006, 254-255, 207-216.
[http://dx.doi.org/10.1016/j.mce.2006.04.031] [PMID: 16766117]
[8]
Hamilton, A.; Volm, M. Nonsteroidal and steroidal aromatase inhibitors in breast cancer. Oncology (Williston Park), 2001, 15(8), 965-972.
[PMID: 11548977]
[9]
Ghosh, D.; Lo, J.; Egbuta, C. Recent progress in the discovery of next generation inhibitors of aromatase from the structure-function perspective. J. Med. Chem., 2016, 59(11), 5131-5148.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01281] [PMID: 26689671]
[10]
Buzdar, A.; Howell, A. Advances in aromatase inhibition: clinical efficacy and tolerability in the treatment of breast cancer. Clin. Cancer Res., 2001, 7(9), 2620-2635.
[PMID: 11555572]
[11]
Boeddinghaus, I.M.; Dowsett, M. Comparative clinical pharmacology and pharmacokinetic interactions of aromatase inhibitors. J. Steroid Biochem. Mol. Biol., 2001, 79(1-5), 85-91.
[http://dx.doi.org/10.1016/S0960-0760(01)00126-1] [PMID: 11850211]
[12]
Monnier, A. Long-term efficacy and safety of letrozole for the adjuvant treatment of early breast cancer in postmenopausal women: A review. Ther. Clin. Risk Manag., 2009, 5(5), 725-738.
[http://dx.doi.org/10.2147/TCRM.S3858] [PMID: 19774214]
[13]
Coates, A.S.; Keshaviah, A.; Thürlimann, B.; Mouridsen, H.; Mauriac, L.; Forbes, J.F.; Paridaens, R.; Castiglione-Gertsch, M.; Gelber, R.D.; Colleoni, M.; Láng, I.; Del Mastro, L.; Smith, I.; Chirgwin, J.; Nogaret, J.M.; Pienkowski, T.; Wardley, A.; Jakobsen, E.H.; Price, K.N.; Goldhirsch, A. Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: Update of study BIG 1-98. J. Clin. Oncol., 2007, 25(5), 486-492.
[http://dx.doi.org/10.1200/JCO.2006.08.8617] [PMID: 17200148]
[14]
Simpson, D.; Curran, M.P.; Perry, C.M. Letrozole: A review of its use in postmenopausal women with breast cancer. Drugs, 2004, 64(11), 1213-1230.
[http://dx.doi.org/10.2165/00003495-200464110-00005] [PMID: 15161328]
[15]
Vauthier, C.; Dubernet, C.; Chauvierre, C.; Brigger, I.; Couvreur, P. Drug delivery to resistant tumors: The potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release, 2003, 93(2), 151-160.
[http://dx.doi.org/10.1016/j.jconrel.2003.08.005] [PMID: 14636721]
[16]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[http://dx.doi.org/10.1016/j.msec.2015.11.067] [PMID: 26706565]
[17]
Sun, L.; Wu, Q.; Peng, F.; Liu, L.; Gong, C. Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy. Colloids Surf. B Biointerfaces, 2015, 135, 56-72.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.013] [PMID: 26241917]
[18]
Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev., 2010, 62(1), 3-11.
[http://dx.doi.org/10.1016/j.addr.2009.09.004] [PMID: 19800377]
[19]
Azandaryani, A.H.; Kashanian, S.; Shahlaei, M.; Derakhshandeh, K.; Motiei, M.; Moradi, S. A comprehensive physicochemical, in vitro and molecular characterization of letrozole incorporated chitosan-lipid nanocomplex. Pharm. Res., 2019, 36(4), 62.
[http://dx.doi.org/10.1007/s11095-019-2597-4] [PMID: 30850895]
[20]
Gomathi, T.; Sudha, P.N.; Florence, J.A.K.; Venkatesan, J.; Anil, S. Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Int. J. Biol. Macromol., 2017, 104(Pt B), 1820-1832.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.147] [PMID: 28185930]
[21]
Hemati Azandaryani, A.; Kashanian, S.; Derakhshandeh, K. Folate conjugated hybrid nanocarrier for targeted letrozole delivery in breast cancer treatment. Pharm. Res., 2017, 34(12), 2798-2808.
[http://dx.doi.org/10.1007/s11095-017-2260-x] [PMID: 29110284]
[22]
Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv. Pharm. Bull., 2019, 9(2), 195-204.
[http://dx.doi.org/10.15171/apb.2019.023] [PMID: 31380245]
[23]
Vinsova, J.; Vavrikova, E. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities-A review. Curr. Pharm. Des., 2001, 17, 3596-3607.
[http://dx.doi.org/10.2174/138161211798194468]
[24]
Maeda, Y.; Kimura, Y. Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice. J. Nutr., 2004, 134(4), 945-950.
[http://dx.doi.org/10.1093/jn/134.4.945] [PMID: 15051852]
[25]
Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomedicine, 2011, 6, 765-774.
[PMID: 21589644]
[26]
Motiei, M.; Kashanian, S. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur. J. Pharm. Sci., 2017, 99, 285-291.
[http://dx.doi.org/10.1016/j.ejps.2016.12.035] [PMID: 28057549]
[27]
Goss, P.E. Pre-clinical and clinical review of vorozole, a new third generation aromatase inhibitor. Breast Cancer Res. Treat., 1998, 49(Suppl. 1), S59-S65.
[http://dx.doi.org/10.1023/A:1006052923468] [PMID: 9797019]
[28]
Neelesh, K.S.; Harish, K.C.; Chatterjee, D.P. In vitro study of anastrozole loaded PLGA nanoparticles for the treatment of breast cancer. Int. J. Pharm. Life Sci., 2016, 7, 5159-5167.
[29]
Kumar, A.; Sawant, K.K. Application of multiple regression analysis in optimization of anastrozole-loaded PLGA nanoparticles. J. Microencapsul., 2013, 1, 1-10.
[PMID: 23883302]
[30]
Shavi, G.V.; Nayak, U.Y.; Maliyakkal, N.; Deshpande, P.B.; Raghavendra, R.; Kumar, A.R.; Reddya, M.S.; Udupa, N.; Shrawan, B. Nanomedicine of anastrozole for breast cancer: Physicochemical evaluation, in vitro cytotoxicity on BT-549 and MCF-7 cell lines and preclinical study on rat model. Life Sci., 2015, 141, 143-155.
[http://dx.doi.org/10.1016/j.lfs.2015.09.021] [PMID: 26423561]
[31]
Agarwal, S.S.; Sharma, N. Evaluation of anticancer activity of anastrozole loaded nanoparticle on DMBA induced breast carcinoma model in mice. Int. J. Pharma Sci., 2017, 8, 60-74.
[32]
Wisdom, K.S.; Bhat, I.A.; Kumar, P.; Pathan, M.K.; Chanu, T.I.; Walke, P.; Sharma, R. Fabrication of chitosan nanoparticles loaded with aromatase inhibitors for the advancement of gonadal development in Clarias magur (Hamilton, 1822). Aquaculture, 2018, 497, 125-133.
[http://dx.doi.org/10.1016/j.aquaculture.2018.07.049]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy