Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

A Review of the Potential Receptors of Migraine with a Special Emphasis on CGRP to Develop an Ideal Antimigraine Drug

Author(s): Krishna P. Naduchamy and Varadarajan Parthasarathy*

Volume 14, Issue 1, 2021

Published on: 24 August, 2020

Page: [11 - 26] Pages: 16

DOI: 10.2174/1874467213999200824124532

Price: $65

Abstract

Migraine is a neurovascular syndrome associated with a unilateral, throbbing headache accompanied by nausea, vomiting and photo/phonophobia. Several proteins are involved in the etiopathogenesis of migraine headaches. The aim of the present review is to provide an insight into the various target proteins involved in migraine headaches pertaining to the development of a potential anti-migraine drug molecule. Proteins/receptors, such as serotonin (5-HT), Calcitonin Gene-Related Peptide (CGRP), Transient Receptor Potential Vanilloid 1 (TRPV1), cannabinoid, glutamate, opioid, and histamine receptors play various roles in migraine. The nature of the proteins, their types, binding partner membrane proteins and the consequences of the reactions produced have been discussed. The studies conducted on animals and humans with the above-mentioned target proteins/receptors and the results obtained have also been reviewed.

Calcitonin Gene-Related Peptide (CGRP), a G protein-coupled receptor (GPCR), significantly contributes to the progression of migraine. CGRP antagonist inhibits the release of CGRP from trigeminal neurons of the trigeminal ganglion. Based on the study results, the present review suggests that the inhibition of the CGRP receptor might be a successful way to treat migraine headaches. Currently, researchers across the world are focusing their attention towards the development of novel molecules to treat migraine headaches by targeting the CGRP receptor, which can be attributed to its specificity among the several proteins involved in migraine.

Keywords: Migraine, target proteins, GPCR, CGRP release, trigeminal vascular system, anti-migraine drugs.

Graphical Abstract
[1]
Lipton, R.B.; Bigal, M.E. Migraine: epidemiology, impact, and risk factors for progression. Headache, 2005, 45(Suppl. 1), S3-S13.
[http://dx.doi.org/10.1111/j.1526-4610.2005.4501001.x] [PMID: 15833088]
[2]
Lipton, R.B.; Serrano, D.; Holland, S.; Fanning, K.M.; Reed, M.L.; Buse, D.C. Barriers to the diagnosis and treatment of migraine: effects of sex, income, and headache features. Headache, 2013, 53(1), 81-92.
[http://dx.doi.org/10.1111/j.1526-4610.2012.02265.x] [PMID: 23078241]
[3]
Pietrobon, D.; Striessnig, J. Neurobiology of migraine. Nat. Rev. Neurosci., 2003, 4(5), 386-398.
[http://dx.doi.org/10.1038/nrn1102] [PMID: 12728266]
[4]
Martin, V.T.; Behbehani, M. Ovarian hormones and migraine headache: understanding mechanisms and pathogenesis--part I. Headache, 2006, 46(1), 3-23.
[http://dx.doi.org/10.1111/j.1526-4610.2006.00309.x] [PMID: 16412147]
[5]
Brandes, J.L. The influence of estrogen on migraine: a systematic review. JAMA, 2006, 295(15), 1824-1830.
[http://dx.doi.org/10.1001/jama.295.15.1824] [PMID: 16622144]
[6]
Chen, Z.; Yuhanna, I.S.; Galcheva-Gargova, Z.; Karas, R.H.; Mendelsohn, M.E.; Shaul, P.W. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J. Clin. Invest., 1999, 103(3), 401-406.
[http://dx.doi.org/10.1172/JCI5347] [PMID: 9927501]
[7]
Arumugam, M.; Parthasarathy, V. Increased incidence of migraine in women correlates with obstetrics and gynaecological surgical procedures. Int. J. Surg., 2015, 22, 105-109.
[http://dx.doi.org/10.1016/j.ijsu.2015.07.710] [PMID: 26283296]
[8]
Spierings, E.L.H. Pathogenesis of the migraine attack. Clin. J. Pain, 2003, 19(4), 255-262.
[http://dx.doi.org/10.1097/00002508-200307000-00009] [PMID: 12840620]
[9]
Rasmussen, B.K. Migraine and tension-type headache in a general population: precipitating factors, female hormones, sleep pattern and relation to lifestyle. Pain, 1993, 53(1), 65-72.
[http://dx.doi.org/10.1016/0304-3959(93)90057-V] [PMID: 8316392]
[10]
Villeneuve, P.J.; Szyszkowicz, M.; Stieb, D.; Bourque, D.A. Weather and emergency room visits for migraine headaches in Ottawa, Canada. Headache, 2006, 46(1), 64-72.
[http://dx.doi.org/10.1111/j.1526-4610.2006.00322.x] [PMID: 16412153]
[11]
Zivadinov, R.; Willheim, K.; Sepic-Grahovac, D.; Jurjevic, A.; Bucuk, M.; Brnabic-Razmilic, O.; Relja, G.; Zorzon, M. Migraine and tension-type headache in Croatia: a population-based survey of precipitating factors. Cephalalgia, 2003, 23(5), 336-343.DOI.org/10.1046/j.1468-2982.2003.00544.x
[http://dx.doi.org/10.1046/j.1468-2982.2003.00544.x] [PMID: 12780762]
[12]
Levy, D.; Jakubowski, M.; Burstein, R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4274-4279.
[http://dx.doi.org/10.1073/pnas.0306147101] [PMID: 15016917]
[13]
Rapport, M.M.; Green, A.A.; Page, I.H. Serum vasoconstrictor, serotonin; isolation and characterization. J. Biol. Chem., 1948, 176(3), 1243-1251.
[PMID: 18100415]
[14]
Rapport, M.M. Serum vasoconstrictor (serotonin) the presence of creatinine in the complex; a proposed structure of the vasoconstrictor principle. J. Biol. Chem., 1949, 180(3), 961-969.
[PMID: 18139191]
[15]
Bouchelet, I.; Cohen, Z.; Case, B.; Séguéla, P.; Hamel, E. Differential expression of sumatriptan-sensitive 5-hydroxytryptamine receptors in human trigeminal ganglia and cerebral blood vessels. Mol. Pharmacol., 1996, 50(2), 219-223.
[PMID: 8700126]
[16]
Bonaventure, P.; Langlois, X.; Leysen, J.E. Co-localization of 5-HT1B- and 5-HT1D receptor mRNA in serotonergic cell bodies in guinea pig dorsal raphé nucleus: a double labeling in situ hybridization histochemistry study. Neurosci. Lett., 1998, 254(2), 113-116.
[http://dx.doi.org/10.1016/S0304-3940(98)00680-6] [PMID: 9779933]
[17]
Rebeck, G.W.; Maynard, K.I.; Hyman, B.T.; Moskowitz, M.A. Selective 5-HT1D alpha serotonin receptor gene expression in trigeminal ganglia: implications for antimigraine drug development. Proc. Natl. Acad. Sci. USA, 1994, 91(9), 3666-3669.
[http://dx.doi.org/10.1073/pnas.91.9.3666] [PMID: 8170966]
[18]
Bruinvels, A.T.; Landwehrmeyer, B.; Gustafson, E.L.; Durkin, M.M.; Mengod, G.; Branchek, T.A.; Hoyer, D.; Palacios, J.M. Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology, 1994, 33(3-4), 367-386.
[http://dx.doi.org/10.1016/0028-3908(94)90067-1] [PMID: 7984275]
[19]
Waeber, C.; Moskowitz, M.A. [3H]sumatriptan labels both 5-HT1D and 5-HT1F receptor binding sites in the guinea pig brain: an autoradiographic study. Naunyn Schmiedebergs Arch. Pharmacol., 1995, 352(3), 263-275.
[http://dx.doi.org/10.1007/BF00168556] [PMID: 8584041]
[20]
Nilsson, T.; Longmore, J.; Shaw, D.; Olesen, I.J.; Edvinsson, L. Contractile 5-HT1B receptors in human cerebral arteries: pharmacological characterization and localization with immunocytochemistry. Br. J. Pharmacol., 1999, 128(6), 1133-1140.
[http://dx.doi.org/10.1038/sj.bjp.0702773] [PMID: 10578124]
[21]
Goldstein, D.J.; Offen, W.W.; Moster, M.B. Efficacy definitions for migraine studies. Cephalalgia, 1999, 19(4), 248-249.
[http://dx.doi.org/10.1046/j.1468-2982.1999.019004248.x] [PMID: 10376171]
[22]
Tepper, S.J.; Rapoport, A.M.; Sheftell, F.D. Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch. Neurol., 2002, 59(7), 1084-1088.
[http://dx.doi.org/10.1001/archneur.59.7.1084] [PMID: 12117355]
[23]
Mitsikostas, D.D.; Sanchez del Rio, M. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine. Brain Res. Brain Res. Rev., 2001, 35(1), 20-35.
[http://dx.doi.org/10.1016/S0165-0173(00)00048-5] [PMID: 11245884]
[24]
Durham, P.L. CGRP-receptor antagonists--a fresh approach to migraine therapy? N. Engl. J. Med., 2004, 350(11), 1073-1075.
[http://dx.doi.org/10.1056/NEJMp048016] [PMID: 15014178]
[25]
Edvinsson, L. Blockade of CGRP receptors in the intracranial vasculature: a new target in the treatment of headache. Cephalalgia, 2004, 24(8), 611-622.
[http://dx.doi.org/10.1111/j.1468-2982.2003.00719.x] [PMID: 15265049]
[26]
Johnson, K.W.; Schaus, J.M.; Durkin, M.M.; Audia, J.E.; Kaldor, S.W.; Flaugh, M.E.; Adham, N.; Zgombick, J.M. Cohen. M.L.; Branchek. T.A.; Phebus. L.A. 5-HT1F receptor agonist inhibit neurogenic dural inflammation in guinea pigs. Neuroreport, 1997, 8, 2237-2240.
[http://dx.doi.org/10.1097/00001756-199707070-00029] [PMID: 9243618]
[27]
Xu, Y.C.; Johnson, K.W.; Phebus, L.A.; Cohen, M.; Nelson, D.L.; Schenck, K.; Walker, C.D.; Fritz, J.E.; Kaldor, S.W.; LeTourneau, M.E.; Murff, R.E.; Zgombick, J.M.; Calligaro, D.O.; Audia, J.E.; Schaus, J.M. N-[3-(2-Dimethylaminoethyl)-2-methyl-1H- indol-5-yl]-4-fluorobenzamide: a potent, selective, and orally active 5-HT(1F) receptor agonist potentially useful for migraine therapy. J. Med. Chem., 2001, 44(24), 4031-4034.
[http://dx.doi.org/10.1021/jm0155190] [PMID: 11708905]
[28]
Filla. S.A.; Mathes. B.M.; Johnson. K.W.; Phebus. L.A.; Cohen. M.L.; Nelson. D.L.; Zgombick. J.M.; Erickson. J.A.; Schenck. K.W.; Wainscott. D.B.; Branchek. T.A.; Schaus. J. M. Novel potent 5-HT1F receptor agonist: Structure-Activity studies of a series of substituted N-[3-(1-methyl-4-piperidinyl)-1H-pyrrole [3,2-b] pyridine-5-yl] amides. J. Med. Chem., 2003, 46(14), 3060-3071.
[http://dx.doi.org/10.1021/jm030020m] [PMID: 12825944]
[29]
Susana Esteban, S.; Lladó, J.; Sastre-Coll, A.; García-Sevilla, J.A. Activation and desensitization by cyclic antidepressant drugs of α2-autoreceptors, α2-heteroreceptors and 5- HT1A-autoreceptors regulating monoamine synthesis in the rat brain in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol., 1999, 360(2), 135-143.
[http://dx.doi.org/10.1007/s002109900045] [PMID: 10494882]
[30]
Hunfeld, A.; Segelcke, D.; Andriske, M.; Paris, F. Zhu. X.; Lübbert. H. Investigation of 5-HT2B receptor induced dural plasma protein extravasation in a mouse migraine model. J. Headache Pain, 2013, 14(Suppl. 1), 77.
[http://dx.doi.org/10.1186/1129-2377-14-S1-P77]
[31]
Giordano, J.; Dyche, J. Differential analgesic actions of serotonin 5-HT3 receptor antagonists in the mouse. Neuropharmacology, 1989, 28(4), 423-427.
[http://dx.doi.org/10.1016/0028-3908(89)90040-3] [PMID: 2526302]
[32]
Giordano, J.; Rogers, L.V. Peripherally administered serotonin 5-HT3 receptor antagonists reduce inflammatory pain in rats. Eur. J. Pharmacol., 1989, 170(1-2), 83-86.
[http://dx.doi.org/10.1016/0014-2999(89)90137-4] [PMID: 2612565]
[33]
Orwin, J.M.; Fozard, J.R. Blockade of the flare response to intradermal 5-hydroxytryptamine in man by MDL 72.222, a selective antagonist at neuronal 5-hydroxytryptamine receptors. Eur. J. Clin. Pharmacol., 1986, 30(2), 209-212.
[http://dx.doi.org/10.1007/BF00614305] [PMID: 3709648]
[34]
Pascual, J.; Vega, P.; Diener, H-C.; Allen, C.; Vrijens, F.; Patel, K. Rizatriptan-Zolmitriptan Study Group. Comparison of rizatriptan 10 mg vs. zolmitriptan 2.5 mg in the acute treatment of migraine. Cephalalgia, 2000, 20(5), 455-461.
[http://dx.doi.org/10.1046/j.1468-2982.2000.00069.x] [PMID: 11037741]
[35]
Arulmozhi, D.K.; Veeranjaneyulu, A.; Bodhankar, S.L. Migraine: current concepts and emerging therapies. Vascul. Pharmacol., 2005, 43(3), 176-187.
[http://dx.doi.org/10.1016/j.vph.2005.07.001] [PMID: 16099727]
[36]
Sabuda, J.T. Innovative approach to migraine headache and other neurologic conditions. Semin in Integr Med., 2005, 3(3), 93-100.
[http://dx.doi.org/10.1016/j.sigm.2005.10.002]
[37]
Granier, I.; Garcia, E.; Geissler, A.; Boespflug, M.D.; Durand-Gasselin, J. Postpartum cerebral angiopathy associated with the administration of sumatriptan and dihydroergotamine--a case report. Intensive Care Med., 1999, 25(5), 532-534.
[http://dx.doi.org/10.1007/s001340050894] [PMID: 10401952]
[38]
Diener, H-C.; Gendolla, A.; Gebert, I.; Beneke, M. Almotriptan in migraine patients who respond poorly to oral sumatriptan: a double-blind, randomized trial. Eur. Neurol., 2005, 53(Suppl. 1), 41-48.
[http://dx.doi.org/10.1159/000085061] [PMID: 15920337]
[39]
Juaneda, C.; Dumont, Y.; Quirion, R. The molecular pharmacology of CGRP and related peptide receptor subtypes. Trends Pharmacol. Sci., 2000, 21(11), 432-438.
[http://dx.doi.org/10.1016/S0165-6147(00)01555-8] [PMID: 11121574]
[40]
Poyner, D.R.; Sexton, P.M.; Marshall, I.; Smith, D.M.; Quirion, R.; Born, W.; Muff, R.; Fischer, J.A.; Foord, S.M. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev., 2002, 54(2), 233-246.
[http://dx.doi.org/10.1124/pr.54.2.233] [PMID: 12037140]
[41]
Amara, S.G.; Jonas, V.; Rosenfeld, M.G.; Ong, E.S.; Evans, R.M. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature, 1982, 298(5871), 240-244.
[http://dx.doi.org/10.1038/298240a0] [PMID: 6283379]
[42]
Jansen-Olesen, I.; Mortensen, A.; Edvinsson, L. Calcitonin gene-related peptide is released from capsaicin-sensitive nerve fibres and induces vasodilatation of human cerebral arteries concomitant with activation of adenylyl cyclase. Cephalalgia, 1996, 16(5), 310-316.
[http://dx.doi.org/10.1046/j.1468-2982.1996.1605310.x] [PMID: 8869765]
[43]
Rosenfeld, M.G.; Mermod, J.J.; Amara, S.G.; Swanson, L.W.; Sawchenko, P.E.; Rivier, J.; Vale, W.W.; Evans, R.M. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 1983, 304(5922), 129-135.
[http://dx.doi.org/10.1038/304129a0] [PMID: 6346105]
[44]
Quirion, R.; Van Rossum, D.; Dumont, Y.; St-Pierre, S.; Fournier, A. Characterization of CGRP1 and CGRP2 receptor subtypes. Ann. N. Y. Acad. Sci., 1992, 657, 88-105.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb22759.x] [PMID: 1322107]
[45]
van Rossum, D.; Hanisch, U.K.; Quirion, R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci. Biobehav. Rev., 1997, 21(5), 649-678.
[http://dx.doi.org/10.1016/S0149-7634(96)00023-1] [PMID: 9353797]
[46]
Poyner, D.; Marshall, I. CGRP receptors: beyond the CGRP(1)-CGRP(2) subdivision? Trends Pharmacol. Sci., 2001, 22(5), 223.
[http://dx.doi.org/10.1016/S0165-6147(00)91555-4] [PMID: 11426419]
[47]
Wimalawansa, S.J. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr. Rev., 1996, 17(5), 533-585.
[http://dx.doi.org/10.1210/edrv-17-5-533] [PMID: 8897024]
[48]
Sternini, C. Enteric and visceral afferent CGRP neurons. Targets of innervation and differential expression patterns. Ann. N. Y. Acad. Sci., 1992, 657, 170-186.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb22766.x] [PMID: 1637083]
[49]
McLatchie, L.M.; Fraser, N.J.; Main, M.J.; Wise, A.; Brown, J.; Thompson, N.; Solari, R.; Lee, M.G.; Foord, S.M. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature, 1998, 393(6683), 333-339.
[http://dx.doi.org/10.1038/30666] [PMID: 9620797]
[50]
Conner, A.C.; Hay, D.L.; Howitt, S.G.; Kilk, K.; Langel, U.; Wheatley, M.; Smith, D.M.; Poyner, D.R. Interaction of calcitonin-gene-related peptide with its receptors. Biochem. Soc. Trans., 2002, 30(4), 451-455.
[http://dx.doi.org/10.1042/bst0300451] [PMID: 12196113]
[51]
Nikitenko, L.L.; MacKenzie, I.Z.; Rees, M.C.P.; Bicknell, R. Adrenomedullin is an autocrine regulator of endothelial growth in human endometrium. Mol. Hum. Reprod., 2000, 6(9), 811-819.
[http://dx.doi.org/10.1093/molehr/6.9.811] [PMID: 10956553]
[52]
Powell, K.J.; Ma, W.; Sutak, M.; Doods, H.; Quirion, R.; Jhamandas, K. Blockade and reversal of spinal morphine tolerance by peptide and non-peptide calcitonin gene-related peptide receptor antagonists. Br. J. Pharmacol., 2000, 131(5), 875-884.
[http://dx.doi.org/10.1038/sj.bjp.0703655] [PMID: 11053206]
[53]
Oku, R.; Satoh, M.; Fujii, N.; Otaka, A.; Yajima, H.; Takagi, H. Calcitonin gene-related peptide promotes mechanical nociception by potentiating release of substance P from the spinal dorsal horn in rats. Brain Res., 1987, 403(2), 350-354.
[http://dx.doi.org/10.1016/0006-8993(87)90074-6] [PMID: 2435372]
[54]
Rossi, S.G.; Dickerson, I.M.; Rotundo, R.L. Localization of the calcitonin gene-related peptide receptor complex at the vertebrate neuromuscular junction and its role in regulating acetylcholinesterase expression. J. Biol. Chem., 2003, 278(27), 24994-25000.
[http://dx.doi.org/10.1074/jbc.M211379200] [PMID: 12707285]
[55]
Ottosson, A.; Edvinsson, L. Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia, 1997, 17(3), 166-174.
[http://dx.doi.org/10.1046/j.1468-2982.1997.1703166.x] [PMID: 9170339]
[56]
Moreno, M.J.; Abounader, R.; Hébert, E.; Doods, H.; Hamel, E. Efficacy of the non-peptide CGRP receptor antagonist BIBN4096BS in blocking CGRP-induced dilations in human and bovine cerebral arteries: potential implications in acute migraine treatment. Neuropharmacology, 2002, 42(4), 568-576.
[http://dx.doi.org/10.1016/S0028-3908(02)00008-4] [PMID: 11955527]
[57]
Rudolf, K.; Eberlein, W.; Engel, W.; Pieper, H.; Entzeroth, M.; Hallermayer, G.; Doods, H. Development of human calcitonin gene-related peptide (CGRP) receptor antagonists. 1. Potent and selective small molecule CGRP antagonists. 1-[N2-[3,5-dibromo-N-[[4-(3,4-dihydro-2(1H)-oxoquinazolin-3-yl)-1-piperidinyl]carbonyl]-D-tyrosyl]-l-lysyl]-4-(4-pyridinyl)piperazine: the first CGRP antagonist for clinical trials in acute migraine. J. Med. Chem., 2005, 48(19), 5921-5931.
[http://dx.doi.org/10.1021/jm0490641] [PMID: 16161996]
[58]
Edvinsson, L.; Ho, T.W. CGRP receptor antagonism and migraine Neuro ther, 2010, 7, 164-175.
[http://dx.doi.org/10.1016/j.nurt.2010.02.004]
[59]
Connor, K.M.; Shapiro, R.E.; Diener, H.C.; Lucas, S.; Kost, J.; Fan, X.; Fei, K.; Assaid, C.; Lines, C.; Ho, T.W. Randomized, controlled trial of telcagepant for the acute treatment of migraine. Neurology, 2009, 73(12), 970-977.
[http://dx.doi.org/10.1212/WNL.0b013e3181b87942] [PMID: 19770473]
[61]
Carlsson, A.; Falck, B.; Hillarp, N.A. Cellular localization of brain monoamines. Acta Physiol. Scand. Suppl., 1962, 56(196), 1-28.
[PMID: 14018711]
[62]
Björklund, A.; Dunnett, S.B. Fifty years of dopamine research. Trends Neurosci., 2007, 30(5), 185-187.
[http://dx.doi.org/10.1016/j.tins.2007.03.004] [PMID: 17397938]
[63]
Reisine, T.D.; Nagy, J.I.; Fibiger, H.C.; Yamamura, H.I. Localization of dopamine receptors in rat brain. Brain Res., 1979, 169(1), 209-214.
[http://dx.doi.org/10.1016/0006-8993(79)90391-3] [PMID: 455093]
[64]
De Keyser, J.; Herregodts, P.; Ebinger, G. The mesoneocortical dopamine neuron system. Neurology, 1990, 40(11), 1660-1662. a
[http://dx.doi.org/10.1212/WNL.40.11.1660] [PMID: 2234421]
[65]
Bergerot, A.; Storer, R.J.; Goadsby, P.J. Dopamine inhibits trigeminovascular transmission in the rat. Ann. Neurol., 2007, 61(3), 251-262.
[http://dx.doi.org/10.1002/ana.21077] [PMID: 17387726]
[66]
Chen, S.C. Epilepsy and migraine: The dopamine hypotheses. Med. Hypotheses, 2006, 66(3), 466-472.
[http://dx.doi.org/10.1016/j.mehy.2005.09.045] [PMID: 16298497]
[67]
Del Bene, E.; Poggioni, M.; De Tommasi, F. Video assessment of yawning induced by sublingual apomorphine in migraine. Headache, 1994, 34(9), 536-538.
[http://dx.doi.org/10.1111/j.1526-4610.1994.hed3409536.x] [PMID: 8002329]
[68]
Mascia, A.; Afra, J.; Schoenen, J. Dopamine and migraine: a review of pharmacological, biochemical, neurophysiological, and therapeutic data. Cephalalgia, 1998, 18(4), 174-182.
[http://dx.doi.org/10.1046/j.1468-2982.1998.1804174.x] [PMID: 9642491]
[69]
Del Zompo, M.; Cherchi, A.; Palmas, M.A.; Ponti, M.; Bocchetta, A.; Gessa, G.L.; Piccardi, M.P. Association between dopamine receptor genes and migraine without aura in a Sardinian sample. Neurology, 1998, 51(3), 781-786.
[http://dx.doi.org/10.1212/WNL.51.3.781] [PMID: 9748026]
[70]
García-Martín, E.; Martínez, C.; Serrador, M.; Alonso-Navarro, H.; Navacerrada, F.; Agúndez, J.A.G.; Jiménez-Jiménez, F.J. Dopamine receptor 3 (DRD3) polymorphism and risk for migraine. Eur. J. Neurol., 2010, 17(9), 1220-1223.
[http://dx.doi.org/10.1111/j.1468-1331.2010.02988.x] [PMID: 20236178]
[71]
Barbanti, P.; Fabbrini, G.; Ricci, A.; Pascali, M.P.; Bronzetti, E.; Amenta, F.; Lenzi, G.L.; Cerbo, R. Migraine patients show an increased density of dopamine D3 and D4 receptors on lymphocytes. Cephalalgia, 2000, 20(1), 15-19.
[http://dx.doi.org/10.1046/j.1468-2982.2000.00001.x] [PMID: 10817442]
[72]
Greame shepherd.; Lea, R.A.; Colin Hutchins.; Jordan, K.L.; Brimage, P.J.; Griffiths, L.R. Dopamine receptor genes and migraine with and without aura: An association study. Headache, 2002, 42, 346-351.
[http://dx.doi.org/10.1046/j.1526-4610.2002.02105.x]
[73]
Mochi, M.; Cevoli, S.; Cortelli, P.; Pierangeli, G.S.; Soriani, C. Scapoli. P.; Montagna. A genetic association study of migraine with dopamine receptor 4, dopamine transporter and dopamine-betahydroxylase genes. Neurol. Sci., 2003, 23(6), 301-305.
[http://dx.doi.org/10.1007/s100720300005] [PMID: 12624717]
[74]
Richman, P.B.; Allegra, J.; Eskin, B.; Doran, J.; Reischel, U.; Kaiafas, C.; Nashed, A.H. A randomized clinical trial to assess the efficacy of intramuscular droperidol for the treatment of acute migraine headache. Am. J. Emerg. Med., 2002, 20(1), 39-42.
[http://dx.doi.org/10.1053/ajem.2002.30007] [PMID: 11781912]
[75]
Richman, P.B.; Reischel, U.; Ostrow, A.; Irving, C.; Ritter, A.; Allegra, J.; Eskin, B.; Szucs, P.; Nashed, A.H. Droperidol for acute migraine headache. Am. J. Emerg. Med., 1999, 17(4), 398-400.
[http://dx.doi.org/10.1016/S0735-6757(99)90096-7] [PMID: 10452443]
[76]
Knapp, R.J.; Malatynska, E.; Collins, N.; Fang, L.; Wang, J.Y.; Hruby, V.J.; Roeske, W.R.; Yamamura, H.I. Molecular biology and pharmacology of cloned opioid receptors. FASEB J., 1995, 9(7), 516-525.
[http://dx.doi.org/10.1096/fasebj.9.7.7737460] [PMID: 7737460]
[77]
Tripathi, K.D. Opioid analgesics and antagonistsEssentials of Medical Pharmacology, 7th ed; Jaypee brothers medical publishers (P) Ltd, New Delhi, 2013, pp. 469-485.
[78]
Nascimento, T.D.; DosSantos, M.F. Sarah Lucas.; Holsbeeck, H.V.; DeBoer, M.; Maslowski, E.; Tiffany Love.; Martikainen, I.K.; Koeppe, R.A.; Smith, Y.R.; Jon-kar Zubeita.; DaSilva, A.F. µ-Opioid activation in the midbrain during migraine allodynia-brief report II. Ann. Clin. Transl. Neurol., 2014, 1(6), 445-450.
[http://dx.doi.org/10.1002/acn3.66] [PMID: 25328905]
[79]
Hutchinson, M.R.; Bland, S.T.; Johnson, K.W.; Rice, K.C.; Maier, S.F.; Watkins, L.R. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal, 2007, 7, 98-111.
[http://dx.doi.org/10.1100/tsw.2007.230] [PMID: 17982582]
[80]
Pradhan, A.A.; Smith, M.L.; Zyuzin, J.; Charles, A. δ-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br. J. Pharmacol., 2014, 171(9), 2375-2384.
[http://dx.doi.org/10.1111/bph.12591] [PMID: 24467301]
[81]
Bussone, G.; Boiardi, A.; La Mantia, L.; Frediani, F.; Martini, A.; Di Giulio, A.M.; Panerai, A.E. Neuroendocrinological study of opioid and serotoninergic systems in migraine patients. Ital. J. Neurol. Sci., 1984, 5(4), 413-416.
[http://dx.doi.org/10.1007/BF02042625] [PMID: 6099346]
[82]
Cabot, P.J.; Carter, L.; Gaiddon, C.; Zhang, Q.; Schäfer, M.; Loeffler, J.P.; Stein, C. Immune cell-derived β-endorphin. Production, release, and control of inflammatory pain in rats. J. Clin. Invest., 1997, 100(1), 142-148.
[http://dx.doi.org/10.1172/JCI119506] [PMID: 9202066]
[83]
Schäfer, M.; Carter, L.; Stein, C. Interleukin 1 β and corticotropin-releasing factor inhibit pain by releasing opioids from immune cells in inflamed tissue. Proc. Natl. Acad. Sci. USA, 1994, 91(10), 4219-4223.
[http://dx.doi.org/10.1073/pnas.91.10.4219] [PMID: 7910403]
[84]
Nicolodi, M.; Sicuteri, F. Chronic naloxone administration, a potential treatment for migraine, enhances morphine-induced miosis. Headache, 1992, 32(7), 348-352.
[http://dx.doi.org/10.1111/j.1526-4610.1992.hed3207348.x] [PMID: 1526766]
[85]
Gaoni, Y.; Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc., 1964, 86, 1646-1647.
[http://dx.doi.org/10.1021/ja01062a046]
[86]
Razdan, R.K. Structure-activity relationships in cannabinoids. Pharmacol. Rev., 1986, 38(2), 75-149.
[PMID: 3018800]
[87]
Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA, 1990, 87(5), 1932-1936.
[http://dx.doi.org/10.1073/pnas.87.5.1932] [PMID: 2308954]
[88]
Herkenham, M.; Lynn, A.B.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci., 1991, 11(2), 563-583.
[http://dx.doi.org/10.1523/JNEUROSCI.11-02-00563.1991] [PMID: 1992016]
[89]
Tsou, K.; Brown, S.; Sañudo-Peña, M.C.; Mackie, K.; Walker, J.M. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience, 1998, 83(2), 393-411.
[http://dx.doi.org/10.1016/S0306-4522(97)00436-3] [PMID: 9460749]
[90]
Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; Mechoulam, R.; Pertwee, R.G. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev., 2002, 54(2), 161-202.
[http://dx.doi.org/10.1124/pr.54.2.161] [PMID: 12037135]
[91]
Di Marzo, V. ‘Endocannabinoids’ and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim. Biophys. Acta, 1998, 1392(2-3), 153-175.
[http://dx.doi.org/10.1016/S0005-2760(98)00042-3] [PMID: 9630590]
[92]
van der Stelt, M.; Di Marzo, V. Cannabinoid receptors and their role in neuroprotection. Neuromolecular Med., 2005, 7(1-2), 37-50.
[http://dx.doi.org/10.1385/NMM:7:1-2:037] [PMID: 16052037]
[93]
Maresz, K.; Pryce, G.; Ponomarev, E.D.; Marsicano, G.; Croxford, J.L.; Shriver, L.P.; Ledent, C.; Cheng, X.; Carrier, E.J.; Mann, M.K.; Giovannoni, G.; Pertwee, R.G.; Yamamura, T.; Buckley, N.E.; Hillard, C.J.; Lutz, B.; Baker, D.; Dittel, B.N. Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat. Med., 2007, 13(4), 492-497.
[http://dx.doi.org/10.1038/nm1561] [PMID: 17401376]
[94]
Wallace, J.M.; Tashkin, D.P.; Oishi, J.S.; Barbers, R.G. Peripheral blood lymphocyte subpopulations and mitogen responsiveness in tobacco and marijuana smokers. J. Psychoactive Drugs, 1988, 20(1), 9-14.
[http://dx.doi.org/10.1080/02791072.1988.10524365] [PMID: 3392635]
[95]
Felder, C.C.; Briley, E.M.; Axelrod, J.; Simpson, J.T.; Mackie, K.; Devane, W.A. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc. Natl. Acad. Sci. USA, 1993, 90(16), 7656-7660.
[http://dx.doi.org/10.1073/pnas.90.16.7656] [PMID: 8395053]
[96]
Felder, C.C.; Joyce, K.E.; Briley, E.M.; Mansouri, J.; Mackie, K.; Blond, O.; Lai, Y.; Ma, A.L.; Mitchell, R.L. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol. Pharmacol., 1995, 48(3), 443-450.
[PMID: 7565624]
[97]
Twitchell, W.; Brown, S.; Mackie, K. Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J. Neurophysiol., 1997, 78(1), 43-50.
[http://dx.doi.org/10.1152/jn.1997.78.1.43] [PMID: 9242259]
[98]
Mackie, K.; Lai, Y.; Westenbroek, R.; Mitchell, R. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J. Neurosci., 1995, 15(10), 6552-6561.
[http://dx.doi.org/10.1523/JNEUROSCI.15-10-06552.1995] [PMID: 7472417]
[99]
Crawley, J.N.; Corwin, R.L.; Robinson, J.K.; Felder, C.C.; Devane, W.A.; Axelrod, J. Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents. Pharmacol. Biochem. Behav., 1993, 46(4), 967-972.
[http://dx.doi.org/10.1016/0091-3057(93)90230-Q] [PMID: 7906042]
[100]
Smith, P.B.; Compton, D.R.; Welch, S.P.; Razdan, R.K.; Mechoulam, R.; Martin, B.R. The pharmacological activity of anandamide, a putative endogenous cannabinoid, in mice. J. Pharmacol. Exp. Ther., 1994, 270(1), 219-227.
[PMID: 8035318]
[101]
Akerman, S.; Holland, P.R.; Goadsby, P.J. Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J. Pharmacol. Exp. Ther., 2007, 320(1), 64-71.
[http://dx.doi.org/10.1124/jpet.106.106971] [PMID: 17018694]
[102]
Juhasz, G.; Lazary, J.; Chase, D.; Pegg, E.; Downey, D.; Toth, Z.G.; Stones, K.; Platt, H.; Mekli, K.; Payton, A.; Anderson, I.M.; Deakin, J.F.; Bagdy, G. Variations in the cannabinoid receptor 1 gene predispose to migraine. Neurosci. Lett., 2009, 461(2), 116-120.
[http://dx.doi.org/10.1016/j.neulet.2009.06.021] [PMID: 19539700]
[103]
Greco, R.; Gasperi, V.; Maccarrone, M.; Tassorelli, C. The endocannabinoid system and migraine. Exp. Neurol., 2010, 224(1), 85-91.
[http://dx.doi.org/10.1016/j.expneurol.2010.03.029] [PMID: 20353780]
[104]
Akerman, S.; Kaube, H.; Goadsby, P.J. Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J. Pharmacol. Exp. Ther., 2004, 309(1), 56-63. a
[http://dx.doi.org/10.1124/jpet.103.059808] [PMID: 14718591]
[105]
Greco, R.; Mangione, A.S.; Sandrini, G.; Nappi, G.; Tassorelli, C. Activation of CB2 receptors as a potential therapeutic target for migraine: evaluation in an animal model. J. Headache Pain, 2014, 15(14), 14.
[http://dx.doi.org/10.1186/1129-2377-15-14] [PMID: 24636539]
[106]
Ramadan, N.M. Glutamate and migraine: from Ikeda to the 21st century. Cephalalgia, 2014, 34(2), 86-89.
[http://dx.doi.org/10.1177/0333102413499646] [PMID: 23935158]
[107]
Kai-Kai, M.A.; Howe, R. Glutamate-immunoreactivity in the trigeminal and dorsal root ganglia, and intraspinal neurons and fibres in the dorsal horn of the rat. Histochem. J., 1991, 23(4), 171-179.
[http://dx.doi.org/10.1007/BF01046588] [PMID: 1684179]
[108]
Tallaksen-Greene, S.J.; Young, A.B.; Penney, J.B.; Beitz, A.J. Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat Neurosci. Lett., 1992, 141(1), 79-83.
[http://dx.doi.org/10.1016/0304-3940(92)90339-9]
[109]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[110]
Montana, M.C.; Gereau, R.W. Metabotropic glutamate receptors as targets for analgesia: antagonism, activation, and allosteric modulation. Curr. Pharm. Biotechnol., 2011, 12(10), 1681-1688.
[http://dx.doi.org/10.2174/138920111798357438] [PMID: 21466446]
[111]
Benarroch, E.E. Metabotropic glutamate receptors: synaptic modulators and therapeutic targets for neurologic disease. Neurology, 2008, 70(12), 964-968.
[http://dx.doi.org/10.1212/01.wnl.0000306315.03021.2a] [PMID: 18347319]
[112]
Garthwaite, J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci., 1991, 14(2), 60-67.
[http://dx.doi.org/10.1016/0166-2236(91)90022-M] [PMID: 1708538]
[113]
Domoki, F.; Perciaccante, J.V.; Shimizu, K.; Puskar, M.; Busija, D.W.; Bari, F. N-methyl-D-aspartate-induced vasodilation is mediated by endothelium-independent nitric oxide release in piglets. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(4), H1404-H1409.
[http://dx.doi.org/10.1152/ajpheart.00523.2001] [PMID: 11893577]
[114]
Zonta, M.; Angulo, M.C.; Gobbo, S.; Rosengarten, B.; Hossmann, K.A.; Pozzan, T.; Carmignoto, G. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci., 2003, 6(1), 43-50.
[http://dx.doi.org/10.1038/nn980] [PMID: 12469126]
[115]
Sun, W.; McConnell, E.; Pare, J-F.; Xu, Q.; Chen, M.; Peng, W.; Lovatt, D.; Han, X.; Smith, Y.; Nedergaard, M. Glutamate-Dependent Neuroglial Calcium signaling Differs Between Young and Adult Brain Science 2013, 339, 197.
[116]
Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci., 2004, 5(5), 347-360.
[http://dx.doi.org/10.1038/nrn1387] [PMID: 15100718]
[117]
Parri, H.R.; Gould, T.M.; Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci., 2001, 4(8), 803-812.
[http://dx.doi.org/10.1038/90507] [PMID: 11477426]
[118]
Takano, T.; Tian, G-F.; Peng, W.; Lou, N.; Libionka, W.; Han, X.; Nedergaard, M. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci., 2006, 9(2), 260-267.
[http://dx.doi.org/10.1038/nn1623] [PMID: 16388306]
[119]
Damodaram, S.; Thalakoti, S.; Freeman, S.E.; Garrett, F.G.; Durham, P.L. Tonabersat inhibits trigeminal ganglion neuronal-satellite glial cell signaling. Headache, 2009, 49(1), 5-20.
[http://dx.doi.org/10.1111/j.1526-4610.2008.01262.x] [PMID: 19125874]
[120]
Lashley, K. Patterns of cerebral integration indicated by the scotomas of migraine. Arch. Neurol. Psychiatry, 1941, 46, 331-339.
[http://dx.doi.org/10.1001/archneurpsyc.1941.02280200137007]
[121]
Charles, A.C.; Baca, S.M. Cortical spreading depression and migraine. Nat. Rev. Neurol., 2013, 9(11), 637-644.
[http://dx.doi.org/10.1038/nrneurol.2013.192] [PMID: 24042483]
[122]
D’Eufemia, P.; Finocchiaro, R.; Lendvai, D.; Celli, M.; Viozzi, L.; Troiani, P.; Turri, E.; Giardini, O. Erythrocyte and plasma levels of glutamate and aspartate in children affected by migraine. Cephalalgia, 1997, 17(6), 652-657.
[http://dx.doi.org/10.1046/j.1468-2982.1997.1706652.x] [PMID: 9350385]
[123]
Lauritzen, M. Cortical spreading depression in migraine. Cephalalgia, 2001, 21(7), 757-760.
[http://dx.doi.org/10.1177/033310240102100704] [PMID: 11595007]
[124]
Colonna, D.M.; Meng, W.; Deal, D.D.; Busija, D.W. Calcitonin gene-related peptide promotes cerebrovascular dilation during cortical spreading depression in rabbits. Am. J. Physiol., 1994, 266(3 Pt 2), H1095-H1102.
[PMID: 7512795]
[125]
Hill, R.G.; Salt, T.E. An ionophoretic study of the responses of rat caudal trigeminal nucleus neurones to non-noxious mechanical sensory stimuli. J. Physiol., 1982, 327, 65-78.
[http://dx.doi.org/10.1113/jphysiol.1982.sp014220] [PMID: 6288930]
[126]
Goadsby, P.J.; Classey, J.D. Glutamatergic transmission in the trigeminal nucleus assessed with local blood flow. Brain Res., 2000, 875(1-2), 119-124.
[http://dx.doi.org/10.1016/S0006-8993(00)02630-5] [PMID: 10967305]
[127]
Storer, R.J.; Goadsby, P.J. Trigeminovascular nociceptive transmission involves N-methyl-Daspartate glutamate receptors. Neuroscience, 1999, 90(4), 1371-1376.
[http://dx.doi.org/10.1016/S0306-4522(98)00536-3] [PMID: 10338304]
[128]
Krusz, J.C. Memantine for Migraine and Tension-Type Headache Prophylaxis. Pract. Pain Manag., 2011, 11(1)
[129]
Sang, C.N.; Ramadan, N.M.; Wallihan, R.G.; Chappell, A.S.; Freitag, F.G.; Smith, T.R.; Silberstein, S.D.; Johnson, K.W.; Phebus, L.A.; Bleakman, D.; Ornstein, P.L.; Arnold, B.; Tepper, S.J.; Vandenhende, F. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia, 2004, 24(7), 596-602.
[http://dx.doi.org/10.1111/j.1468-2982.2004.00723.x] [PMID: 15196302]
[130]
Johnson, K.W.; Nisenbaum, E.S.; Johnson, M.P.; Dieckman, D.K.; Clemens-Smith, A.; Siuda, E.R.; Dell, C.P.; Dehlinger, V.; Hudziak, K.J.; Filla, S.A.; Ornstein, P.L.; Ramadan, N.M.; Bleakman, D. GlutamateInnovative drug development for headache disorders; Olesen. J., Ramadan. N, Ed.; Frontiers in headache research; , 2008, 16, pp. 185-194.
[131]
Storer, R.J.; Goadsby, P.J. N-methyl-D-aspartate receptor channel complex blockers including memantine and magnesium inhibit nociceptive traffic in the trigeminocervical complex of the rat. Cephalalgia, 2009, 29(Suppl. 1), 135.
[132]
Taverna, S.; Sancini, G.; Mantegazza, M.; Franceschetti, S.; Avanzini, G. Inhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate. J. Pharmacol. Exp. Ther., 1999, 288(3), 960-968.
[PMID: 10027832]
[133]
Zhang, X.; Velumian, A.A.; Jones, O.T.; Carlen, P.L. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia, 2000, 41(Suppl. 1), S52-S60.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb02173.x] [PMID: 10768302]
[134]
Herrero, A.I.; Del Olmo, N.; Gonzalez-Escalada, J.R.; Solis, J.M. Two new actions of topiramate: inhibition of depolarizing GABA(A)-mediated responses and activation of a potassium conductance Neuropharmacology, 2002, 42(2), 210-220.
[135]
Diener, H.C.; Bussone, G.; Van Oene, J.C.; Lahaye, M.; Schwalen, S.; Goadsby, P.J. TOPMAT-MIG-201(TOP-CHROME) Study Group. Topiramate reduces headache days in chronic migraine: a randomized, double-blind, placebo-controlled study. Cephalalgia, 2007, 27(7), 814-823.
[http://dx.doi.org/10.1111/j.1468-2982.2007.01326.x] [PMID: 17441971]
[136]
Chan, K.; MaassenVanDenBrink, A. Glutamate receptor antagonists in the management of migraine. Drugs, 2014, 74(11), 1165-1176.
[http://dx.doi.org/10.1007/s40265-014-0262-0] [PMID: 25030431]
[137]
Steiner, T.J.; Findley, L.J.; Yuen, A.W. Lamotrigine versus placebo in the prophylaxis of migraine with and without aura. Cephalalgia, 1997, 17(2), 109-112.
[http://dx.doi.org/10.1046/j.1468-2982.1997.1702109.x] [PMID: 9137848]
[138]
Dolly, O. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins Headache, 2003, 43(1), S16-24.
[http://dx.doi.org/10.1046/j.1526-4610.43.7s.4.x]
[139]
Dodick, D.W.; Turkel, C.C.; DeGryse, R.E.; Aurora, S.K.; Silberstein, S.D.; Lipton, R.B.; Diener, H-C.; Brin, M.F. PREEMPT chronic migraine study group. Onabotulinumtoxin A for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache, 2010, 50(6), 921-936.
[http://dx.doi.org/10.1111/j.1526-4610.2010.01678.x] [PMID: 20487038]
[140]
Sánchez-Porras, R.; Santos, E.; Schöll, M.; Stock, C.; Zheng, Z.; Schiebel, P.; Orakcioglu, B.; Unterberg, A.W.; Sakowitz, O.W. The effect of ketamine on optical and electrical characteristics of spreading depolarizations in gyrencephalic swine cortex. Neuropharmacology, 2014, 84, 52-61.
[http://dx.doi.org/10.1016/j.neuropharm.2014.04.018] [PMID: 24796257]
[141]
Afridi, S.K.; Giffin, N.J.; Kaube, H.; Goadsby, P.J. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology, 2013, 80(7), 642-647.
[http://dx.doi.org/10.1212/WNL.0b013e3182824e66] [PMID: 23365053]
[142]
Kaube, H.; Herzog, J.; Käufer, T.; Dichgans, M.; Diener, H.C. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology, 2000, 55(1), 139-141.
[http://dx.doi.org/10.1212/WNL.55.1.139] [PMID: 10891926]
[143]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[144]
Planells-Cases, R.; Garcìa-Sanz, N.; Morenilla-Palao, C.; Ferrer- Montiel, A. Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflugers Arch., 2005, 451(1), 151-159.
[http://dx.doi.org/10.1007/s00424-005-1423-5] [PMID: 15909179]
[145]
Sedgwick, S.G.; Smerdon, S.J. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem. Sci., 1999, 24(8), 311-316.
[http://dx.doi.org/10.1016/S0968-0004(99)01426-7] [PMID: 10431175]
[146]
Evans, M.S.; Cheng, X.; Jeffry, J.A.; Disney, K.E.; Premkumar, L.S. Sumatriptan inhibits TRPV1 channels in trigeminal neurons. Headache, 2012, 52(5), 773-784.
[http://dx.doi.org/10.1111/j.1526-4610.2011.02053.x] [PMID: 22289052]
[147]
Holzer, P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience, 1988, 24(3), 739-768.
[http://dx.doi.org/10.1016/0306-4522(88)90064-4] [PMID: 3288903]
[148]
Rashid, M.H.; Inoue, M.; Kondo, S.; Kawashima, T.; Bakoshi, S.; Ueda, H. Novel expression of vanilloid receptor 1 on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin cream in neuropathic pain. J. Pharmacol. Exp. Ther., 2003, 304(3), 940-948.
[http://dx.doi.org/10.1124/jpet.102.046250] [PMID: 12604668]
[149]
Gunthorpe, M.J.; Szallasi, A. Peripheral TRPV1 receptors as targets for drug development: new molecules and mechanisms. Curr. Pharm. Des., 2008, 14(1), 32-41.
[http://dx.doi.org/10.2174/138161208783330754] [PMID: 18220816]
[150]
Carreno, O.; Corominas, R.; Fernandez-Morales, J.; Camina, M.; Sobrido, M-J.; Fernandez-Fernandez, J.M.; Pozo-Rosich, P.; Cormand, B.; Macaya, A. SNP variants within the vanilloid TRPV1 and TRPV3 receptor genes are associated with migraine in the Spanish population A J MedGenet Part B, 2012, 159, 94-103.
[151]
Bevan, S.; Geppetti, P. Protons: small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci., 1994, 17(12), 509-512.
[http://dx.doi.org/10.1016/0166-2236(94)90149-X] [PMID: 7532332]
[152]
Tominaga, M.; Caterina, M.J.; Malmberg, A.B.; Rosen, T.A.; Gilbert, H.; Skinner, K.; Raumann, B.E.; Basbaum, A.I.; Julius, D.; Julius, D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron, 1998, 21(3), 531-543.
[http://dx.doi.org/10.1016/S0896-6273(00)80564-4] [PMID: 9768840]
[153]
Zygmunt, P.M.; Petersson, J.; Andersson, D.A.; Chuang, H.; Sørgård, M.; Di Marzo, V.; Julius, D.; Högestätt, E.D. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature, 1999, 400(6743), 452-457.
[http://dx.doi.org/10.1038/22761] [PMID: 10440374]
[154]
Hwang, S.W.; Cho, H.; Kwak, J.; Lee, S.Y.; Kang, C-J.; Jung, J.; Cho, S.; Min, K.H.; Suh, Y-G.; Kim, D.; Oh, U. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 6155-6160.
[http://dx.doi.org/10.1073/pnas.97.11.6155] [PMID: 10823958]
[155]
van der Stelt, M.; Trevisani, M.; Vellani, V.; De Petrocellis, L.; Schiano Moriello, A.; Campi, B.; McNaughton, P.; Geppetti, P.; Di Marzo, V. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J., 2005, 24(17), 3026-3037.
[http://dx.doi.org/10.1038/sj.emboj.7600784] [PMID: 16107881]
[156]
Cesare, P.; Dekker, L.V.; Sardini, A.; Parker, P.J.; McNaughton, P.A. Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron, 1999, 23(3), 617-624.
[http://dx.doi.org/10.1016/S0896-6273(00)80813-2] [PMID: 10433272]
[157]
Chuang, H-H.; Prescott, E.D.; Kong, H.; Shields, S.; Jordt, S-E.; Basbaum, A.I.; Chao, M.V.; Julius, D. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature, 2001, 411(6840), 957-962.
[http://dx.doi.org/10.1038/35082088] [PMID: 11418861]
[158]
Huang, S.M.; Bisogno, T.; Trevisani, M.; Al-Hayani, A.; De Petrocellis, L.; Fezza, F.; Tognetto, M.; Petros, T.J.; Krey, J.F.; Chu, C.J.; Miller, J.D.; Davies, S.N.; Geppetti, P.; Walker, J.M.; Di Marzo, V. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. USA, 2002, 99(12), 8400-8405.https://doi.org/10/pnas.122196999
[http://dx.doi.org/10.1073/pnas.122196999] [PMID: 12060783]
[159]
Moriyama, T.; Higashi, T.; Togashi, K.; Iida, T.; Segi, E.; Sugimoto, Y.; Tominaga, T.; Narumiya, S.; Tominaga, M. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain, 2005, 1, 3-9.
[http://dx.doi.org/10.1186/1744-8069-1-3] [PMID: 15813989]
[160]
Negri, L.; Lattanzi, R.; Giannini, E.; Colucci, M.; Margheriti, F.; Melchiorri, P.; Vellani, V.; Tian, H.; De Felice, M.; Porreca, F. Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior. J. Neurosci., 2006, 26(25), 6716-6727.
[http://dx.doi.org/10.1523/JNEUROSCI.5403-05.2006] [PMID: 16793879]
[161]
Holzer, P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol. Rev., 1991, 43(2), 143-201.
[PMID: 1852779]
[162]
Szallasi, A.; Blumberg, P.M. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol. Rev., 1999, 51(2), 159-212.
[PMID: 10353985]
[163]
Geppetti, P.; Holzer, P. Neurogenic inflammation; CRC press: Boca Raton, 1996.
[164]
Lopshire, J.C.; Nicol, G.D. The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies. J. Neurosci., 1998, 18(16), 6081-6092.
[http://dx.doi.org/10.1523/JNEUROSCI.18-16-06081.1998] [PMID: 9698303]
[165]
Smith, J.A.M.; Davis, C.L.; Burgess, G.M. Prostaglandin E2-induced sensitization of bradykinin-evoked responses in rat dorsal root ganglion neurons is mediated by cAMP-dependent protein kinase A. Eur. J. Neurosci., 2000, 12(9), 3250-3258.DOI.org/10.1046/j.1460-9568.2000.00218.x
[http://dx.doi.org/10.1046/j.1460-9568.2000.00218.x] [PMID: 10998108]
[166]
Gu, Q.; Kwong, K.; Lee, L-Y. Ca2+ transient evoked by chemical stimulation is enhanced by PGE2 in vagal sensory neurons: role of cAMP/PKA signaling pathway. J. Neurophysiol., 2003, 89(4), 1985-1993.
[http://dx.doi.org/10.1152/jn.00748.2002] [PMID: 12612039]
[167]
Nicoletti, P.; Trevisani, M.; Manconi, M.; Gatti, R.; De Siena, G.; Zagli, G.; Benemei, S.; Capone, J.A.; Geppetti, P.; Pini, L.A. Ethanol causes neurogenic vasodilation by TRPV1 activation and CGRP release in the trigeminovascular system of the guinea pig. Cephalalgia, 2008, 28(1), 9-17.
[http://dx.doi.org/10.1111/j.1468-2982.2007.01448.x] [PMID: 17888011]
[168]
Lappin, S.C.; Randall, A.D.; Gunthorpe, M.J.; Morisset, V. TRPV1 antagonist, SB-366791, inhibits glutamatergic synaptic transmission in rat spinal dorsal horn following peripheral inflammation. Eur. J. Pharmacol., 2006, 540(1-3), 73-81.
[http://dx.doi.org/10.1016/j.ejphar.2006.04.046] [PMID: 16737693]
[169]
Meents, J.E.; Neeb, L.; Reuter, U. TRPV1 in migraine pathophysiology; Cell press, 2010, pp. 153-159.
[170]
Meents, J.E.; Hoffmann, J.; Chaplan, S.R.; Neeb, L.; Schuh-Hofer, S.; Wickenden, A.; Reuter, U. Two TRPV1 receptor antagonists are effective in two different experimental models of migraine. J. Headache Pain, 2015, 16, 57.
[http://dx.doi.org/10.1186/s10194-015-0539-z] [PMID: 26109436]
[171]
Sprenger, T.; Goadsby, P.J. Migraine pathogenesis and state of pharmacological treatment options. BMC Med., 2009, 7, 71.
[http://dx.doi.org/10.1186/1741-7015-7-71] [PMID: 19917094]
[172]
Akerman, S.; Kaube, H.; Goadsby, P.J. Vanilloid type 1 receptors (VR1) on trigeminal sensory nerve fibres play a minor role in neurogenic dural vasodilatation, and are involved in capsaicin-induced dural dilation. Br. J. Pharmacol., 2003, 140(4), 718-724.
[http://dx.doi.org/10.1038/sj.bjp.0705486] [PMID: 14534154]
[173]
Chizh, B.; Palmer, J.; Lai, R.; Guillard, F.; Bullman, J.; Baines, A.; Napolitano, A.; Appleby, A. A randomised, two-period cross-over study to investigate the efficacy of the TRPV1 antagonist SB-705498 in acute migraine. Poster Sessions. Eur. J. Pain, 2009, 13, S55-S285.
[http://dx.doi.org/10.1016/S1090-3801(09)60705-9]
[174]
Artico, M.; Cavallotti, C. Catecholaminergic and acetylcholine esterase containing nerves of cranial and spinal dura mater in humans and rodents. Microsc. Res. Tech., 2001, 53(3), 212-220.
[http://dx.doi.org/10.1002/jemt.1085] [PMID: 11301496]
[175]
Theoharides, T.C.; Donelan, J.; Kandere-Grzybowska, K.; Konstantinidou, A. The role of mast cells in migraine pathophysiology. Brain Res. Brain Res. Rev., 2005, 49(1), 65-76.
[http://dx.doi.org/10.1016/j.brainresrev.2004.11.006] [PMID: 15960987]
[176]
Benoist, C.; Mathis, D. Mast cells in autoimmune disease. Nature, 2002, 420(6917), 875-878.
[http://dx.doi.org/10.1038/nature01324] [PMID: 12490961]
[177]
Puxeddu, I.; Piliponsky, A.M.; Bachelet, I.; Levi-Schaffer, F. Mast cells in allergy and beyond. Int. J. Biochem. Cell Biol., 2003, 35(12), 1601-1607.
[http://dx.doi.org/10.1016/S1357-2725(03)00208-5] [PMID: 12962699]
[178]
Woolley, D.E. The mast cell in inflammatory arthritis. N. Engl. J. Med., 2003, 348(17), 1709-1711.
[http://dx.doi.org/10.1056/NEJMcibr023206] [PMID: 12711748]
[179]
Mekori, Y.A.; Metcalfe, D.D. Mast cells in innate immunity. Immunol. Rev., 2000, 173, 131-140.
[http://dx.doi.org/10.1034/j.1600-065X.2000.917305.x] [PMID: 10719674]
[180]
Metcalfe, D.D.; Baram, D.; Mekori, Y.A. Mast cells. Physiol. Rev., 1997, 77(4), 1033-1079.
[http://dx.doi.org/10.1152/physrev.1997.77.4.1033] [PMID: 9354811]
[181]
Levy, D. Meningeal mast cells, inflammation and migraine pain. Drug Dev. Res., 2007, 68, 412-418.
[http://dx.doi.org/10.1002/ddr.20208]
[182]
Orr, E.L. Dural mast cells: source of contaminating histamine in analyses of mouse brain histamine levels. J. Neurochem., 1984, 43(5), 1497-1499.
[http://dx.doi.org/10.1111/j.1471-4159.1984.tb05416.x] [PMID: 6491664]
[183]
Dimlich, R.V.W.; Keller, J.T.; Strauss, T.A.; Fritts, M.J. Linear arrays of homogeneous mast cells in the dura mater of the rat. J. Neurocytol., 1991, 20(6), 485-503.
[http://dx.doi.org/10.1007/BF01252276] [PMID: 1869885]
[184]
Wong, G.W.; Zhuo, L.; Kimata, K.; Lam, B.K.; Satoh, N.; Stevens, R.L. Ancient origin of mast cells. Biochem. Biophys. Res. Commun., 2014, 451(2), 314-318.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.124] [PMID: 25094046]
[185]
Ash, A.S.; Schild, H.O. Receptors mediating some actions of histamine. 1966. Br. J. Pharmacol., 1997, 120(4)(Suppl.), 302-314.
[http://dx.doi.org/10.1111/j.1476-5381.1997.tb06811.x] [PMID: 9142412]
[186]
Lovenberg, T.W.; Roland, B.L.; Wilson, S.J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M.R.; Erlander, M.G. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol., 1999, 55(6), 1101-1107.
[http://dx.doi.org/10.1124/mol.55.6.1101] [PMID: 10347254]
[187]
Oda, T.; Morikawa, N.; Saito, Y.; Masuho, Y.; Matsumoto, S. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J. Biol. Chem., 2000, 275(47), 36781-36786.
[http://dx.doi.org/10.1074/jbc.M006480200] [PMID: 10973974]
[188]
Le Coniat, M.; Traiffort, E.; Ruat, M.; Arrang, J.M.; Berger, R. Chromosomal localization of the human histamine H1-receptor gene. Hum. Genet., 1994, 94(2), 186-188.
[http://dx.doi.org/10.1007/BF00202867] [PMID: 8045566]
[189]
Gantz, I.; Schäffer, M.; DelValle, J.; Logsdon, C.; Campbell, V.; Uhler, M.; Yamada, T. Molecular cloning of a gene encoding the histamine H2 receptor. Proc. Natl. Acad. Sci. USA, 1991, 88(2), 429-433.
[http://dx.doi.org/10.1073/pnas.88.2.429] [PMID: 1703298]
[190]
Nakamura, T.; Itadani, H.; Hidaka, Y.; Ohta, M.; Tanaka, K. Molecular cloning and characterization of a new human histamine receptor, HH4R. Biochem. Biophys. Res. Commun., 2000, 279(2), 615-620.
[http://dx.doi.org/10.1006/bbrc.2000.4008] [PMID: 11118334]
[191]
Saxena, P.R. The significance of histamine H1 and H2 receptors on the carotid vascular bed in the dog. Neurology, 1975, 25(7), 681-687.
[http://dx.doi.org/10.1212/WNL.25.7.681] [PMID: 239368]
[192]
Gross, P.M. Histamine H1- and H2-receptors are differentially and spatially distributed in cerebral vessels. J. Cereb. Blood Flow Metab., 1981, 1(4), 441-446.
[http://dx.doi.org/10.1038/jcbfm.1981.49] [PMID: 7328153]
[193]
Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302(5911), 832-837.
[http://dx.doi.org/10.1038/302832a0] [PMID: 6188956]
[194]
Krabbe, A.A.; Olesen, J. Headache provocation by continuous intravenous infusion of histamine. Clinical results and receptor mechanisms. Pain, 1980, 8(2), 253-259.
[http://dx.doi.org/10.1016/0304-3959(88)90012-7] [PMID: 7402688]
[195]
Oldendorf, W.H. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol., 1971, 221(6), 1629-1639.
[http://dx.doi.org/10.1152/ajplegacy.1971.221.6.1629] [PMID: 5124307]
[196]
Toda, N. Mechanism underlying responses to histamine of isolated monkey and human cerebral arteries. Am. J. Physiol., 1990, 258(2 Pt 2), H311-H317.
[PMID: 2106796]
[197]
Jansen-Olesen, I.; Ottosson, A.; Cantera, L.; Strunk, S.; Lassen, L.H.; Olesen, J.; Mortensen, A.; Engel, U.; Edvinsson, L. Role of endothelium and nitric oxide in histamine-induced responses in human cranial arteries and detection of mRNA encoding H1- and H2-receptors by RT-PCR. Br. J. Pharmacol., 1997, 121(1), 41-48.
[http://dx.doi.org/10.1038/sj.bjp.0701097] [PMID: 9146885]
[198]
Tizard, I.R. Immunology: An Introduction. Fourth international edition; Sounders College Publishing: Philadelphia, 1995.
[199]
Bedarida, G.; Bushell, E.; Blaschke, T.F.; Hoffman, B.B. H1- and H2-histamine receptor-mediated vasodilation varies with aging in humans. Clin. Pharmacol. Ther., 1995, 58(1), 73-80.
[http://dx.doi.org/10.1016/0009-9236(95)90074-8] [PMID: 7628185]
[200]
Schmetterer, L.; Wolzt, M.; Graselli, U.; Findl, O.; Strenn, K.; Simak, S.; Kastner, J.; Eichler, H.G.; Singer, E.A. Nitric oxide synthase inhibition in the histamine headache model. Cephalalgia, 1997, 17(3), 175-182.
[http://dx.doi.org/10.1046/j.1468-2982.1997.1703175.x] [PMID: 9170340]
[201]
Ignarro, L.J.; Lippton, H.; Edwards, J.C.; Baricos, W.H.; Hyman, A.L.; Kadowitz, P.J.; Gruetter, C.A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J. Pharmacol. Exp. Ther., 1981, 218(3), 739-749.
[PMID: 6115052]
[202]
Lassen, L.H.; Christiansen, I.; Iversen, H.K.; Jansen-Olesen, I.; Olesen, J. The effect of nitric oxide synthase inhibition on histamine induced headache and arterial dilatation in migraineurs. Cephalalgia, 2003, 23(9), 877-886.
[http://dx.doi.org/10.1046/j.1468-2982.2003.00586.x] [PMID: 14616929]
[203]
Dux. M.; Messlinger, K. Neurogenic Vascular Responses in the Dura Mater and their Relevance for the Pathophysiology of Headaches Neuro Immune Biology, 2009, 191-209.Doi.org/10.1016/S1567-7443(08)10409-4
[204]
Theoharides, T.C.; Sant, G.R.; el-Mansoury, M.; Letourneau, R.; Ucci, A.A., Jr; Meares, E.M., Jr Activation of bladder mast cells in interstitial cystitis: a light and electron microscopic study. J. Urol., 1995, 153(3 Pt 1), 629-636.
[http://dx.doi.org/10.1097/00005392-199503000-00021] [PMID: 7861501]
[205]
Couch, J.R.; Hassanein, R.S. Amitriptyline in migraine prophylaxis. Arch. Neurol., 1979, 36(11), 695-699.
[http://dx.doi.org/10.1001/archneur.1979.00500470065013] [PMID: 508127]
[206]
Bulut, S.; Berilgen, M.S.; Baran, A.; Tekatas, A.; Atmaca, M.; Mungen, B. Venlafaxine versus amitriptyline in the prophylactic treatment of migraine: randomized, double-blind, crossover study. Clin. Neurol. Neurosurg., 2004, 107(1), 44-48.
[http://dx.doi.org/10.1016/j.clineuro.2004.03.004] [PMID: 15567552]
[207]
Carleton, S.C.; Shesser, R.F.; Pietrzak, M.P.; Chudnofsky, C.R.; Starkman, S.; Morris, D.L.; Johnson, G.; Rhee, K.J.; Barton, C.W.; Chelly, J.E.; Rosenberg, J.; Van Valen, M.K. Double-blind, multicenter trial to compare the efficacy of intramuscular dihydroergotamine plus hydroxyzine versus intramuscular meperidine plus hydroxyzine for the emergency department treatment of acute migraine headache. Ann. Emerg. Med., 1998, 32(2), 129-138.
[http://dx.doi.org/10.1016/S0196-0644(98)70126-X] [PMID: 9701293]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy