Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Review Article

Natural Alkaloids and Diabetes Mellitus: A Review

Author(s): Mohammed Ajebli, Haroun Khan and Mohamed Eddouks*

Volume 21, Issue 1, 2021

Published on: 21 August, 2020

Page: [111 - 130] Pages: 20

DOI: 10.2174/1871530320666200821124817

Price: $65

Abstract

Background: The use of herbal therapies for treatment and management of diabetes mellitus and complications associated with this chronic condition is increasing. Plants contain a bounty of phytochemicals that have been proven to be protective by reducing the risk of various ailments and diseases, including alkaloids. Moreover, alkaloids are known to be among the oldest natural products used by humans for highlighting drugs that play crucial roles as therapeutic agents. The reason for this expanding interest and uses of alkaloids as a part of plant natural compounds-based treatments is that a significant proportion of diabetic patients do not respond very well to conventional therapeutic medication. Furthermore, other explanations to this fact are the cost of medication, side-effects, accessibility, and availability of health facilities and drugs and the inefficiency of these medicines in certain cases.

Objective: In this study we aimed to review the literature on the valuable effects of herbs and plants and their isolated alkaloids compounds as medication for management of diabetes, a prevalent risk factor for several other disorders and illnesses.

Methods: In the current review, PubMed, ScienceDirect, Springer and google scholar databases were used and the criterion for inclusion was based on the following keywords and phrases: diabetes, hyperglycemia, complications of diabetes, alkaloids, antidiabetic alkaloids, hypoglycemic alkaloids, alkaloids and complications of diabetes mellitus, mechanisms of action and alkaloids.

Results: In the current review, we demonstrate that alkaloids in the form of extracts and isolated molecules obtained from a large variety of species demonstrated their efficiency for improving raises in blood glucose either in animal models via experimental studies or in human subjects via clinical trials. Medicinal species as chillies (Capsicum annuum), turmeric (Curcuma longa), barberry (Berberis vulgaris) and cress (Lepidium sativum) are among the most common and therapeutic plants used for controlling diabetes that were the subject of several experimental and clinical investigations. Whereas, isolated alkaloids such as berberine, capsaicin and trigonelline have received more interest in this field. Interestingly, the therapeutic impact of alkaloids against blood glucose pathogenesis is mediated through a variety of signaling cascades and pathways, via inhibiting or stimulating diversity of systems such as inhibition of α-glucosidase enzyme, blockade of PTP- 1B, deactivation of DPP-IV, increasing insulin sensitivity and modulating the oxidative stress.

Conclusion: Based on the findings of the present review, alkaloids could be used as preventive and curative agents in the case of endocrine disorders, particularly diabetes and could play a promoting function for the discovery of new antidiabetic agents.

Keywords: Alkaloids, diabetes mellitus, complications of diabetes, mechanisms of action, oxidative stress, medicinal plant.

Graphical Abstract
[1]
Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Evaluation of phytochemical and antioxidant activities of the different fractions of Hybanthus enneaspermus (Linn.) F. Muell. (Violaceae). Asian Pac. J. Trop. Med., 2011, 4(5), 391-396.
[http://dx.doi.org/10.1016/S1995-7645(11)60110-7] [PMID: 21771683]
[2]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Prac., 2010, 87, 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007]
[3]
Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: a systematic review. Electron. Physician, 2016, 8(1), 1832-1842.
[http://dx.doi.org/10.19082/1832] [PMID: 26955456]
[4]
Akhtar, M.S. Trial of Momordica charantia Linn (Karela) powder in patients with maturity-onset diabetes. J. Pak. Med. Assoc., 1982, 32(4), 106-107.
[PMID: 6806502]
[5]
Warjeet, S.L. Traditional medicinal plants of Manipur as antidiabetics. J. Med. Plants Res., 2011, 5(5), 677-687.
[6]
Venkatesh, S.; Madhava Reddy, B.; Dayanand Reddy, G.; Mullangi, R.; Lakshman, M. Antihyperglycemic and hypolipidemic effects of Helicteres isora roots in alloxan-induced diabetic rats: a possible mechanism of action. J. Nat. Med., 2010, 64(3), 295-304.
[http://dx.doi.org/10.1007/s11418-010-0406-9] [PMID: 20238178]
[7]
Hartmann, T. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry, 2007, 68(22-24), 2831-2846.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.017] [PMID: 17980895]
[8]
Pengelly, A. The constituents of medicinal plants: An introduction to chemistry and therapeutics of herbal medicines, 2nd Ed.; Sunflower herbals, 2004.
[9]
Dewixk, P.M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed; John Wiley & Sons, 2009.
[10]
Katherine, G.; Zulak, D.K.; Hiroshi, A.; Peter, J.F. Alkaloids: Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet; Crozier, A.; Michael, N.; Ashihara, H., Ed; Blackwell Publishing Ltd, 2006, pp. 102-136.
[11]
Wink, M. A Short History of Alkaloids:Alkaloids: Biochemistry, Ecology, and Medicinal Applications; Roberts, M.F.; Wink, M., Eds.; Plenum Press: New York, 1998, pp. 11-44.
[http://dx.doi.org/10.1007/978-1-4757-2905-4_2]
[12]
Jones, W.P.; Kinghorn, A.D. Extraction of Plant Secondary Metabolites: Natural Products Isolation, 3rd Ed; Sarker, S.D.; Nahar, L., Ed; Springer: New York, 2012, pp. 341-366.
[http://dx.doi.org/10.1007/978-1-61779-624-1_13]
[13]
Sarker, S.D.; Nahar, L. Hyphenated Techniques and Their Applications in Natural Products Analysis: Natural Products Isolation, 3rd ed; Sarker, S.D.; Nahar, L., Eds.; Springer: New York, 2012, pp. 301-340.
[http://dx.doi.org/10.1007/978-1-61779-624-1_12]
[14]
Kite, G.C.; Veitch, N.C.; Grayer, R.J.; Simmonds, M.S.J. The use of hyphenated techniques in comparative phytochemical studies of legumes. Biochem. Syst. Ecol., 2003, 31, 813-843.
[http://dx.doi.org/10.1016/S0305-1978(03)00086-3]
[15]
Marín Loaiza, J.C.; Ernst, L.; Beuerle, T.; Theuring, C.; Céspedes, C.L.; Hartmann, T. Pyrrolizidine alkaloids of the endemic Mexican genus Pittocaulon and assignment of stereoisomeric 1,2-saturated necine bases. Phytochemistry, 2008, 69(1), 154-167.
[http://dx.doi.org/10.1016/j.phytochem.2007.07.004] [PMID: 17719067]
[16]
Petruczynik, A. Analysis of alkaloids from different chemical groups by different liquid chromatography methods. Cent. Eur. J. Chem., 2012, 10(3), 802-835.
[17]
Cordell, G.A. Introduction to the alkaloids: a biogenetic approach; Wiley-Interscience: New York, 1981.
[18]
Christen, P.; Bieri, S.; Berkov, S. Methods of Analysis: Tropane Alkaloids from Plant Origin: Natural Products Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G.; Mérillon, J.M., Eds.; Springer Heidelberg: New York, 2013, pp. 1009-1048.
[http://dx.doi.org/10.1007/978-3-642-22144-6_35]
[19]
Klinkenberg, I.; Blokland, A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci. Biobehav. Rev., 2010, 34(8), 1307-1350.
[http://dx.doi.org/10.1016/j.neubiorev.2010.04.001] [PMID: 20398692]
[20]
Asıoglu, F.K.; Guven, K.C.; Sezik, E.; Erdugan, H.; Coban, B. Pharmacology of Macroalgae Alkaloids: Natural Products Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G.; Mérillon, J.M., Eds.; Springer: New York, 2013, pp. 1203-1216.
[21]
Srinivasan, K. Biological Activities of Pepper Alkaloids.Natural Products Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G.; Mérillon, J.M., Eds.; Springer: New York, 2013, pp. 1337-1337.
[http://dx.doi.org/10.1007/978-3-642-22144-6_184]
[22]
Krashin, D.; Trescot, A.; Murinova, N. Opioids and Pain Treatment.Natural Products Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G.; Mérillon, J.M., Eds.; Springer: New York, 2013, pp. 1367-1382.
[http://dx.doi.org/10.1007/978-3-642-22144-6_45]
[23]
Kameswararao, B.; Kesavulu, M.M.; Apparao, C. Evaluation of antidiabetic effect of Momordica cymbalaria fruit in alloxan-diabetic rats. Fitoterapia, 2003, 74(1-2), 7-13.
[http://dx.doi.org/10.1016/S0367-326X(02)00297-6] [PMID: 12628387]
[24]
Prabhakar, P.K.; Doble, M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin. J. Integr. Med., 2011, 17(8), 563-574.
[http://dx.doi.org/10.1007/s11655-011-0810-3] [PMID: 21826590]
[25]
Zhao, C.; Yang, C.; Wai, S.T.C.; Zhang, Y.; P Portillo M.P; Paoli, P.; Wu, Y. San Cheang, W.S.; Liu, B.; Carpéné, C.; Xiao, J.; Cao, H. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr., 2019, 59(6), 830-847.
[http://dx.doi.org/10.1080/10408398.2018.1501658] [PMID: 30501400]
[26]
Goto, T.; Takahashi, N.; Hirai, S.; Kawada, T. Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Res., 2010, 2010483958
[http://dx.doi.org/10.1155/2010/483958] [PMID: 20613991]
[27]
Zhang, X.; Jin, Y.; Wu, Y.; Zhang, C.; Jin, D.; Zheng, Q.; Li, Y. Anti-hyperglycemic and anti-hyperlipidemia effects of the alkaloid-rich extract from barks of Litsea glutinosa in ob/ob mice. Sci. Rep., 2018, 8(1), 12646.
[http://dx.doi.org/10.1038/s41598-018-30823-w] [PMID: 30140027]
[28]
Zhang, L.; Wei, G.; Liu, Y.; Zu, Y.; Gai, Q.; Yang, L. Antihyperglycemic and antioxidant activities of total alkaloids from Catharanthus roseus in streptozotocin-induced diabetic rats. J. For Re., 2015, 27, 167-174.
[29]
Hirotani, Y.; Fukamachi, J.; Ueyama, R.; Urashima, Y.; Ikeda, K. Effects of capsaicin coadministered with eicosapentaenoic acid on obesity-related dysregulation in high-fat-fed mice. Biol. Pharm. Bull., 2017, 40(9), 1581-1585.
[http://dx.doi.org/10.1248/bpb.b17-00247] [PMID: 28867743]
[30]
Kelany, M.E.; Hakami, T.M.; Omar, A.H. Curcumin improves the metabolic syndrome in high-fructose-diet-fed rats: role of TNF-α, NF-κB, and oxidative stress. Can. J. Physiol. Pharmacol., 2017, 95(2), 140-150.
[http://dx.doi.org/10.1139/cjpp-2016-0152] [PMID: 27901349]
[31]
Xie, Y.; Zhang, Y.; Guo, Z.; Zeng, H.; Zheng, B. Effect of alkaloids from nelumbinis plumula against insulin resistance of high-fat diet-induced nonalcoholic fatty liver disease in mice. J. Diabetes Res., 2016, 20163965864
[http://dx.doi.org/10.1155/2016/3965864] [PMID: 27761469]
[32]
Bourebaba, L.; Saci, S.; Touguit, D.; Gali, L.; Terkmane, S.; Oukil, N.; Bedjou, F. Evaluation of antidiabetic effect of total calystegines extracted from Hyoscyamus albus. Biomed. Pharmacother., 2016, 82(82), 337-344.
[http://dx.doi.org/10.1016/j.biopha.2016.05.011] [PMID: 27470371]
[33]
Jan, N.J.; Ali, A.; Ahmad, B.; Iqbal, N.; Adhikari, A. Inayat-ur-Rehman, Ali, A.; Ali, S.; Jahan, A.; Ali, H.; Ali, I.; Ullah A.; Musharraf, S.G. Evaluation of antidiabetic potential of steroidal alkaloid of Sarcococca saligna. Biomed. Pharmacother., 2018, 100, 461-466.
[http://dx.doi.org/10.1016/j.biopha.2018.01.008]
[34]
Yu, L.; Wang, Z.; Huang, M.; Li, Y.; Zeng, K.; Lei, J.; Hu, H.; Chen, B.; Lu, J.; Xie, W.; Zeng, S. Evodia alkaloids suppress gluconeogenesis and lipogenesis by activating the constitutive androstane receptor. Biochim. Biophys. Acta, 2016, 1859(9), 1100-1111.
[http://dx.doi.org/10.1016/j.bbagrm.2015.10.001] [PMID: 26455953]
[35]
Sun, J.; Bao, H.; Peng, Y.; Zhang, H.; Sun, Y.; Qi, J.; Zhang, H.; Gao, Y. Improvement of intestinal transport, absorption and anti-diabetic efficacy of berberine by using Gelucire44/14: In vitro, in situ and in vivo studies. Int. J. Pharm., 2018, 544(1), 46-54.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.014] [PMID: 29654898]
[36]
Li, Z.; Geng, Y.N.; Jiang, J.D.; Kong, W.J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid. Based Complement. Alternat. Med., 2014, 2014289264
[http://dx.doi.org/10.1155/2014/289264] [PMID: 24669227]
[37]
Zhao, L.; Cang, Z.; Sun, H.; Nie, X.; Wang, N.; Lu, Y. Berberine improves glucogenesis and lipid metabolism in nonalcoholic fatty liver disease. BMC Endocr. Disord., 2017, 17(1), 13.
[http://dx.doi.org/10.1186/s12902-017-0165-7] [PMID: 28241817]
[38]
Chang, W.; Chen, L.; Hatch, G.M. Berberine as a therapy for type 2 diabetes and its complications: From mechanism of action to clinical studies. Biochem. Cell Biol., 2015, 93(5), 479-486.
[http://dx.doi.org/10.1139/bcb-2014-0107] [PMID: 25607236]
[39]
LI. F.; ZHAO, Y.; WANG, D.; ZOU, X.; FANG, K.; WANG, K. Berberine relieves insulin resistance via the cholinergic anti-inflammatory pathway in HepG2 cells. J Huazhong Univ Sci Technol, 2016, 36(1), 64-69.
[http://dx.doi.org/10.1007/s11596-016-1543-5]
[40]
Wiedemann, M.; Gurrola-Díaz, C.M.; Vargas-Guerrero, B.; Wink, M.; García-López, P.M.; Düfer, M. Lupanine improves glucose homeostasis by influencing KATP channels and insulin gene expression. Molecules, 2015, 20(10), 19085-19100.
[http://dx.doi.org/10.3390/molecules201019085] [PMID: 26492234]
[41]
Patel, O.P.S.; Mishra, A.; Maurya, R.; Saini, D.; Pandey, J.; Taneja, I.; Raju, K.S.R.; Kanojiya, S.; Shukla, S.K.; Srivastava, M.N.; Wahajuddin, M.; Tamrakar, A.K.; Srivastava, A.K.; Yadav, P.P. Naturally Occurring Carbazole Alkaloids from Murraya koenigii as Potential Antidiabetic Agents; Nat Prod, 2015.
[42]
Yang, S.; Mi, J.; Liu, Z.; Wang, B.; Xia, X.; Wang, R.; Liu, Y.; Li, Y. Pharmacokinetics, tissue distribution, and elimination of three active alkaloids in rats after oral administration of the effective fraction of alkaloids from Ramulus Mori, an innovative hypoglycemic agent. Molecules, 2017, 22(10), 1616.
[http://dx.doi.org/10.3390/molecules22101616] [PMID: 28954438]
[43]
Li, J.C.; Shen, X.F.; Shao, J.A.; Tao, M.M.; Gu, J.; Li, J.; Huang, N. The total alkaloids from Coptis chinensis Franch improve cognitive deficits in type 2 diabetic rats. Drug Des. Devel. Ther., 2018, 12, 2695-2706.
[http://dx.doi.org/10.2147/DDDT.S171025] [PMID: 30214157]
[44]
Ma, H.; Hu, Y.; Zou, Z.; Feng, M.; Ye, X.; Li, X. Antihyperglycemia and antihyperlipidemia effect of protoberberine alkaloids from rhizoma coptidis in HepG2 cell and diabetic KK-Ay mice. Drug Dev. Res., 2016, 77(4), 163-170.
[http://dx.doi.org/10.1002/ddr.21302] [PMID: 27045983]
[45]
Sutariya, B.; Saraf, M. Betanin, isolated from fruits of Opuntia elatior Mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway. J. Ethnopharmacol., 2017, 198(198), 432-443.
[http://dx.doi.org/10.1016/j.jep.2016.12.048] [PMID: 28111218]
[46]
Hu, B.; Xu, G.; Zheng, Y.; Tong, F.; Qian, P.; Pan, X.; Zhou, X.; Shen, R. Chelerythrine attenuates renal ischemia/reperfusion-induced myocardial injury by activating CSE/H2S via PKC/NF-κB pathway in diabetic rats. Kidney Blood Press. Res., 2017, 42(2), 379-388.
[http://dx.doi.org/10.1159/000477948] [PMID: 28624831]
[47]
Selvaraj, G.; Kaliamurthi, S.; Thirugnasambandan, R. Effect of Glycosin alkaloid from Rhizophora apiculata in non-insulin dependent diabetic rats and its mechanism of action: In vivo and in silico studies. Phytomedicine, 2016, 23(6), 632-640.
[http://dx.doi.org/10.1016/j.phymed.2016.03.004] [PMID: 27161404]
[48]
Birem, Z.; Tabani, K.; Lahfa, F.; Djaziri, R.; Hadjbekkouche, F.; Koceir, E.A.; Omari, N. Effects of colocynth alkaloids and glycosides on Wistar rats fed high-fat diet. A biochemical and morphological study. Folia Histochem. Cytobiol., 2017, 55(2), 74-85.
[http://dx.doi.org/10.5603/FHC.a2017.0011] [PMID: 28691730]
[49]
Song, H.; Chu, Q.; Xu, D.; Xu, Y.; Zheng, X. Purified Betacyanins from Hylocereus undatus Peel Ameliorate Obesity and Insulin Resistance in High-Fat-Diet-Fed Mice. J. Agric. Food Chem., 2016, 64(1), 236-244.
[http://dx.doi.org/10.1021/acs.jafc.5b05177] [PMID: 26653843]
[50]
Shukla, A.; Bigoniya, P.; Srivastava, B. Hypoglycemic Activity of Lepidium sativum Linn Seed Total Alkaloid on Alloxan Induced Diabetic Rats. Res. J. Med. Plant, 2012, 6, 587-596.
[http://dx.doi.org/10.3923/rjmp.2012.587.596]
[51]
Azimova, S.S.; Yunusov, M.S. Natural compounds-alkaloids, plant sources, structure and proprieties; Springer: New York, 2013.
[52]
Ajebli, M.; Eddouks, M. The promising role of plant tannins as bioactive antidiabetic agents. Curr. Med. Chem., 2019, 26(25), 4852-4884.
[http://dx.doi.org/10.2174/0929867325666180605124256] [PMID: 29874989]
[53]
Jederström, G.; Gråsjö, J.; Nordin, A.; Sjöholm, I.; Andersson, A. Blood glucose-lowering activity of a hyaluronan-insulin complex after oral administration to rats with diabetes. Diabetes Technol. Ther., 2005, 7(6), 948-957.
[http://dx.doi.org/10.1089/dia.2005.7.948] [PMID: 16386101]
[54]
Sheshala, R.; Peh, K.K.; Darwis, Y. Preparation, characterization, and in vivo evaluation of insulin-loaded PLA-PEG microspheres for controlled parenteral drug delivery. Drug Dev. Ind. Pharm., 2009, 35(11), 1364-1374.
[http://dx.doi.org/10.3109/03639040902939213] [PMID: 19832637]
[55]
Kim, J.H.; Saxton, A.M. The TALLYHO Mouse as a Model of Human Type 2 Diabetes. Animal Models in Diabetes Research; Joost, H-G.; Al-Hasani, H.; Schürmann, A., Eds.; Springer, Humana press, 2012, pp. 75-87.
[http://dx.doi.org/10.1007/978-1-62703-068-7_6]
[56]
Nguyen, T.T.; Nguyen, D.H.; Zhao, B.T.; Le, D.D.; Choi, D.H.; Kim, Y.H.; Nguyen, T.H.; Woo, M.H. A new lignan and a new alkaloid, and α-glucosidase inhibitory compounds from the grains of Echinochloa utilis Ohwi & Yabuno. Bioorg. Chem., 2017, 74(74), 221-227.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.007] [PMID: 28865293]
[57]
Tang, D.; Chen, Q-B.; Xin, X-L.; Aisa, H.A. Anti-diabetic effect of three new norditerpenoid alkaloids in vitro and potential mechanism via PI3K/Akt signaling pathway. Biomed. Pharmacother., 2017, 87(87), 145-152.
[http://dx.doi.org/10.1016/j.biopha.2016.12.058] [PMID: 28049096]
[58]
Ojeda-Montes, M.J.; Ardid-Ruiz, A.; Tomás-Hernández, S.; Gimeno, A.; Cereto-Massagué, A.; Beltrán-Debón, R.; Mulero, M.; Garcia-Vallvé, S.; Pujadas, G.; Valls, C. Ephedrine as a lead compound for the development of new DPP-IV inhibitors. Future Med. Chem., 2017, 9(18), 2129-2146.
[http://dx.doi.org/10.4155/fmc-2017-0080] [PMID: 29172693]
[59]
Meena, S.N.; Majik, M.S.; Ghadi, S.C.; Tilve, S.G. Quick identification of piperidine alkaloid from roots of Grewia nervosa and their glucosidase inhibitory activity. Chem. Biodivers., 2017, 14(12)
[http://dx.doi.org/10.1002/cbdv.201700400] [PMID: 29044865]
[60]
Chen, S.; Yong, T.; Xiao, C.; Su, J.; Zhang, Y.; Jiao, C.; Xie, Y. Pyrrole alkaloids and ergosterols from Grifola frondosa exert anti-α-glucosidase and anti-proliferative activities. J. Funct. Foods, 2018, 2018(43), 196-205.
[http://dx.doi.org/10.1016/j.jff.2018.02.007]
[61]
Rathore, P.K.; Arathy, V.; Attimarad, V.S.; Kumar, P.; Roy, S. In silico analysis of gymnemagenin from Gymnema sylvestre (Retz.) R.Br. with targets related to diabetes. J. Theor. Biol., 2016, 391, 803-810.
[http://dx.doi.org/10.1016/j.jtbi.2015.12.004] [PMID: 26711684]
[62]
Kang, C.H.; Han, J-H.; Oh, J.; Kulkarni, R.; Zhou, W.; Ferreira, D.; Jang, T.S.; Myung, C-S.; Na, M.K. Steroidal Alkaloids from Veratrum nigrum Enhance Glucose Uptake in Skeletal Muscle Cells. J. Nat. Prod., 2014, 78(4), 803-810.
[http://dx.doi.org/10.1021/np501049g] [PMID: 25835537]
[63]
Tiong, S.H.; Looi, C.Y.; Arya, A.; Wong, W.F.; Hazni, H.; Mustafa, M.R.; Awang, K. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia, 2015, 102(102), 182-188.
[http://dx.doi.org/10.1016/j.fitote.2015.01.019] [PMID: 25665941]
[64]
Choudhary, M.; Iqbal, A.A.; Rasheed, S.; Marasini, B.P.; Hussain, N.; Kaleem, W.A. Atta-ur-Rahman. Cyclo peptide alkaloids of Ziziphus oxyphylla Edgw as novel inhibitors of α-glucosidase enzyme and protein glycation. Phytochem. Lett., 2011, 2014(4), 404-406.
[65]
Dietz, B.M.; Hajirahimkhan, A.; Dunlap, T.L.; Bolton, J.L. Botanicals and their bioactive phytochemicals for women’s health. Pharmacol. Rev., 2016, 68(4), 1026-1073.
[http://dx.doi.org/10.1124/pr.115.010843] [PMID: 27677719]
[66]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[67]
Sunil, D.; Kamath, P.; Chandrashekhar, H.R. In vitro bioassay techniques for anticancer drug discovery and development; CRC Press: Boca Raton, 2017.
[68]
Rester, U. From virtuality to reality - Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr. Opin. Drug Discov. Devel., 2008, 11(4), 559-568.
[PMID: 18600572]
[69]
Zhang, Q.; Cai, L.; Zhong, G.; Luo, W. [Simultaneous determination of jatrorrhizine, palmatine, berberine, and obacunone in Phellodendri Amurensis Cortex by RP-HPLC]. Zhongguo Zhongyao Zazhi, 2010, 35(16), 2061-2064.
[PMID: 21046728]
[70]
Grycová, L.; Dostál, J.; Marek, R. Quaternary protoberberine alkaloids. Phytochemistry, 2007, 68(2), 150-175.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.004] [PMID: 17109902]
[71]
Anonymous, The divine farmer’s materia medica: a translation of the Shen Nong Ben Cao Jing. Yang, Shouzhong, 1st ed; Blue Poppy Press: Boulder, CO, 1998.
[72]
Singh, I.P.; Mahajan, S. Berberine and its derivatives: a patent review (2009 - 2012). Expert Opin. Ther. Pat., 2013, 23(2), 215-231.
[http://dx.doi.org/10.1517/13543776.2013.746314] [PMID: 23231038]
[73]
Chen, Q.M.; Xie, M.Z. [Studies on the hypoglycemic effect of Coptis chinensis and berberine]. Yao Xue Xue Bao, 1986, 21(6), 401-406.
[PMID: 3811923]
[74]
Yang, J.; Yin, J.; Gao, H.; Xu, L.; Wang, Y.; Xu, L.; Li, M. Berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokines profile in human preadipocytes and metabolic syndrome patients. Evid. Based Complement. Alternat. Med., 2012, 2012363845
[http://dx.doi.org/10.1155/2012/363845] [PMID: 22474499]
[75]
Chueh, W-H.; Lin, J-Y. Berberine, an isoquinoline alkaloid in herbal plants, protects pancreatic islets and serum lipids in nonobese diabetic mice. J. Agric. Food Chem., 2011, 59(14), 8021-8027.
[http://dx.doi.org/10.1021/jf201627w] [PMID: 21696141]
[76]
Chueh, W.H.; Lin, J.Y. Protective effect of berberine on serum glucose levels in non-obese diabetic mice. Int. Immunopharmacol., 2012, 12(3), 534-538.
[http://dx.doi.org/10.1016/j.intimp.2012.01.003] [PMID: 22266065]
[77]
Wang, L.; Ye, X.; Hua, Y.; Song, Y. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed. Pharmacother., 2018, 105(105), 121-129.
[http://dx.doi.org/10.1016/j.biopha.2018.05.110] [PMID: 29852389]
[78]
Wei, S.; Zhang, M.; Yu, Y.; Lan, X.; Yao, F.; Yan, X.; Chen, L.; Hatch, G.M. Berberine attenuates development of the hepatic gluconeogenesis and lipid metabolism disorder in type 2 diabetic mice and in palmitate-incubated HepG2 cells through suppression of the HNF-4α miR122 pathway. PLoS One, 2016, 11(3)e0152097
[http://dx.doi.org/10.1371/journal.pone.0152097] [PMID: 27011261]
[79]
Geng, F-H.; Li, G-H.; Zhang, X.; Zhang, P.; Dong, M-Q.; Zhao, Z-J.; Zhang, Y.; Dong, L.; Gao, F. Berberine improves mesenteric artery insulin sensitivity through up-regulating insulin receptor-mediated signalling in diabetic rats. Br. J. Pharmacol., 2016, 173(10), 1569-1579.
[http://dx.doi.org/10.1111/bph.13466] [PMID: 26914282]
[80]
Bai, M.; Liu, Y.; Zhou, F.; Zhang, Y.; Zhu, Q.; Zhang, L.; Zhang, Q.; Wang, S.; Zhu, K.; Wang, X.; Zhou, L. Berberine inhibits glucose oxidation and insulin secretion in rat islets. Endocr. J., 2018, 65(4), 469-477.
[http://dx.doi.org/10.1507/endocrj.EJ17-0543] [PMID: 29467344]
[81]
Pirillo, A.; Catapano, A.L. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis, 2015, 243(2), 449-461.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.032] [PMID: 26520899]
[82]
Zhu, L.; Han, J.; Yuan, R.; Xue, L.; Pang, W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol. Res., 2018, 51(1), 9.
[http://dx.doi.org/10.1186/s40659-018-0157-8] [PMID: 29604956]
[83]
Human Metabolome Database (HMDB). http://www.hmdb.ca/metabolites/HMDB00008752019.
[84]
Anonymous, State Administration of Traditional Chinese Medicine. Chinese Materia Medica (II); Shanghai Science and Technology Press: Shanghai, 1999.
[85]
Chua, M.; Baldwin, T.C.; Hocking, T.J.; Chan, K. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. J. Ethnopharmacol., 2010, 128(2), 268-278.
[http://dx.doi.org/10.1016/j.jep.2010.01.021] [PMID: 20079822]
[86]
van Dijk, A.E.; Olthof, M.R.; Meeuse, J.C.; Seebus, E.; Heine, R.J.; van Dam, R.M. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care, 2009, 32(6), 1023-1025.
[http://dx.doi.org/10.2337/dc09-0207] [PMID: 19324944]
[87]
Aldakinah, A-A.A.; Al-Shorbagy, M.Y.; Abdallah, D.M.; El-Abhar, H.S. Trigonelline and vildagliptin antidiabetic effect: improvement of insulin signalling pathway. J. Pharm. Pharmacol., 2017, 69(7), 856-864.
[http://dx.doi.org/10.1111/jphp.12713] [PMID: 28271502]
[88]
Mishkinsky, J.; Joseph, B.; Sulman, F.G. Hypoglycaemic effect of trigonelline. Lancet, 1967, 2(7529), 1311-1312.
[http://dx.doi.org/10.1016/S0140-6736(67)90428-X] [PMID: 4168640]
[89]
Mishkinsky, J.S.; Goldschmied, A.; Joseph, B.; Ahronson, Z.; Sulman, F.G. Hypoglycaemic effect of Trigonella foenum graecum and Lupinus termis (leguminosae) seeds and their major alkaloids in alloxan-diabetic and normal rats. Arch. Int. Pharmacodyn. Ther., 1974, 210(1), 27-37.
[PMID: 4280278]
[90]
Zhou, J.; Chan, L.; Zhou, S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr. Med. Chem., 2012, 19(21), 3523-3531.
[http://dx.doi.org/10.2174/092986712801323171] [PMID: 22680628]
[91]
Zhou, J.; Zhou, S.; Zeng, S. Experimental diabetes treated with trigonelline: effect on b cell and pancreatic oxidative parameters. Fundam. Clin. Pharmacol., 2011, 27(3), 279-287.
[http://dx.doi.org/10.1111/j.1472-8206.2011.01022] [PMID: 22172053]
[92]
Zhou, J-Y.; Zhou, S-W. Protection of trigonelline on experimental diabetic peripheral neuropathy. Evid. Based Complement. Alternat. Med., 2012, 2012164219
[http://dx.doi.org/10.1155/2012/164219] [PMID: 23304193]
[93]
Ghule, A.E.; Jadhav, S.S.; Bodhankar, S.L. Trigonelline ameliorates diabetic hypertensive nephropathy by suppression of oxidative stress in kidney and reduction in renal cell apoptosis and fibrosis in streptozotocin induced neonatal diabetic (nSTZ) rats. Int. Immunopharmacol., 2012, 14(4), 740-748.
[http://dx.doi.org/10.1016/j.intimp.2012.10.004] [PMID: 23102665]
[94]
Hamden, K.; Mnafgui, K.; Amri, Z.; Aloulou, A.; Elfeki, A. Inhibition of key digestive enzymes related to diabetes and hyperlipidemia and protection of liver-kidney functions by trigonelline in diabetic rats. Sci. Pharm., 2013, 81(1), 233-246.
[http://dx.doi.org/10.3797/scipharm.1211-14] [PMID: 23641341]
[95]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[96]
Buck, S.H.; Burks, T.F. The neuropharmacology of capsaicin: review of some recent observations. Pharmacol. Rev., 1986, 38(3), 179-226.
[PMID: 3534898]
[97]
Hayman, M.; Peter, C.A.K. Capsaicin: a review of its pharmacology and clinical applications. Current Anaesthesia   Critical Care, 2008, 19(5-6), 338-343.
[http://dx.doi.org/10.1016/j.cacc.2008.07.003]
[98]
Senese, F. Fire and Spice: the molecular basis of flavor: General Chemistry Online, 2006.
[99]
Tandan, R.; Lewis, G.A.; Krusinski, P.B.; Badger, G.B.; Fries, T.J. Topical capsaicin in painful diabetic neuropathy. Controlled study with long-term follow-up. Diabetes Care, 1992, 15(1), 8-14.
[http://dx.doi.org/10.2337/diacare.15.1.8] [PMID: 1737545]
[100]
Yuan, L.J.; Qin, Y.; Wang, L.; Zeng, Y.; Chang, H.; Wang, J.; Wang, B.; Wan, J.; Chen, S.H.; Zhang, Q.Y.; Zhu, J.D.; Zhou, Y.; Mi, M.T. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin. Nutr., 2016, 35(2), 388-393.
[http://dx.doi.org/10.1016/j.clnu.2015.02.011] [PMID: 25771490]
[101]
Watson, C.P.N.; Evans, R.J. The postmastectomy pain syndrome and topical capsaicin: a randomized trial. Pain, 1992, 51(3), 375-379.
[http://dx.doi.org/10.1016/0304-3959(92)90223-X] [PMID: 1491864]
[102]
Xu, W.; Liu, J.; Ma, D.; Yuan, G.; Lu, Y.; Yang, Y. Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats. PLoS One, 2017, 12(2)e0172477
[http://dx.doi.org/10.1371/journal.pone.0172477] [PMID: 28225806]
[103]
Nevius, E.; Srivastava, P.K.; Basu, S. Oral ingestion of Capsaicin, the pungent component of chili pepper, enhances a discreet population of macrophages and confers protection from autoimmune diabetes. Mucosal Immunol., 2012, 5(1), 76-86.
[http://dx.doi.org/10.1038/mi.2011.50] [PMID: 22113584]
[104]
Suri, A.; Szallasi, A. The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol. Sci., 2008, 29(1), 29-36.
[http://dx.doi.org/10.1016/j.tips.2007.10.016] [PMID: 18055025]
[105]
Geng, P.; Yang, Y.; Gao, Z.; Yu, Y.; Shi, Q.; Bai, G. Combined effect of total alkaloids from Feculae bombycis and natural flavonoids on diabetes. J. Pharm. Pharmacol., 2007, 59(8), 1145-1150.
[http://dx.doi.org/10.1211/jpp.59.8.0013] [PMID: 17725858]
[106]
Choudhary, M.I.; Adhikari, A.; Rasheed, S.; Marasini, B.P.; Hussain, N.; Kaleem, W.A. Atta-ur-Rahman. Phytochem. Lett., 2011, 2011(4), 404-406.
[http://dx.doi.org/10.1016/j.phytol.2011.08.006]
[107]
Seo, K-H. Ra, J-E.; Lee, S-J.; Lee, J-H.; Kim, S.R.; Lee, J-H.; Seo, W.D. Anti-hyperglycemic activity of polyphenols isolated from barnyard millet (Echinochloa utilis L.) and their role inhibiting a-glucosidase. J. Korean Soc. Appl. Biol. Chem., 2015, 58, 571-579.
[http://dx.doi.org/10.1007/s13765-015-0070-6]
[108]
Bharti, S.K.; Krishnan, S.; Kumar, A.; Rajak, K.K.; Murari, K.; Bharti, B.K.; Gupta, A.K. Antihyperglycemic activity with DPP-IV inhibition of alkaloids from seed extract of Castanospermum australe: investigation by experimental validation and molecular docking. Phytomedicine, 2012, 20(1), 24-31.
[http://dx.doi.org/10.1016/j.phymed.2012.09.009] [PMID: 23063145]
[109]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[110]
Julien, S.G.; Dubé, N.; Hardy, S.; Tremblay, M.L. Inside the human cancer tyrosine phosphatome. Nat. Rev. Cancer, 2011, 11(1), 35-49.
[http://dx.doi.org/10.1038/nrc2980] [PMID: 21179176]
[111]
Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell, 2004, 117(6), 699-711.
[http://dx.doi.org/10.1016/j.cell.2004.05.018] [PMID: 15186772]
[112]
Tsou, R.C.; Bence, K.K. Central regulation of metabolism by protein tyrosine phosphatases. Front. Neurosci., 2013, 6, 192.
[http://dx.doi.org/10.3389/fnins.2012.00192] [PMID: 23308070]
[113]
Asante-Appiah, E.; Kennedy, B.P. Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am. J. Physiol. Endocrinol. Metab., 2003, 284(4), E663-E670.
[http://dx.doi.org/10.1152/ajpendo.00462.2002] [PMID: 12626322]
[114]
Proença, C.; Freitas, M.; Ribeiro, D.; Sousa, J.L.C.; Carvalho, F.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. Inhibition of protein tyrosine phosphatase 1B by flavonoids: A structure - activity relationship study. Food Chem. Toxicol., 2018, 111, 474-481.
[http://dx.doi.org/10.1016/j.fct.2017.11.039] [PMID: 29175190]
[115]
Jiang, C-S.; Liang, L-F.; Guo, Y.W. Cyclo peptide alkaloids of Ziziphus oxyphylla Edgw as novel inhibitors of α-glucosidase enzyme and protein glycation. Phytochem. Lett., 2011, 4, 404-406.
[http://dx.doi.org/10.1016/j.phytol.2011.08.006]
[116]
Klaunig, J.E.; Kamendulis, L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol., 2004, 44, 239-267.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121851] [PMID: 14744246]
[117]
Pan, H.Z.; Chang, D.; Feng, L.G.; Xu, F.J.; Kuang, H.Y.; Lu, M.J. Oxidative damage to DNA and its relationship with diabetic complications. Biomed. Environ. Sci., 2007, 20(2), 160-163.
[PMID: 17624192]
[118]
Chung, S.S.; Ho, E.C.; Lam, K.S.; Chung, S.K. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol., 2003, 14(8)(Suppl. 3), S233-S236.
[http://dx.doi.org/10.1097/01.ASN.0000077408.15865.06] [PMID: 12874437]
[119]
Maritim, A.C.; Sanders, R.A.; Watkins, J.B., III Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol., 2003, 17(1), 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[120]
Ceriello, A.; Bortolotti, N.; Motz, E.; Crescentini, A.; Lizzio, S.; Russo, A.; Tonutti, L.; Taboga, C. Meal-generated oxidative stress in type 2 diabetic patients. Diabetes Care, 1998, 21(9), 1529-1533.
[http://dx.doi.org/10.2337/diacare.21.9.1529] [PMID: 9727904]
[121]
Chung, S.Y.; Han, S.H. Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J. Pineal Res., 2003, 34(2), 95-102.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00010.x] [PMID: 12562500]
[122]
Dokken, B.B.; Saengsirisuwan, V.; Kim, J.S.; Teachey, M.K.; Henriksen, E.J. Oxidative stress-induced insulin resistance in rat skeletal muscle: role of glycogen synthase kinase-3. Am. J. Physiol. Endocrinol. Metab., 2008, 294(3), E615-E621.
[http://dx.doi.org/10.1152/ajpendo.00578.2007] [PMID: 18089761]
[123]
Ayepola, O.R.; Brooks, N.L.; Oguntibeju, O.O. Oxidative Stress and Diabetic Complications: The Role of Antioxidant Vitamins and Flavonoids. In: Antioxidant-Antidiabetic Agents and Human Health; Oluwafemi Oguntibeju; IntechOpen, 2014.
[124]
Tribe, R.M.; Poston, L. Oxidative stress and lipids in diabetes: a role in endothelium vasodilator dysfunction? Vasc. Med., 1996, 1(3), 195-206.
[http://dx.doi.org/10.1177/1358863X9600100304] [PMID: 9546938]
[125]
West, I.C. Radicals and oxidative stress in diabetes. Diabet. Med., 2000, 17(3), 171-180.
[http://dx.doi.org/10.1046/j.1464-5491.2000.00259.x] [PMID: 10784220]
[126]
Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 2001, 40(8), 959-975.
[http://dx.doi.org/10.1016/S0028-3908(01)00019-3] [PMID: 11406187]
[127]
Baldeón, M.E.; Castro, J.; Villacrés, E.; Narváez, L.; Fornasini, M. Hypoglycemic effect of cooked Lupinus mutabilis and its purified alkaloids in subjects with type-2 diabetes. Nutr. Hosp., 2012, 27(4), 1261-1266.
[PMID: 23165571]
[128]
Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P.; Ren, G.; Ning, G. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab., 2008, 93(7), 2559-2565.
[http://dx.doi.org/10.1210/jc.2007-2404] [PMID: 18397984]
[129]
Ming, J.; Xu, S.; Liu, C.; Liu, X.; Jia, A.; Ji, Q. Effectiveness and safety of bifidobacteria and berberine in people with hyperglycemia: study protocol for a randomized controlled trial. Trials, 2018, 19(1), 72.
[http://dx.doi.org/10.1186/s13063-018-2438-5] [PMID: 29373989]
[130]
Olthof, M.R.; van Dijk, A.E.; Deacon, C.F.; Heine, R.J.; van Dam, R.M. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on incretin hormones. Nutr. Metab. (Lond.), 2011, 8(10), 10.
[http://dx.doi.org/10.1186/1743-7075-8-10] [PMID: 21299855]
[131]
Yuan, L-J.; Yu, Q.; Wang, L.; Zeng, Y.; Chang, H.; Wang, J.; Wang, B.; Wan, J.; Chen, S-H.; Zhang, Q-Y.; Zhu, J-D.; Zhou, Y.; Mi, M-T. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin. Nutr., 2015, 2015(xxx), 1-6.
[PMID: 25771490]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy