Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Prospects for miR-21 as a Target in the Treatment of Lung Diseases

Author(s): Yan Ding, Yapeng Hou, Yanhong Liu, Xiaoyong Xie, Yong Cui and Hongguang Nie*

Volume 27, Issue 3, 2021

Published on: 20 August, 2020

Page: [415 - 422] Pages: 8

DOI: 10.2174/1381612826999200820160608

Price: $65

Abstract

MicroRNA (miRNA/miR) is a class of small evolutionarily conserved non-coding RNA, which can inhibit the target gene expression at the post-transcriptional level and serve as significant roles in cell differentiation, proliferation, migration and apoptosis. Of note, the aberrant miR-21 has been involved in the generation and development of multiple lung diseases, and identified as a candidate of biomarker, therapeutic target, or indicator of prognosis. MiR-21 relieves acute lung injury via depressing the PTEN/Foxo1-TLR4/NF-κB signaling cascade, whereas promotes lung cancer cell growth, metastasis, and chemo/radio-resistance by decreasing the expression of PTEN and PDCD4 and promoting the PI3K/AKT transduction. The purpose of this review is to elucidate the potential mechanisms of miR-21 associated lung diseases, with an emphasis on its dual regulating effects, which will trigger novel paradigms in molecular therapy.

Keywords: MiR-21, acute lung injury, asthma, idiopathic pulmonary fibrosis, lung cancer, PI3K/AKT signal pathway.

[1]
Galasso M, Sana ME, Volinia S. Non-coding RNAs: a key to future personalized molecular therapy? Genome Med 2010; 2(2): 12. [http://dx.doi.org/10.1186/gm133]. [PMID: 20236487].
[2]
Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006; 94(6): 776-80. [http://dx.doi.org/10.1038/sj.bjc.6603023]. [PMID: 16495913].
[3]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5. [http://dx.doi.org/10.1038/nature02871]. [PMID: 15372042].
[4]
Liu ZL, Wang H, Liu J, Wang ZX. MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol Cell Biochem 2013; 372(1-2): 35-45. [http://dx.doi.org/10.1007/s11010-012-1443-3]. [PMID: 22956424].
[5]
Yang JS, Li BJ, Lu HW, et al. Serum miR-152, miR-148a, miR-148b, and miR-21 as novel biomarkers in non-small cell lung cancer screening. Tumour Biol 2015; 36(4): 3035-42. [http://dx.doi.org/10.1007/s13277-014-2938-1]. [PMID: 25501703].
[6]
da Costa Martins PA, De Windt LJ. miR-21: a miRaculous Socratic paradox. Cardiovasc Res 2010; 87(3): 397-400. [http://dx.doi.org/10.1093/cvr/cvq196]. [PMID: 20562424].
[7]
Angulo M, Lecuona E, Sznajder JI. Role of MicroRNAs in lung disease. Arch Bronconeumol 2012; 48(9): 325-30. [PMID: 22607962].
[8]
Yang H, Lu Z, Huo C, et al. Liang-Ge-San, a classic traditional chinese medicine formula, attenuates lipopolysaccharide-induced acute lung injury through up-regulating miR-21. Front Pharmacol 2019; 10: 1332. [http://dx.doi.org/10.3389/fphar.2019.01332]. [PMID: 31803051].
[9]
Li W, Ma K, Zhang S, et al. Pulmonary microRNA expression profiling in an immature piglet model of cardiopulmonary bypass-induced acute lung injury. Artif Organs 2015; 39(4): 327-35. [http://dx.doi.org/10.1111/aor.12387]. [PMID: 25347932].
[10]
Feng J, Li A, Deng J, et al. miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health Dis 2014; 13: 27. [http://dx.doi.org/10.1186/1476-511X-13-27]. [PMID: 24502419].
[11]
Zhu WD, Xu J, Zhang M, Zhu TM, Zhang YH, Sun K. MicroRNA-21 inhibits lipopolysaccharide-induced acute lung injury by targeting nuclear factor-κB. Exp Ther Med 2018; 16(6): 4616-22. [http://dx.doi.org/10.3892/etm.2018.6789]. [PMID: 30542412].
[12]
Zhou M, Zhang Y, Chen X, et al. PTEN-Foxo1 signaling triggers HMGB1-mediated innate immune responses in acute lung injury. Immunol Res 2015; 62(1): 95-105. [http://dx.doi.org/10.1007/s12026-015-8639-z]. [PMID: 25759027].
[13]
Das A, Ganesh K, Khanna S, Sen CK, Roy S. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol 2014; 192(3): 1120-9. [http://dx.doi.org/10.4049/jimmunol.1300613]. [PMID: 24391209].
[14]
Villarino AV, Kanno Y, Ferdinand JR, O’Shea JJ. Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol 2015; 194(1): 21-7. [http://dx.doi.org/10.4049/jimmunol.1401867]. [PMID: 25527793].
[15]
Zhao J, Yu H, Liu Y, et al. Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 311(5): L868-80. [http://dx.doi.org/10.1152/ajplung.00281.2016]. [PMID: 27638904].
[16]
Qi W, Li H, Cai XH, et al. Lipoxin A4 activates alveolar epithelial sodium channel gamma via the microRNA-21/PTEN/AKT pathway in lipopolysaccharide-induced inflammatory lung injury. Lab Invest 2015; 95(11): 1258-68. [http://dx.doi.org/10.1038/labinvest.2015.109]. [PMID: 26302186].
[17]
Zhu B, Gong Y, Yan G, et al. Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21. Biochem Biophys Res Commun 2018; 495(3): 2125-32. [http://dx.doi.org/10.1016/j.bbrc.2017.11.185]. [PMID: 29198701].
[18]
Qin S, Chen M, Ji H, et al. miR 21 5p regulates type II alveolar epithelial cell apoptosis in hyperoxic acute lung injury. Mol Med Rep 2018; 17(4): 5796-804. [http://dx.doi.org/10.3892/mmr.2018.8560]. [PMID: 29436647].
[19]
Qin S, Wang H, Liu G, Mei H, Chen M. miR 21 5p ameliorates hyperoxic acute lung injury and decreases apoptosis of AEC II cells via PTEN/AKT signaling in rats. Mol Med Rep 2019; 20(6): 4953-62. [http://dx.doi.org/10.3892/mmr.2019.10779]. [PMID: 31702805].
[20]
Zhang W, Xu L, Chen M, et al. Effect of overexpression of microRNA-21-5p on early apoptosis of type II alveolar epithelial cells in rats with hyperoxic acute lung injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019; 31(8): 978-82. [PMID: 31537223].
[21]
Pavord ID, Beasley R, Agusti A, et al. After asthma: redefining airways diseases. Lancet 2018; 391(10118): 350-400. [http://dx.doi.org/10.1016/S0140-6736(17)30879-6]. [PMID: 28911920].
[22]
Silveira JS, Antunes GL, Kaiber DB, et al. Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model. J Cell Physiol 2020; 235(1): 267-80. [http://dx.doi.org/10.1002/jcp.28966]. [PMID: 31206674].
[23]
Bossé Y, Paré PD, Seow CY. Airway wall remodeling in asthma: from the epithelial layer to the adventitia. Curr Allergy Asthma Rep 2008; 8(4): 357-66. [http://dx.doi.org/10.1007/s11882-008-0056-0]. [PMID: 18606090].
[24]
Wu XB, Wang MY, Zhu HY, Tang SQ, You YD, Xie YQ. Overexpression of microRNA-21 and microRNA-126 in the patients of bronchial asthma. Int J Clin Exp Med 2014; 7(5): 1307-12. [PMID: 24995087].
[25]
Rebane A, Akdis CA. MicroRNAs in allergy and asthma. Curr Allergy Asthma Rep 2014; 14(4): 424. [http://dx.doi.org/10.1007/s11882-014-0424-x]. [PMID: 24504527].
[26]
Elbehidy RM, Youssef DM, El-Shal AS, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol Immunol 2016; 71: 107-14. [http://dx.doi.org/10.1016/j.molimm.2015.12.015]. [PMID: 26874829].
[27]
Hammad Mahmoud Hammad R, Hamed DHED, Eldosoky MAER, et al. Plasma microRNA-21, microRNA-146a and IL-13 expression in asthmatic children. Innate Immun 2018; 24(3): 171-9. [http://dx.doi.org/10.1177/1753425918763521]. [PMID: 29635981].
[28]
Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 2009; 182(8): 4994-5002. [http://dx.doi.org/10.4049/jimmunol.0803560]. [PMID: 19342679].
[29]
Lu TX, Hartner J, Lim EJ, et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 2011; 187(6): 3362-73. [http://dx.doi.org/10.4049/jimmunol.1101235]. [PMID: 21849676].
[30]
Case SR, Martin RJ, Jiang D, Minor MN, Chu HW. MicroRNA-21 inhibits toll-like receptor 2 agonist-induced lung inflammation in mice. Exp Lung Res 2011; 37(8): 500-8. [http://dx.doi.org/10.3109/01902148.2011.596895]. [PMID: 21892915].
[31]
Liu Y, Yang K, Shi H, et al. MiR-21 modulates human airway smooth muscle cell proliferation and migration in asthma through regulation of PTEN expression. Exp Lung Res 2015; 41(10): 535-45. [http://dx.doi.org/10.3109/01902148.2015.1090501]. [PMID: 26651881].
[32]
Liu JH, Li C, Zhang CH, Zhang ZH. LncRNA-CASC7 enhances corticosteroid sensitivity via inhibiting the PI3K/AKT signaling pathway by targeting miR-21 in severe asthma. Pulmonology 2020; 26(1): 18-26. [http://dx.doi.org/10.1016/j.pulmoe.2019.07.001]. [PMID: 31412983].
[33]
Liu L, Pan Y, Zhai C, et al. Activation of peroxisome proliferation-activated receptor-γ inhibits transforming growth factor-β1-induced airway smooth muscle cell proliferation by suppressing Smad-miR-21 signaling. J Cell Physiol 2018; 234(1): 669-81. [http://dx.doi.org/10.1002/jcp.26839]. [PMID: 30132829].
[34]
Liu F, Ma XJ, Wang QZ, Zhao YY, Wu LN, Qin GJ. The effect of FoxO1 on the proliferation of rat mesangial cells under high glucose conditions. Nephrol Dial Transplant 2014; 29(10): 1879-87. [http://dx.doi.org/10.1093/ndt/gfu202]. [PMID: 24914090].
[35]
Naini SM, Choukroun GJ, Ryan JR, Hentschel DM, Shah JV, Bonventre JV. Cytosolic phospholipase A2α regulates G1 progression through modulating FOXO1 activity. FASEB J 2016; 30(3): 1155-70. [http://dx.doi.org/10.1096/fj.15-278416]. [PMID: 26644349].
[36]
Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med 2011; 208(7): 1339-50. [http://dx.doi.org/10.1084/jem.20110551]. [PMID: 21727191].
[37]
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010; 207(8): 1589-97. [http://dx.doi.org/10.1084/jem.20100035]. [PMID: 20643828].
[38]
Oak SR, Murray L, Herath A, et al. A micro RNA processing defect in rapidly progressing idiopathic pulmonary fibrosis. PLoS One 2011; 6(6)e21253 [http://dx.doi.org/10.1371/journal.pone.0021253]. [PMID: 21712985].
[39]
Yamada M, Kubo H, Ota C, et al. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells. Respir Res 2013; 14: 95. [http://dx.doi.org/10.1186/1465-9921-14-95]. [PMID: 24063588].
[40]
Makiguchi T, Yamada M, Yoshioka Y, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir Res 2016; 17(1): 110. [http://dx.doi.org/10.1186/s12931-016-0427-3]. [PMID: 27596748].
[41]
Lai JY, Luo J, O’Connor C, et al. MicroRNA-21 in glomerular injury. J Am Soc Nephrol 2015; 26(4): 805-16. [http://dx.doi.org/10.1681/ASN.2013121274]. [PMID: 25145934].
[42]
Kim YJ, Hwang SJ, Bae YC, Jung JS. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009; 27(12): 3093-102. [PMID: 19816956].
[43]
Lin L, Gan H, Zhang H, et al. MicroRNA 21 inhibits SMAD7 expression through a target sequence in the 3′ untranslated region and inhibits proliferation of renal tubular epithelial cells. Mol Med Rep 2014; 10(2): 707-12. [http://dx.doi.org/10.3892/mmr.2014.2312]. [PMID: 24913635].
[44]
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456(7224): 980-4. [http://dx.doi.org/10.1038/nature07511]. [PMID: 19043405].
[45]
Ding Q, Gladson CL, Wu H, Hayasaka H, Olman MA. Focal adhesion kinase (FAK)-related non-kinase inhibits myofibroblast differentiation through differential MAPK activation in a FAK-dependent manner. J Biol Chem 2008; 283(40): 26839-49. [http://dx.doi.org/10.1074/jbc.M803645200]. [PMID: 18669633].
[46]
Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 2009; 82(1): 21-9. [http://dx.doi.org/10.1093/cvr/cvp015]. [PMID: 19147652].
[47]
White ES, Atrasz RG, Hu B, et al. Negative regulation of myofibroblast differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on chromosome 10). Am J Respir Crit Care Med 2006; 173(1): 112-21. [http://dx.doi.org/10.1164/rccm.200507-1058OC]. [PMID: 16179636].
[48]
Seike M, Goto A, Okano T, et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci USA 2009; 106(29): 12085-90. [http://dx.doi.org/10.1073/pnas.0905234106]. [PMID: 19597153].
[49]
Inoue Y, King TE Jr, Barker E, Daniloff E, Newman LS. Basic fibroblast growth factor and its receptors in idiopathic pulmonary fibrosis and lymphangioleiomyomatosis. Am J Respir Crit Care Med 2002; 166(5): 765-73. [http://dx.doi.org/10.1164/rccm.2010014]. [PMID: 12204879].
[50]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424. [http://dx.doi.org/10.3322/caac.21492]. [PMID: 30207593].
[51]
Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005; 96(2): 111-5. [http://dx.doi.org/10.1111/j.1349-7006.2005.00015.x]. [PMID: 15723655].
[52]
Zhang H, Mao F, Shen T, et al. Plasma miR-145, miR-20a, miR-21 and miR-223 as novel biomarkers for screening early-stage non-small cell lung cancer. Oncol Lett 2017; 13(2): 669-76. [http://dx.doi.org/10.3892/ol.2016.5462]. [PMID: 28356944].
[53]
Xia H, Zhang W, Zhang B, et al. miR-21 modulates the effect of EZH2 on the biological behavior of human lung cancer stem cells in vitro. Oncotarget 2017; 8(49): 85442-51. [http://dx.doi.org/10.18632/oncotarget.20006]. [PMID: 29156731].
[54]
Wang T, Cai Z, Hong G, et al. MicroRNA 21 increases cell viability and suppresses cellular apoptosis in non small cell lung cancer by regulating the PI3K/Akt signaling pathway. Mol Med Rep 2017; 16(5): 6506-11. [http://dx.doi.org/10.3892/mmr.2017.7440]. [PMID: 28901419].
[55]
Xu L, Huang Y, Chen D, et al. Downregulation of miR-21 increases cisplatin sensitivity of non-small-cell lung cancer. Cancer Genet 2014; 207(5): 214-20. [http://dx.doi.org/10.1016/j.cancergen.2014.04.003]. [PMID: 24906642].
[56]
Yang Q, Zhang Z, Xu H, Ma C. Lidocaine alleviates cytotoxicity-resistance in lung cancer A549/DDP cells via down-regulation of miR-21. Mol Cell Biochem 2019; 456(1-2): 63-72. [http://dx.doi.org/10.1007/s11010-018-3490-x]. [PMID: 30644017].
[57]
Li B, Ren S, Li X, et al. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer 2014; 83(2): 146-53. [http://dx.doi.org/10.1016/j.lungcan.2013.11.003]. [PMID: 24331411].
[58]
Ni K, Wang D, Xu H, et al. miR-21 promotes non-small cell lung cancer cells growth by regulating fatty acid metabolism. Cancer Cell Int 2019; 19: 219. [http://dx.doi.org/10.1186/s12935-019-0941-8]. [PMID: 31462892].
[59]
An Y, Zhang Q, Li X, Wang Z, Li Y, Tang X. Upregulated microRNA miR-21 promotes the progression of lung adenocarcinoma through inhibition of KIBRA and the Hippo signaling pathway. Biomed Pharmacother 2018; 108: 1845-55. [http://dx.doi.org/10.1016/j.biopha.2018.09.125]. [PMID: 30372890].
[60]
Zhong J, Ren X, Chen Z, et al. miR-21-5p promotes lung adenocarcinoma progression partially through targeting SET/TAF-Iα. Life Sci 2019; 231116539 [http://dx.doi.org/10.1016/j.lfs.2019.06.014]. [PMID: 31176779].
[61]
Liu Y, Wu L, Li K, et al. Ornithine aminotransferase promoted the proliferation and metastasis of non-small cell lung cancer via upregulation of miR-21. J Cell Physiol 2019; 234(8): 12828-38. [http://dx.doi.org/10.1002/jcp.27939]. [PMID: 30549035].
[62]
Xue X, Liu Y, Wang Y, et al. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2016; 7(51): 84508-19. [http://dx.doi.org/10.18632/oncotarget.13022]. [PMID: 27811366].
[63]
Su C, Cheng X, Li Y, et al. MiR-21 improves invasion and migration of drug-resistant lung adenocarcinoma cancer cell and transformation of EMT through targeting HBP1. Cancer Med 2018; 7(6): 2485-503. [http://dx.doi.org/10.1002/cam4.1294]. [PMID: 29663730].
[64]
Tian L, Shan W, Zhang Y, Lv X, Li X, Wei C. Up-regulation of mir-21 expression predicate advanced clinicopathological features and poor prognosis in patients with non-small cell lung cancer. Pathol Oncol Res 2016; 22(1): 161-7. [http://dx.doi.org/10.1007/s12253-015-9979-7]. [PMID: 26453197].
[65]
Wei J, Gao W, Zhu CJ, et al. Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer 2011; 30(6): 407-14. [http://dx.doi.org/10.5732/cjc.010.10522]. [PMID: 21627863].
[66]
Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet 2012; 379(9823): 1341-51. [http://dx.doi.org/10.1016/S0140-6736(11)60968-9]. [PMID: 22314182].
[67]
Xie L, Wu M, Lin H, et al. An increased ratio of serum miR-21 to miR-181a levels is associated with the early pathogenic process of chronic obstructive pulmonary disease in asymptomatic heavy smokers. Mol Biosyst 2014; 10(5): 1072-81. [http://dx.doi.org/10.1039/C3MB70564A]. [PMID: 24556821].
[68]
Xie L, Yang F, Sun S. Expression of miR-21 in peripheral blood serum and mononuclear cells in patients with chronic obstructive pulmonary disease and its clinical significance. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2016; 41(3): 238-43. [PMID: 27033786].
[69]
Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 2008; 28(17): 5369-80. [http://dx.doi.org/10.1128/MCB.00479-08]. [PMID: 18591254].
[70]
Reis ST, Pontes-Junior J, Antunes AA, et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol 2012; 12: 14. [http://dx.doi.org/10.1186/1471-2490-12-14]. [PMID: 22642976].
[71]
Mocchegiani E, Giacconi R, Costarelli L. Metalloproteases/anti-metalloproteases imbalance in chronic obstructive pulmonary disease: genetic factors and treatment implications. Curr Opin Pulm Med 2011; 17(Suppl. 1): S11-9. [http://dx.doi.org/10.1097/01.mcp.0000410743.98087.12]. [PMID: 22209925].
[72]
Zhang J, Liu J, Yuan Y, et al. Two waves of pro-inflammatory factors are released during the influenza A virus (IAV)-driven pulmonary immunopathogenesis. PLoS Pathog 2020; 16(2)e1008334 [http://dx.doi.org/10.1371/journal.ppat.1008334]. [PMID: 32101596].
[73]
Hou Y, Cui Y, Zhou Z, et al. Upregulation of the WNK4 signaling pathway inhibits epithelial sodium channels of mouse tracheal epithelial cells after influenza a infection. Front Pharmacol 2019; 10: 12. [http://dx.doi.org/10.3389/fphar.2019.00012]. [PMID: 30723408].
[74]
Xia B, Lu J, Wang R, Yang Z, Zhou X, Huang P. miR-21-3p regulates influenza a virus replication by targeting histone deacetylase-8. Front Cell Infect Microbiol 2018; 8: 175. [http://dx.doi.org/10.3389/fcimb.2018.00175]. [PMID: 29888214].
[75]
Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10(2): 126-39. [http://dx.doi.org/10.1038/nrm2632]. [PMID: 19165215].
[76]
Moutinho C, Esteller M. MicroRNAs and epigenetics. Adv Cancer Res 2017; 135: 189-220. [http://dx.doi.org/10.1016/bs.acr.2017.06.003]. [PMID: 28882223].
[77]
Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10(12): 1957-66. [http://dx.doi.org/10.1261/rna.7135204]. [PMID: 15525708].
[78]
Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol 2009; 4: 199-227. [http://dx.doi.org/10.1146/annurev.pathol.4.110807.092222]. [PMID: 18817506].
[79]
Yan M, Chen C, Gong W, et al. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res 2015; 105(3): 340-52. [http://dx.doi.org/10.1093/cvr/cvu254]. [PMID: 25504627].
[80]
Zhang J, Yang Y, Yang T, et al. microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer 2010; 103(8): 1215-20. [http://dx.doi.org/10.1038/sj.bjc.6605895]. [PMID: 20842113].
[81]
Shen J, Todd NW, Zhang H, et al. Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest 2011; 91(4): 579-87. [http://dx.doi.org/10.1038/labinvest.2010.194]. [PMID: 21116241].
[82]
Shen J, Liu Z, Todd NW, et al. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer 2011; 11: 374. [http://dx.doi.org/10.1186/1471-2407-11-374]. [PMID: 21864403].
[83]
Tang D, Shen Y, Wang M, et al. Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer. Eur J Cancer Prev 2013; 22(6): 540-8. [http://dx.doi.org/10.1097/CEJ.0b013e32835f3be9]. [PMID: 23462458].
[84]
Capodanno A, Boldrini L, Proietti A, et al. Let-7g and miR-21 expression in non-small cell lung cancer: correlation with clinicopathological and molecular features. Int J Oncol 2013; 43(3): 765-74. [http://dx.doi.org/10.3892/ijo.2013.2003]. [PMID: 23820752].
[85]
Geng Q, Fan T, Zhang B, Wang W, Xu Y, Hu H. Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer. Respir Res 2014; 15: 149. [http://dx.doi.org/10.1186/s12931-014-0149-3]. [PMID: 25421010].
[86]
Xing L, Su J, Guarnera MA, et al. Sputum microRNA biomarkers for identifying lung cancer in indeterminate solitary pulmonary nodules. Clin Cancer Res 2015; 21(2): 484-9. [http://dx.doi.org/10.1158/1078-0432.CCR-14-1873]. [PMID: 25593345].
[87]
Zhao W, Zhao JJ, Zhang L, et al. Serum miR-21 level: a potential diagnostic and prognostic biomarker for non-small cell lung cancer. Int J Clin Exp Med 2015; 8(9): 14759-63. [PMID: 26628958].
[88]
Lin Y, Leng Q, Jiang Z, et al. A classifier integrating plasma biomarkers and radiological characteristics for distinguishing malignant from benign pulmonary nodules 2017. 141: 1240-8. http://dx.doi.org/10.1002/ijc.30822
[89]
Qiu F, Gu WG, Li C, Nie SL, Yu F. Analysis on expression level and diagnostic value of miR-19 and miR-21 in peripheral blood of patients with undifferentiated lung cancer. Eur Rev Med Pharmacol Sci 2018; 22(23): 8367-73. [PMID: 30556877].
[90]
Liao J, Shen J, Leng Q, Qin M, Zhan M, Jiang F. MicroRNA-based biomarkers for diagnosis of non-small cell lung cancer (NSCLC) 2020. 11: 762-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy