Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

A Review on Performance Evaluation of Bi2Te3-based and some other Thermoelectric Nanostructured Materials

Author(s): Mohammad Ruhul Amin Bhuiyan, Hayati Mamur* and Ömer Faruk Dilmaç

Volume 17, Issue 3, 2021

Published on: 20 August, 2020

Page: [423 - 446] Pages: 24

DOI: 10.2174/1573413716999200820144753

Price: $65

Abstract

Background: Future sustainable energy industrialization is a green energy source that has a lower circumstantial impact than traditional energy technologies. The advancement of new energy generation is important to expand the share of renewable energy sources.

Objective: Worldwide, for the next generation, future energy demand may be fulfilled by using one of the renewable energy sources such as thermo electricity.

Methods: The bismuth telluride–based (Bi2Te3-based) nanostructure material in thermo electricity still has a major part of applications. It is known as the most prospective TE device manufactured from a research arena towards successful commercialization.

Results: The Bi2Te3-based nanostructure material is now on commercialization stages that it has some limitations. In order to find out the future direction of research and development of this material, the material will face a challenging way.

Conclusion: The review paper provides an effective approach to overcome the limitation of Bi2Te3- based nanostructure. Moreover, in this review paper, the performance evaluation with existing Bi2Te3-based nanostructure and some other TE materials will be discussed in detail.

Keywords: Bismuth telluride (Bi2Te3), nanostructure, thermoelectric material, thermal conductivity, electrical conductivity, Seebeck coefficient.

Graphical Abstract
[1]
Zhou, X.; Yan, Y.; Lu, X.; Zhu, H.; Han, X.; Chen, G.; Ren, Z. Routes for high-performance thermoelectric materials. Mater. Today, 2018, 21, 974-988.
[http://dx.doi.org/10.1016/j.mattod.2018.03.039]
[2]
Lin, F.H.; Liu, C.J. A simple energy-saving aqueous synthesis of Bi2Te3 nanocomposites yielding relatively high thermoelectric power factors. Ceram. Int., 2019, 45, 9397-9400.
[http://dx.doi.org/10.1016/j.ceramint.2018.08.170]
[3]
Ahn, K.; Won, J.K.; Kang, Y.K.; Hwang, C.; Chung, I.; Kim, M.G. Thermoelectric properties of nano-bulk bismuth telluride prepared with spark plasma sintered nano-plates. Curr. Appl. Phys., 2019, 19, 97-101.
[http://dx.doi.org/10.1016/j.cap.2018.11.010]
[4]
Ivanov, O.; Yaprintsev, M.; Lyubushkin, R.; Soklakova, O. Enhancement of thermoelectric efficiency in Bi2Te3 via rare earth element doping. Scr. Mater., 2018, 146, 91-94.
[http://dx.doi.org/10.1016/j.scriptamat.2017.11.031]
[5]
Chen, Z.G.; Shi, X.; Zhao, L.D.; Zou, J. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog. Mater. Sci., 2018, 97, 283-346.
[http://dx.doi.org/10.1016/j.pmatsci.2018.04.005]
[6]
Feng, Y.; Jiang, X.; Ghafari, E.; Kucukgok, B.; Zhang, C.; Ferguson, I.; Lu, N. Metal oxides for thermoelectric power generation and beyond. Adv. Compos. Hybrid Mater., 2018, 1, 114-126.
[http://dx.doi.org/10.1007/s42114-017-0011-4]
[7]
Shourideh, A.H.; Ajram, W.B.; Al Lami, J.; Haggag, S.; Mansouri, A. A comprehensive study of an atmospheric water generator using Peltier effect. Therm. Sci. Eng. Prog., 2018, 6, 14-26.
[http://dx.doi.org/10.1016/j.tsep.2018.02.015]
[8]
Witting, I.T.; Chasapis, T.C.; Ricci, F.; Peters, M.; Heinz, N.A.; Hautier, G.; Snyder, G.J. The thermoelectric properties of bismuth telluride. Adv. Electron. Mater., 2019, 5, 1800904.
[http://dx.doi.org/10.1002/aelm.201800904]
[9]
Rashad, M.M.; El-Dissouky, A.; Soliman, H.M.; Elseman, A.M.; Refaat, H.M.; Ebrahim, A. Structure evaluation of bismuth telluride (Bi2Te3) nanoparticles with enhanced seebeck coefficient and low thermal conductivity. Mater. Res. Innov., 2018, 22, 315-323.
[10]
Danine, A.; Termentzidis, K.; Schaefer, S.; Li, S.; Ensinger, W.; Boulanger, C.; Lacroix, D.; Stein, N. Synthesis of bismuth telluride nanotubes and their simulated thermal properties. Superlattices Microstruct., 2018, 122, 587-595.
[http://dx.doi.org/10.1016/j.spmi.2018.06.042]
[11]
Le, P.H.; Liao, C.N.; Luo, C.W.; Leu, J. Thermoelectric properties of nanostructured bismuth-telluride thin films grown using pulsed laser deposition. J. Alloys Compd., 2014, 615, 546-552.
[http://dx.doi.org/10.1016/j.jallcom.2014.07.018]
[12]
Stavila, V.; Robinson, D.B.; Hekmaty, M.A.; Nishimoto, R.; Medlin, D.L.; Zhu, S.; Tritt, T.M.; Sharma, P.A. Wet-chemical synthesis and consolidation of stoichiometric bismuth telluride nanoparticles for improving the thermoelectric figure-of-merit. ACS Appl. Mater. Interfaces, 2013, 5(14), 6678-6686.
[http://dx.doi.org/10.1021/am401444w] [PMID: 23806251]
[13]
Mi, J.L.; Jensen, T.N.; Hald, P.; Overgaard, J.; Christensen, M.; Iversen, B.B. Glucose-assisted continuous flow synthesis of Bi2Te3 nanoparticles in supercritical/near-critical water. J. Supercrit. Fluids, 2012, 67, 84-88.
[http://dx.doi.org/10.1016/j.supflu.2012.03.009]
[14]
Wang, Z.; Wang, F.Q.; Chen, H.; Zhu, L.; Yu, H.J.; Jian, X.Y. Synthesis and characterization of Bi2Te3 nanotubes by a hydrothermal method. J. Alloys Compd., 2010, 492, L50-L53.
[http://dx.doi.org/10.1016/j.jallcom.2009.11.155]
[15]
Singh, N.K.; Bathula, S.; Gahtori, B.; Tyagi, K.; Haranath, D.; Dhar, A. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material. J. Alloys Compd., 2016, 668, 152-158.
[http://dx.doi.org/10.1016/j.jallcom.2016.01.190]
[16]
Li, J.C.; Li, D.; Qin, X.Y.; Zhang, J. Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scr. Mater., 2017, 126, 6-10.
[http://dx.doi.org/10.1016/j.scriptamat.2016.08.009]
[17]
Li, W.; Chen, Z.; Lin, S.; Chang, Y.; Ge, B.; Chen, Y.; Pei, Y. Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys. J. Materiomics, 2015, 1, 307-315.
[http://dx.doi.org/10.1016/j.jmat.2015.09.001]
[18]
Yang, L.; Chen, Z.G.; Han, G.; Hong, M.; Zou, Y.; Zou, J. High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nano Energy, 2015, 16, 367-374.
[http://dx.doi.org/10.1016/j.nanoen.2015.07.012]
[19]
Zhao, H.; Sui, J.; Tang, Z.; Lan, Y.; Jie, Q.; Kraemer, D.; McEnaney, K.; Guloy, A.; Chen, G.; Ren, Z. High thermoelectric performance of MgAgSb-based materials. Nano Energy, 2014, 7, 97-103.
[http://dx.doi.org/10.1016/j.nanoen.2014.04.012]
[20]
Liu, J.; Wang, P.; Wang, M.; Xu, R.; Zhang, J.; Liu, J.; Li, D.; Liang, N.; Du, Y.; Chen, G.; Tang, G. Achieving high thermoelectric performance with Pb and Zn codoped polycrystalline SnSe via phase separation and nanostructuring strategies. Nano Energy, 2018, 53, 683-689.
[http://dx.doi.org/10.1016/j.nanoen.2018.09.025]
[21]
Lee, Y.K.; Luo, Z.; Cho, S.P.; Kanatzidis, M.G.; Chung, I. Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule, 2019, 3, 719-731.
[http://dx.doi.org/10.1016/j.joule.2019.01.001]
[22]
Chang, C.; Wu, M.; He, D.; Pei, Y.; Wu, C.F.; Wu, X.; Yu, H.; Zhu, F.; Wang, K.; Chen, Y.; Huang, L.; Li, J.F.; He, J.; Zhao, L.D. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science, 2018, 360(6390), 778-783.
[http://dx.doi.org/10.1126/science.aaq1479] [PMID: 29773748]
[23]
Biswas, K.; He, J.; Blum, I.D.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416), 414-418.
[http://dx.doi.org/10.1038/nature11439] [PMID: 22996556]
[24]
Kim, J.; Lee, K.H.; Kim, S.W.; Lim, J.H. Potential-current co-adjusted pulse electrodeposition for highly (110)-oriented Bi2Te3-xSex films. J. Alloys Compd., 2019, 787, 767-771.
[http://dx.doi.org/10.1016/j.jallcom.2019.01.301]
[25]
Liu, Y.; Zhang, Y.; Lim, K.H.; Ibáñez, M.; Ortega, S.; Li, M.; David, J.; Martí-Sánchez, S.; Ng, K.M.; Arbiol, J.; Kovalenko, M.V.; Cadavid, D.; Cabot, A. High thermoelectric performance in crystallographically textured n-type Bi2Te3-xSex produced from asymmetric colloidal nanocrystals. ACS Nano, 2018, 12(7), 7174-7184.
[http://dx.doi.org/10.1021/acsnano.8b03099] [PMID: 29966413]
[26]
Tan, M.; Hao, Y.; Wang, G. Improvement of thermoelectric properties induced by uniquely ordered lattice field in Bi2Se0.5Te2.5 pillar array. J. Solid State Chem., 2014, 215, 219-224.
[http://dx.doi.org/10.1016/j.jssc.2014.04.005]
[27]
Rong, Z.; Yang, F.; Cai, X.; Han, X.; Li, G. Microwave activated hot pressing: A new opportunity to improve the thermoelectric properties of n-type Bi2Te3-xSex bulks. Mater. Res. Bull., 2016, 83, 122-127.
[http://dx.doi.org/10.1016/j.materresbull.2016.05.030]
[28]
Pozega, E.; Ivanov, S.; Stevic, Z.; Karanovic, L.; Tomanec, R.; Gomidzelovic, L.; Kostov, A. Identification and characterization of single crystal Bi2Te3-xSex alloy. T. Nonferr. Metals Soc. China, 2015, 25, 3279-3285.
[http://dx.doi.org/10.1016/S1003-6326(15)63964-4]
[29]
Kuznetsov, P.I.; Yakushcheva, G.G.; Luzanov, V.A.; Temiryazev, A.G.; Shchamkhalova, B.S.; Jitov, V.A.; Sizov, V.E. Metalorganic vapor phase epitaxy growth of ternary tetradymite Bi2Te3-xSex compounds. J. Cryst. Growth, 2015, 409, 56-61.
[http://dx.doi.org/10.1016/j.jcrysgro.2014.09.035]
[30]
Ivanov, O.; Yaprintsev, M.; Danshina, E. Transverse magnetoresistance peculiarities of thermoelectric Lu-doped Bi2Te3 compound due to strong electrical disorder. J. Rare Earths, 2019, 37, 292-298.
[http://dx.doi.org/10.1016/j.jre.2018.07.007]
[31]
An, J.; Han, M.K.; Kim, S.J. Synthesis of heavily Cu-doped Bi2Te3 nanoparticles and their thermoelectric properties. J. Solid State Chem., 2019, 270, 407-412.
[http://dx.doi.org/10.1016/j.jssc.2018.11.024]
[32]
Lee, E.; Seong, S.; Kim, J.; Jung, M.H.; Baik, J.; Kim, Y.; Park, B.G.; Kang, J.S. Photoemission and soft X-ray absorption spectroscopy study of Gd-substituted thermoelectric and topological Bi2Te3. J. Electron Spectrosc. Relat. Phenom., 2019, 23, 21-25.
[http://dx.doi.org/10.1016/j.elspec.2018.11.010]
[33]
Kim, C.; Baek, J.Y.; Lopez, D.H.; Kim, D.H.; Kim, H. Decoupling effect of electrical and thermal properties of Bi2Te3-polypyrrole hybrid material causing remarkable enhancement in thermoelectric performance. J. Ind. Eng. Chem., 2019, 71, 119-126.
[http://dx.doi.org/10.1016/j.jiec.2018.11.013]
[34]
Hong, M.; Chen, Z.G.; Yang, L.; Zou, J. Enhancing thermoelectric performance of Bi2Te3-based nanostructures through rational structure design. Nanoscale, 2016, 8(16), 8681-8686.
[http://dx.doi.org/10.1039/C6NR00719H] [PMID: 27050933]
[35]
Kim, S.H.; Park, B.K. Solvothermal synthesis of Bi2Te3 nanotubes by the inter diffusion of Bi and Te metals. Mater. Lett., 2010, 64, 938-941.
[http://dx.doi.org/10.1016/j.matlet.2010.01.065]
[36]
Kim, H.J.; Lee, K.J.; Kim, S.J.; Han, M.K. A simple and quick chemical synthesis of nanostructured Bi2Te3, Sb2Te3, and BixSb2-xTe3. Bull. Korean Chem. Soc., 2010, 31, 1123-1127.
[http://dx.doi.org/10.5012/bkcs.2010.31.5.1123]
[37]
Liang, Y.; Wang, W.; Zeng, B.; Zhang, G.; He, Q.; Fu, J. Influence of NaOH on the formation and morphology of Bi2Te3 nanostructures in a solvothermal process: from hexagonal nanoplates to nanorings. Mater. Chem. Phys., 2011, 129, 90-98.
[http://dx.doi.org/10.1016/j.matchemphys.2011.03.061]
[38]
Jin, R.; Liu, J.; Li, G. Facile solvothermal synthesis, growth mechanism and thermoelectric property of flower-like Bi2Te3. Cryst. Res. Technol., 2014, 49, 460-466.
[http://dx.doi.org/10.1002/crat.201400012]
[39]
Liang, Y.; Wang, W.; Zeng, B.; Zhang, G.; Song, Y.; Zhang, X.; Huang, J.; Li, J.; Li, T. The effect of the Bi source on optical properties of Bi2Te3 nanostructures. Solid State Commun., 2011, 151, 704-707.
[http://dx.doi.org/10.1016/j.ssc.2011.02.016]
[40]
Liang, Y.; Wang, W.; Zeng, B.; Zhang, G.; Huang, J.; Li, J.; Li, T.; Song, Y.; Zhang, X. Raman scattering investigation of Bi2Te3 hexagonal nanoplates prepared by a solvothermal process in the absence of NaOH. J. Alloys Compd., 2011, 509, 5147-5151.
[http://dx.doi.org/10.1016/j.jallcom.2011.02.015]
[41]
Wada, K.; Tomita, K.; Takashiri, M. Fabrication of bismuth telluride nanoplates via solvothermal synthesis using different alkalis and nanoplate thin films by printing method. J. Cryst. Growth, 2017, 468, 194-198.
[http://dx.doi.org/10.1016/j.jcrysgro.2016.12.048]
[42]
He, H.; Huang, D.; Zhang, X.; Li, G. Characterization of hexagonal Bi2Te3 nanosheets prepared by solvothermal method. Solid State Commun., 2012, 152, 810-815.
[http://dx.doi.org/10.1016/j.ssc.2012.01.035]
[43]
Zhang, Y.; Hu, L.P.; Zhu, T.J.; Xie, J.; Zhao, X.B. High yield Bi2Te3 single crystal nanosheets with uniform morphology via a solvothermal synthesis. Cryst. Growth Des., 2013, 13, 645-651.
[http://dx.doi.org/10.1021/cg3013156]
[44]
Kumar, P.; Srivastava, P.; Singh, J.; Belwal, R.; Pandey, M.K.; Hui, K.S.; Hui, K.N.; Singh, K. Morphological evolution and structural characterization of bismuth telluride (Bi2Te3) nanostructures. J. Phys. D Appl. Phys., 2013., 46285301.
[http://dx.doi.org/10.1088/0022-3727/46/28/285301]
[45]
Kim, C.; Kim, D.H.; Han, Y.S.; Chung, J.S.; Park, S.; Kim, H. Fabrication of bismuth telluride nanoparticles using a chemical synthetic process and their thermoelectric evaluations. Powder Technol., 2011, 214, 463-468.
[http://dx.doi.org/10.1016/j.powtec.2011.08.049]
[46]
Li, C.; Kong, F.; Liu, C.; Liu, H.; Hu, Y.; Wang, T.; Xu, J.; Jiang, F. Dual-functional aniline-assisted wet-chemical synthesis of bismuth telluride nanoplatelets and their thermoelectric performance. Nanotechnology, 2017, 28(23), 235604.
[http://dx.doi.org/10.1088/1361-6528/aa6ed0] [PMID: 28513471]
[47]
Yokoyama, S.; Sato, K.; Muramatsu, M.; Yamasuge, T.; Itoh, T.; Motomiya, K.; Takahashi, H.; Tohji, K. Green synthesis and formation mechanism of nanostructured Bi2Te3 using ascorbic acid in aqueous solution. Adv. Powder Technol., 2015, 26, 789-796.
[http://dx.doi.org/10.1016/j.apt.2015.02.002]
[48]
Guo, W.; Ma, J.; Zheng, W. Bi2Te3 nanoflowers assembled of defective nanosheets with enhanced thermoelectric performance. J. Alloys Compd., 2016, 659, 170-177.
[http://dx.doi.org/10.1016/j.jallcom.2015.10.228]
[49]
Akshay, V.R.; Arun, B.; Suneesh, M.V.; Vasundhara, M. Surfactant-induced structural phase transitions and enhanced room temperature thermoelectric performance in n-type Bi2Te3 nanostructures synthesized via chemical route. ACS Appl. Nano Mater., 2018, 1, 3236-3250.
[http://dx.doi.org/10.1021/acsanm.8b00464]
[50]
Akshay, V.R.; Suneesh, M.V.; Vasundhara, M. Tailoring thermoelectric properties through structure and morphology in chemically synthesized n-type bismuth telluride nanostructures. Inorg. Chem., 2017, 56(11), 6264-6274.
[http://dx.doi.org/10.1021/acs.inorgchem.7b00336] [PMID: 28489353]
[51]
Yang, L.; Chen, Z.G.; Hong, M.; Han, G.; Zou, J. Enhanced thermoelectric performance of nanostructured Bi2Te3 through significant phonon scattering. ACS Appl. Mater. Interfaces, 2015, 7(42), 23694-23699.
[http://dx.doi.org/10.1021/acsami.5b07596] [PMID: 26451626]
[52]
Takashiri, M.; Kai, S.; Wada, K.; Takasugi, S.; Tomita, K. Role of stirring assist during solvothermal synthesis for preparing single-crystal bismuth telluride hexagonal nanoplates. Mater. Chem. Phys., 2016, 173, 213-218.
[http://dx.doi.org/10.1016/j.matchemphys.2016.02.007]
[53]
Nour, A.; Hassan, N.; Refaat, H.M.; Soliman, H.M.; El-Dissouky, A. Effect of reducing agent strength on the growth and thermoelectric performance of nanocrystalline bismuth telluride. Mater. Res. Express, 2018, 5, 035033.
[http://dx.doi.org/10.1088/2053-1591/aab337]
[54]
Saleemi, M.; Toprak, M.S.; Li, S.; Johnsson, M.; Muhammed, M. Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). J. Mater. Chem., 2012, 22, 725-730.
[http://dx.doi.org/10.1039/C1JM13880D]
[55]
Wu, F.; Song, H.; Gao, F.; Shi, W.; Jia, J.; Hu, X. Effects of different morphologies of Bi2Te3 nanopowders on thermoelectric properties. J. Electron. Mater., 2013, 42, 1140-1145.
[http://dx.doi.org/10.1007/s11664-013-2541-z]
[56]
Hosokawa, Y.; Wada, K.; Tanaka, M.; Tomita, K.; Takashiri, M. Thermal annealing effect on structural and thermoelectric properties of hexagonal Bi2Te3 nanoplate thin films by drop-casting technique. Jpn. J. Appl. Phys., 2017, 57, 02CC02.
[http://dx.doi.org/10.7567/JJAP.57.02CC02]
[57]
Liu, S.; Peng, N.; Zhou, C.; Bai, Y.; Tang, S.; Ma, D.; Ma, F.; Xu, K. Fabrication of Bi2Te3-x Sex nanowires with tunable chemical compositions and enhanced thermoelectric properties. Nanotechnology, 2017, 28(8), 085601.
[http://dx.doi.org/10.1088/1361-6528/aa55e7] [PMID: 28028250]
[58]
Zhang, C.; Peng, Z.; Li, Z.; Yu, L.; Khor, K.A.; Xiong, Q. Controlled growth of bismuth antimony telluride BixSb2-xTe3 nanoplatelets and their bulk thermoelectric nanocomposites. Nano Energy, 2015, 15, 688-696.
[http://dx.doi.org/10.1016/j.nanoen.2015.05.022]
[59]
Li, D.; Qin, X.Y.; Zhang, J.; Song, C.J.; Liu, Y.F.; Wang, L.; Xin, H.X.; Wang, Z.M. Thermoelectric anisotropy of n-type Bi2Te3-xSex prepared by spark plasma sintering. RSC Advances, 2015, 5, 43717-43722.
[http://dx.doi.org/10.1039/C5RA04435A]
[60]
Li, D.; Qin, X.Y.; Dou, Y.C.; Li, X.Y.; Sun, R.R.; Wang, Q.Q.; Li, L.L.; Xin, H.X.; Wang, N.; Wang, N.N.; Song, C.J. Thermoelectric properties of hydrothermally synthesized Bi2Te3-xSex nanocrystals. Scr. Mater., 2012, 67, 161-164.
[http://dx.doi.org/10.1016/j.scriptamat.2012.04.005]
[61]
Cai, X.; Fan, X.A.; Rong, Z.; Yang, F.; Gan, Z.; Li, G. Improved thermoelectric properties of Bi2Te3-xSex alloys by melt spinning and resistance pressing sintering. J. Phys. D Appl. Phys., 2014, 47, 115101.
[http://dx.doi.org/10.1088/0022-3727/47/11/115101]
[62]
Lim, Y.S.; Wi, S.M.; Lee, G.G. Synthesis of n-type Bi2Te3-xSex compounds through oxide reduction process and related thermoelectric properties. J. Eur. Ceram. Soc., 2017, 37, 3361-3366.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2017.04.020]
[63]
Han, S.T.; Rimal, P.; Lee, C.H.; Kim, H.S.; Sohn, Y.; Hong, S.J. Enhanced thermoelectric cooling properties of Bi2Te3-xSex alloys fabricated by combining casting, milling and spark plasma sintering. Intermetallics, 2016, 78, 42-49.
[http://dx.doi.org/10.1016/j.intermet.2016.08.006]
[64]
Li, D.; Qin, X.Y.; Liu, Y.F.; Wang, N.N.; Song, C.J.; Sun, R.R. Improved thermoelectric properties for solution grown Bi2Te3-xSex nanoplatelet composites. RSC Advances, 2013, 3, 2632-2638.
[http://dx.doi.org/10.1039/c2ra22562j]
[65]
Wang, S.; Xie, W.; Li, H.; Tang, X. High performance n-type (Bi,Sb)2(Te,Se)3 for low temperature thermoelectric generator. J. Phys. D Appl. Phys., 2010, 43, 335404.
[http://dx.doi.org/10.1088/0022-3727/43/33/335404]
[66]
Yan, X.; Poudel, B.; Ma, Y.; Liu, W.S.; Joshi, G.; Wang, H.; Lan, Y.; Wang, D.; Chen, G.; Ren, Z.F. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett., 2010, 10(9), 3373-3378.
[http://dx.doi.org/10.1021/nl101156v] [PMID: 20672824]
[67]
Hu, X.; Fan, X.A.; Jiang, C.; Pan, Z.; Feng, B.; Liu, P.; Li, G.; Li, Y. Thermal stability of n-type zone-melting Bi2(Te,Se)3 alloys for thermoelectric generation. Mater. Res. Express, 2018, 6, 035907.
[http://dx.doi.org/10.1088/2053-1591/aaf595]
[68]
Zhang, C.; Zhang, C.; Ng, H.; Xiong, Q. Solution-processed n-type Bi2Te3-xSex nanocomposites with enhanced thermoelectric performance via liquid-phase sintering. Sci. China Mater., 2019, 62, 389-398.
[http://dx.doi.org/10.1007/s40843-018-9312-5]
[69]
Pan, Y.; Li, J.F. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater., 2016, 8, e275.
[http://dx.doi.org/10.1038/am.2016.67]
[70]
Kim, C.; Kim, C.E.; Baek, J.Y.; Kim, D.H.; Kim, J.T.; Ahn, J.H.; Lopez, D.H.; Kim, T.; Kim, H. New chemical reaction process of a Bi2Te2.7Se0.3 nanomaterial for feasible optimization in transport properties resulting in predominant n-type thermoelectric performance. Ind. Eng. Chem. Res., 2016, 55, 5623-5633.
[http://dx.doi.org/10.1021/acs.iecr.6b00933]
[71]
Wang, S.; Li, H.; Lu, R.; Zheng, G.; Tang, X. Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances. Nanotechnology, 2013, 24(28), 285702.
[http://dx.doi.org/10.1088/0957-4484/24/28/285702] [PMID: 23787945]
[72]
Xu, B.; Feng, T.; Agne, M.T.; Zhou, L.; Ruan, X.; Snyder, G.J.; Wu, Y. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures. Angew. Chem. Int. Ed. Engl., 2017, 56(13), 3546-3551.
[http://dx.doi.org/10.1002/anie.201612041] [PMID: 28079961]
[73]
Hu, L.; Wu, H.; Zhu, T.; Fu, C.; He, J.; Ying, P.; Zhao, X. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv. Energy Mater., 2015, 5, 1500411.
[http://dx.doi.org/10.1002/aenm.201500411]
[74]
Kim, C.; Yang, Y.; Baek, J.Y.; Lopez, D.H.; Kim, D.H.; Kim, H. Concurrent defects of intrinsic tellurium and extrinsic silver in an n-type Bi2Te2.88Se0.15 thermoelectric material. Nano Energy, 2019, 60, 26-35.
[http://dx.doi.org/10.1016/j.nanoen.2019.03.047]
[75]
Hong, M.; Chasapis, T.C.; Chen, Z.G.; Yang, L.; Kanatzidis, M.G.; Snyder, G.J.; Zou, J. N-type Bi2Te3-xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano, 2016, 10(4), 4719-4727.
[http://dx.doi.org/10.1021/acsnano.6b01156] [PMID: 27058746]
[76]
Li, D.; Sun, R.; Qin, X. Improving thermoelectric properties of p-type Bi2Te3-based alloys by spark plasma sintering. Prog. Nat. Sci. Maters. Int., 2011, 21, 336-340.
[http://dx.doi.org/10.1016/S1002-0071(12)60066-5]
[77]
Ahmad, K.; Wan, C.; Al-Eshaikh, M.A.; Kadachi, A.N. Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites. Appl. Surf. Sci., 2019, 474, 2-8.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.163]
[78]
Sun, H.; Yu, F.; Zhao, P.; Wang, B.; Cai, B.; Zhang, L.; Yu, D.; Tian, Y.; Xu, B. Thermoelectric performance of single elemental doped n-type PbTe regulated by carrier concentration. J. Alloys Compd., 2019, 787, 180-185.
[http://dx.doi.org/10.1016/j.jallcom.2019.01.353]
[79]
Sun, H.; Cai, B.; Zhao, P.; Yu, F.; Zhang, L.; Yu, D.; Tian, Y.; Xu, B. Enhancement of thermoelectric performance of Al doped PbTe-PbSe due to carrier concentration optimization and alloying. J. Alloys Compd., 2019, 791, 786-791.
[http://dx.doi.org/10.1016/j.jallcom.2019.04.001]
[80]
Cao, R.; Zhu, Z.; Li, X.J.; Hu, X.; Song, H. Enhanced thermoelectric properties of the Lu-doped and CNT dispersed Bi2Te3 alloy. Appl. Phys., A Mater. Sci. Process., 2019, 125, 126.
[http://dx.doi.org/10.1007/s00339-019-2427-x]
[81]
Wu, H.J.; Yen, W.T. High thermoelectric performance in Cu-doped Bi2Te3 with carrier-type transition. Acta Mater., 2018, 157, 33-41.
[http://dx.doi.org/10.1016/j.actamat.2018.07.022]
[82]
Shi, X.; Yang, J.; Salvador, J.R.; Chi, M.; Cho, J.Y.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc., 2011, 133(20), 7837-7846.
[http://dx.doi.org/10.1021/ja111199y] [PMID: 21524125]
[83]
Choi, H.; Jeong, K.; Chae, J.; Park, H.; Baeck, J.; Kim, T.H.; Song, J.Y.; Park, J.; Jeong, K.H.; Cho, M.H. Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface. Nano Energy, 2018, 47, 374-384.
[http://dx.doi.org/10.1016/j.nanoen.2018.03.009]
[84]
Chandra, S.; Biswas, K. Realization of high thermoelectric figure of merit in solution synthesized 2D SnSe nanoplates via Ge alloying. J. Am. Chem. Soc., 2019, 141(15), 6141-6145.
[http://dx.doi.org/10.1021/jacs.9b01396] [PMID: 30946576]
[85]
Zhao, L.D.; Lo, S.H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496), 373-377.
[http://dx.doi.org/10.1038/nature13184] [PMID: 24740068]
[86]
Byeon, D.; Sobota, R.; Delime-Codrin, K.; Choi, S.; Hirata, K.; Adachi, M.; Kiyama, M.; Matsuura, T.; Yamamoto, Y.; Matsunami, M.; Takeuchi, T. Discovery of colossal Seebeck effect in metallic Cu2Se. Nat. Commun., 2019, 10(1), 72.
[http://dx.doi.org/10.1038/s41467-018-07877-5] [PMID: 30622265]
[87]
Li, D.; Qin, X.Y.; Liu, Y.F.; Song, C.J.; Wang, L.; Zhang, J.; Xin, H.X.; Guo, G.L.; Zou, T.H.; Sun, G.L.; Ren, B.J. Chemical synthesis of nanostructured Cu2Se with high thermoelectric performance. RSC Advances, 2014, 4, 8638-8644.
[http://dx.doi.org/10.1039/c3ra47015f]
[88]
Gahtori, B.; Bathula, S.; Tyagi, K.; Jayasimhadri, M.; Srivastava, A.K.; Singh, S.; Budhani, R.C.; Dhar, A. Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, 13, 36-46.
[http://dx.doi.org/10.1016/j.nanoen.2015.02.008]
[89]
Tafti, M.Y.; Ballikaya, S.; Khachatourian, A.M.; Noroozi, M.; Saleemi, M.; Han, L.; Nong, N.V.; Bailey, T.; Uher, C.; Toprak, M.S. Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesis. RSC Advances, 2016, 6, 111457-111464.
[http://dx.doi.org/10.1039/C6RA23005A]
[90]
Butt, S.; Farooq, M.U.; Mahmood, W.; Salam, S.; Sultan, M.; Basit, M.A.; Ma, J.; Lin, Y.; Nan, C.W. One-step rapid synthesis of Cu2Se with enhanced thermoelectric properties. J. Alloys Compd., 2019, 786, 557-564.
[http://dx.doi.org/10.1016/j.jallcom.2019.01.359]
[91]
Stobart, R.K.; Yang, Z. The development of skutterudite-based thermoelectric generators for vehicles SAE Technical Paper, 2018.
[http://dx.doi.org/10.4271/2018-01-0788]
[92]
Sakamoto, J.S.; Schock, H.; Caillat, T.; Fleurial, J.P.; Maloney, R.; Lyle, M.; Ruckle, T.; Timm, E.; Zhang, L. Skutterudite-based thermoelectric technology for waste heat recovery: progress towards a 1 kW generator. Sci. Adv. Mater., 2011, 3, 621-632.
[http://dx.doi.org/10.1166/sam.2011.1192]
[93]
Jang, H.; Kim, J.B.; Stanley, A.; Lee, S.; Kim, Y.; Park, S.H.; Oh, M.W. Fabrication of skutterudite-based tubular thermoelectric generator. Energies, 2020, 13, 1106.
[http://dx.doi.org/10.3390/en13051106]
[94]
García-Cañadas, J.; Powell, A.V.; Kaltzoglou, A.; Vaqueiro, P.; Min, G. Fabrication and evaluation of a skutterudite-based thermoelectric module for high-temperature applications. J. Electron. Mater., 2013, 42, 1369-1374.
[http://dx.doi.org/10.1007/s11664-012-2241-0]
[95]
Yusuf, A.; Ballikaya, S. Modelling a segmented skutterudite-based thermoelectric generator to achieve maximum conversion efficiency. Appl. Sci. (Basel), 2020, 10, 408.
[http://dx.doi.org/10.3390/app10010408]
[96]
Bartholomé, K.; Balke, B.; Zuckermann, D.; Köhne, M.; Müller, M.; Tarantik, K.; König, J. Thermoelectric modules based on half-Heusler materials produced in large quantities. J. Electron. Mater., 2014, 43, 1775-1781.
[http://dx.doi.org/10.1007/s11664-013-2863-x]
[97]
Casper, F.; Graf, T.; Chadov, S.; Balke, B.; Felser, C. Half-Heusler compounds: Novel materials for energy and spintronic applications. Semicond. Sci. Technol., 2012, 27, 063001.
[http://dx.doi.org/10.1088/0268-1242/27/6/063001]
[98]
Poon, S.J. Recent advances in thermoelectric performance of half-Heusler compounds. Metals (Basel), 2018, 8, 989.
[http://dx.doi.org/10.3390/met8120989]
[99]
Szybist, J.; Davis, S.; Thomas, J.; Kaul, B.C. Performance of a half-Heusler thermoelectric generator for automotive application SAE Technical Paper, 2018.
[http://dx.doi.org/10.4271/2018-01-0054]
[100]
Ramamurthi, P.V.; Nadar, E.R.S. An integrated SiGe based thermoelectric generator with parabolic trough collector using nano HTF for effective harvesting of solar radiant energy. J. Electron. Mater., 2019, 48, 7780-7791.
[http://dx.doi.org/10.1007/s11664-019-07613-9]
[101]
Yu, B.; Zebarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.; Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett., 2012, 12(4), 2077-2082.
[http://dx.doi.org/10.1021/nl3003045] [PMID: 22435933]
[102]
Romanjek, K.; Vesin, S.; Aixala, L.; Baffie, T.; Bernard-Granger, G.; Dufourcq, J. High-performance silicon-germanium-based thermoelectric modules for gas exhaust energy scavenging. J. Electron. Mater., 2015, 44, 2192-2202.
[http://dx.doi.org/10.1007/s11664-015-3761-1]
[103]
Zamanipour, Z.; Salahinejad, E.; Norouzzadeh, P.; Krasinski, J.S.; Tayebi, L.; Vashaee, D. The effect of phase heterogeneity on thermoelectric properties of nanostructured silicon germanium alloy. J. Appl. Phys., 2013, 114, 023705.
[http://dx.doi.org/10.1063/1.4813474]
[104]
Samarelli, A.; Llin, L.F.; Cecchi, S.; Frigerio, J.; Chrastina, D.; Isella, G.; Gubler, E.M.; Etzelstorfer, T.; Stangl, J.; Zhang, Y.; Weaver, J.M.R. Prospects for SiGe thermoelectric generators. Solid-State Electron., 2014, 98, 70-74.
[http://dx.doi.org/10.1016/j.sse.2014.04.003]
[105]
Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci., 2012, 170(1-2), 2-27.
[http://dx.doi.org/10.1016/j.cis.2011.11.001] [PMID: 22154364]
[106]
Eaglesham, D.J.; Cerullo, M. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett., 1990, 64(16), 1943-1946.
[http://dx.doi.org/10.1103/PhysRevLett.64.1943] [PMID: 10041534]
[107]
Leonard, D.; Krishnamurthy, M.; Reaves, C.M.; Denbaars, S.P.; Petroff, P.M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett., 1993, 63, 3203-3205.
[http://dx.doi.org/10.1063/1.110199]
[108]
Mamur, H.; Bhuiyan, M.R.A.; Korkmaz, F.; Nil, M. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sustain. Energy Rev., 2018, 82, 4159-4169.
[http://dx.doi.org/10.1016/j.rser.2017.10.112]
[109]
Bhuiyan, M.R.A.; Miah, M.A.H.; Begum, J. Substrate temperature effect on the structural and optical properties of ZnSe thin films. J. Bangladesh Acad. Sci., 2012, 36, 233-240.
[http://dx.doi.org/10.3329/jbas.v36i2.12969]
[110]
Bhuiyan, M.R.A.; Saha, D.K.; Hasan, S.M. Structural and electrical properties of polycrystalline AgxGa2-xSe2 (0.4≤ x≤ 1.6) thin films. Indian J. Pure Appl. Phy., 2009, 47, 787-792.http://nopr.niscair.res.in/handle/123456789/6196
[111]
Bhuiyan, M.R.A.; Quadir, L.; Hasan, S.M. Growth of AgGaSe2 thin films by a stacked elemental layer deposition technique. Nucl. Sci. Appl., 2005, 14, 73-77.
[112]
Hoq, E.; Bhuiyan, M.R.A.; Begum, J. Influence of thickness on the optical properties of Sb doped ZnO thin films. J. Bangladesh Acad. Sci., 2014, 38, 93-96.
[http://dx.doi.org/10.3329/jbas.v38i1.20217]
[113]
Bhuiyan, M.R.A.; Mamur, H. Bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. ISVOS J., 2019, 3, 1-7.
[114]
Mamur, H.; Bhuiyan, M.R.A. Synthesis and characterization of Se doped Bi2Te3 nanocrystalline materials. Karaelmas Sci. Eng. J., 2019, 9, 11-21.
[http://dx.doi.org/ 10.7212/zkufbd.v9i1.1215]
[115]
Mamur, H.; Dilmac, O.F.; Korucu, H.; Bhuiyan, M.R.A. Cost-effective chemical solution synthesis of bismuth telluride nanostructure for thermoelectric applications. Micro & Nano Lett., 2018, 13, 1117-1120.
[http://dx.doi.org/10.1049/mnl.2018.0116]
[116]
Mamur, H.; Bhuiyan, M.R.A. Characterization of Bi2Te3 nanostructure by using a cost–effective chemical solution route. Iranian J. Chem. Chem. Eng., 2020, 39, 23-33.
[http://dx.doi.org/10.30492/IJCCE.2020.34753]
[117]
Gaurav, K.; Pandey, S.K. Efficiency calculation of a thermoelectric generator for investigating the applicability of various thermoelectric materials. J. Renew. Sustain. Energy, 2017, 9, 014701.
[http://dx.doi.org/10.1063/1.4976125]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy