Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Antibiofilm Activity of ZnO/Zeolite Nanocomposite (ZnO/ZeoNC) Against Klebsiella pneumoniae and its Biocompatibility in an Animal Model

Author(s): Alireza Partoazar, Fatemeh Rahmani Bideskan, Nasrin Takzaree and Mohammad Mehdi Soltan Dallal*

Volume 19, Issue 2, 2021

Published on: 19 August, 2020

Page: [174 - 181] Pages: 8

DOI: 10.2174/2211352518999200819161229

Price: $65

Abstract

Background: Infectious diseases, whether intracellular or extracellular infections, biofilm- mediated, or medical device-associated, have always been a global public health problem, causing millions of deaths each year. The aim of this study was to evaluate the antibiofilm activity of ZnO/ZeoNC against K. pneumoniae along with the biocompatibility of the nanocomposite in vivo model.

Objective: The formation of biofilm by K. pneumoniae in the catheter-associated urinary tract causes a nosocomial infection. In this regard, antimicrobial nanomaterials have emerged as potent effective agents against biofilm formation. Nevertheless, nanoparticles have already been a challenge with possible side effects such as inflammation. The ZnO/ZeoNC may exhibit anti-biofilm property with minimal adverse effects.

Methods: The biofilm formation of K. pneumoniae strains was exposed to ZnO/ZeoNC and then SEM imaging was performed for morphological investigation of bacteria in biofilm state. The response to ZnO/ZeoNC embedded polyethylene tube of the tissue of mice was also analyzed during the 30-day experiment.

Results: The results of this study showed that ZnO/ZeoNC has significant antibiofilm activity against K. pneumoniae strains in its sublethal doses. The ZnO/ZeoNC also caused deformation in K. pneumoniae biofilm. In addition, ZnO/ZeoNC also reduced inflammatory response in cell tissue of rats subjected to polyethylene tube.

Conclusion: ZnO/ZeoNC can be used potentially against the infections caused by K. pneumonia biofilm without any irritability on the biotic surface such as the urinary tract.

Keywords: Anti-biofilm, nosocomial infection, nanoparticle, inflammation, urinary tract, biocompatibility.

Graphical Abstract
[1]
Khan, S.T.; Musarrat, J.; Al-Khedhairy, A.A. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. Colloids Surf. B Biointerfaces, 2016, 146, 70-83.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.046] [PMID: 27259161]
[2]
Alcántar-Curiel, M.D.; Ledezma-Escalante, C.A.; Jarillo-Quijada, M.D.; Gayosso-Vázquez, C.; Morfín-Otero, R.; Rodríguez-Noriega, E.; Cedillo-Ramírez, M.L.; Santos-Preciado, J.I.; Girón, J.A. Association of Antibiotic Resistance, Cell Adherence, and Biofilm Production with the Endemicity of Nosocomial Klebsiella pneumoniae. BioMed Res. Int., 2018, 20187012958
[http://dx.doi.org/10.1155/2018/7012958] [PMID: 30345305]
[3]
Vyas, N.; Sammons, R.L.; Addison, O.; Dehghani, H.; Walmsley, A.D. A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis. Sci. Rep., 2016, 6, 32694.
[http://dx.doi.org/10.1038/srep32694] [PMID: 27601281]
[4]
Cai, T.; Caola, I.; Tessarolo, F.; Piccoli, F.; D’Elia, C.; Caciagli, P.; Nollo, G.; Malossini, G.; Nesi, G.; Mazzoli, S.; Bartoletti, R. Solidago, orthosiphon, birch and cranberry extracts can decrease microbial colonization and biofilm development in indwelling urinary catheter: a microbiologic and ultrastructural pilot study. World J. Urol., 2014, 32(4), 1007-1014.
[http://dx.doi.org/10.1007/s00345-013-1173-5] [PMID: 24092275]
[5]
Bandeira, M.; Borges, V.; Gomes, J.P.; Duarte, A.; Jordao, L. Insights on Klebsiella pneumoniae Biofilms Assembled on Different Surfaces Using Phenotypic and Genotypic Approaches. Microorganisms, 2017, 5(2)E16
[http://dx.doi.org/10.3390/microorganisms5020016] [PMID: 28368366]
[6]
Tendolkar, P.M.; Baghdayan, A.S.; Gilmore, M.S.; Shankar, N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect. Immun., 2004, 72(10), 6032-6039.
[http://dx.doi.org/10.1128/IAI.72.10.6032-6039.2004] [PMID: 15385507]
[7]
Kim, M.H. Nanoparticle-Based Therapies for Wound Biofilm Infection: Opportunities and Challenges. IEEE Trans. Nanobioscience, 2016, 15(3), 294-304.
[http://dx.doi.org/10.1109/TNB.2016.2527600] [PMID: 26955044]
[8]
Hemeg, H.A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomedicine, 2017, 12, 8211-8225.
[http://dx.doi.org/10.2147/IJN.S132163] [PMID: 29184409]
[9]
Sharma, P.; Pant, S.; Dave, V.; Tak, K.; Sadhu, V.; Reddy, K.R. Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J. Microbiol. Methods, 2019, 160, 107-116.
[http://dx.doi.org/10.1016/j.mimet.2019.03.007] [PMID: 30871999]
[10]
Lee, J.H.; Kim, Y.G.; Cho, M.H.; Lee, J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol. Res., 2014, 169(12), 888-896.
[http://dx.doi.org/10.1016/j.micres.2014.05.005] [PMID: 24958247]
[11]
Bhattacharyya, P.; Agarwal, B.; Goswami, M.; Maiti, D.; Baruah, S.; Tribedi, P. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie van Leeuwenhoek, 2018, 111(1), 89-99.
[http://dx.doi.org/10.1007/s10482-017-0930-7] [PMID: 28889242]
[12]
Jesline, A.; John, N.P.; Narayanan, P.; Vani, C.; Murugan, S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl. Nanosci., 2015, 5(2), 157-162.
[http://dx.doi.org/10.1007/s13204-014-0301-x]
[13]
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[14]
Kianvash, N.; Bahador, A.; Pourhajibagher, M.; Ghafari, H.; Nikoui, V.; Rezayat, S.M.; Dehpour, A.R.; Partoazar, A. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: biocompatibility, wound healing, and anti-bacterial effects. Drug Deliv. Transl. Res., 2017, 7(5), 654-663.
[http://dx.doi.org/10.1007/s13346-017-0405-4] [PMID: 28707264]
[15]
Choi, J.; Kim, H.; Kim, P.; Jo, E.; Kim, H.M.; Lee, M.Y.; Jin, S.M.; Park, K. Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration. J. Toxicol. Environ. Health A, 2015, 78(4), 226-243.
[http://dx.doi.org/10.1080/15287394.2014.949949] [PMID: 25674826]
[16]
Nagy, A.; Harrison, A.; Sabbani, S.; Munson, R.S., Jr; Dutta, P.K.; Waldman, W.J. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int. J. Nanomedicine, 2011, 6, 1833-1852.
[PMID: 21931480]
[17]
Alswat, A.A.; Ahmad, M.B.; Saleh, T.A.; Hussein, M.Z.B.; Ibrahim, N.A. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater. Sci. Eng. C, 2016, 68, 505-511.
[http://dx.doi.org/10.1016/j.msec.2016.06.028] [PMID: 27524047]
[18]
Iskander, A.; Khald, E.; Sheta, A. Zinc and manganese sorption behavior by natural zeolite and bentonite. Ann. Agric. Sci., 2011, 56(1), 43-48.
[http://dx.doi.org/10.1016/j.aoas.2011.05.002]
[19]
Spanakis, M.; Bouropoulos, N.; Theodoropoulos, D.; Sygellou, L.; Ewart, S.; Moschovi, A.M.; Siokou, A.; Niopas, I.; Kachrimanis, K.; Nikolakis, V.; Cox, P.A.; Vizirianakis, I.S.; Fatouros, D.G. Controlled release of 5-fluorouracil from microporous zeolites. Nanomedicine (Lond.), 2014, 10(1), 197-205.
[http://dx.doi.org/10.1016/j.nano.2013.06.016] [PMID: 23916887]
[20]
Malekshah, R.E.; Mahjub, R.; Rastgarpanah, M.; Ghorbani, M.; Partoazar, A.R.; Mehr, S.E.; Dehpour, A.R.; Dorkoosh, F.A. Effect of zeolite nano-materials and artichoke (Cynara scolymus L.) leaf extract on increase in urinary clearance of systematically absorbed nicotine. Arzneimittelforschung, 2012, 62(12), 650-654.
[http://dx.doi.org/10.1055/s-0032-1330018] [PMID: 23196970]
[21]
Partoazar, A.; Talaei, N.; Bahador, A.; Pourhajibagher, M.; Dehpour, S.; Sadati, M.; Bakhtiarian, A. Antibiofilm activity of natural zeolite supported NanoZnO: inhibition of Esp gene expression of Enterococcus faecalis. Nanomedicine (Lond.), 2019, 14(6), 675-687.
[http://dx.doi.org/10.2217/nnm-2018-0173] [PMID: 30702017]
[22]
Chhibber, S.; Gondil, V.S.; Sharma, S.; Kumar, M.; Wangoo, N.; Sharma, R.K. A Novel Approach for Combating Klebsiella pneumoniae Biofilm Using Histidine Functionalized Silver Nanoparticles. Front. Microbiol., 2017, 8, 1104.
[http://dx.doi.org/10.3389/fmicb.2017.01104] [PMID: 28670301]
[23]
Chiniforush, N.; Pourhajibagher, M.; Parker, S.; Shahabi, S.; Bahador, A. The in vitro effect of antimicrobial photodynamic therapy with indocyanine green on Enterococcus faecalis: Influence of a washing vs non-washing procedure. Photodiagn. Photodyn. Ther., 2016, 16, 119-123.
[http://dx.doi.org/10.1016/j.pdpdt.2016.09.007] [PMID: 27640733]
[24]
Gupta, A. Biofilm quantification and comparative analysis of MIC (Minimum Inhibitory Concentration) & MBIC (Minimum Biofilm Inhibitory Concentration) value for different antibiotics against E. coli. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4(2), 198-224.
[25]
Scarparo, R.K.; Grecca, F.S.; Fachin, E.V. Analysis of tissue reactions to methacrylate resin-based, epoxy resin-based, and zinc oxide-eugenol endodontic sealers. J. Endod., 2009, 35(2), 229-232.
[http://dx.doi.org/10.1016/j.joen.2008.10.025] [PMID: 19166779]
[26]
Partoazar, A.; Bideskan, F.R.; Partoazar, M.; Talaei, N.; Dallal, M.M.S. Inhibition of Biofilm Formation of Staphylococcus aureus Strains Through ZnO/Zeolite Nanocomposite and Its Cytotoxicity Evaluation. Bionanoscience, 2020, 1-7.
[http://dx.doi.org/10.1007/s12668-020-00761-x]
[27]
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[28]
Shalom, Y.; Perelshtein, I.; Perkas, N.; Gedanken, A.; Banin, E. Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections. Nano Res., 2017, 10(2), 520-533.
[http://dx.doi.org/10.1007/s12274-016-1310-8]
[29]
Siddiqi, K.S.; Ur Rahman, A. Tajuddin; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett., 2018, 13(1), 141.
[http://dx.doi.org/10.1186/s11671-018-2532-3] [PMID: 29740719]
[30]
de Gennaro, B.; Catalanotti, L.; Cappelletti, P.; Langella, A.; Mercurio, M.; Serri, C.; Biondi, M.; Mayol, L. Surface modified natural zeolite as a carrier for sustained diclofenac release: A preliminary feasibility study. Colloids Surf. B Biointerfaces, 2015, 130, 101-109.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.052] [PMID: 25919666]
[31]
Wi, Y.M.; Patel, R. Understanding Biofilms and Novel Approaches to the Diagnosis, Prevention, and Treatment of Medical Device-Associated Infections. Infect. Dis. Clin. North Am., 2018, 32(4), 915-929.
[http://dx.doi.org/10.1016/j.idc.2018.06.009] [PMID: 30241715]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy