Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design, Synthesis, Pharmacological Evaluation, In silico Modeling, Prediction of Toxicity and Metabolism Studies of Novel 1-(substituted)-2-methyl- 3-(4-oxo-2-phenyl quinazolin-3(4H)-yl)isothioureas

Author(s): Mohaideen Thasthagir Sulthana, Veerachamy Alagarsamy* and Krishnan Chitra

Volume 17, Issue 4, 2021

Published on: 17 August, 2020

Page: [352 - 368] Pages: 17

DOI: 10.2174/1573406416666200817153033

Price: $65

Abstract

Background: Although exhaustive efforts to prevent and treat tuberculosis (TB) have been made, the problem still continues due to multi-drug-resistant (MDR) and extensively drugresistant TB (XDR-TB). It clearly highlights the urgent need to develop novel “druggable” molecules for the co-infection treatment and strains of MDR-TB and XDR-TB.

Objective: In this approach, a hybrid molecule was created by merging two or more pharmacophores. The active site of targets may be addressed by each of the pharmacophores and proffers the opportunity for selectivity. In addition, it also reduces undesirable side effects and drug-resistance.

Methods: In this study, a novel quinazolinone analog was designed and synthesized by substituting thiourea nucleus and phenyl ring at N-3 and C-2 position of quinazoline ring, respectively. All title compounds were tested for antitubercular activity by in vitro M. tuberculosis and anti-human immunodeficiency virus (HIV) activity by MT-4 cell assay method. The agar dilution method was used to test the antibacterial potency of entire prepared derivatives against various strains of grampositive and gram-negative microorganisms.

Results: The title compounds, 1-(substituted)-2-methyl-3-(4-oxo-2-phenyl quinazolin-3(4H)-yl) isothioureas (QTS1 – QTS15) were synthesized by the reaction between key intermediate 3-amino- 2-phenylquinazolin-4(3H)-one with various alkyl/aryl isothiocyanates followed by methylation with dimethyl sulphate. Among the series, compound 1-(3-chlorophenyl)-2-methyl-3-(4-oxo-2-phenyl quinazolin- 3(4H)-yl) isothioureas (QTS14) showed the highest potency against B. subtilis, K. pneumonia and S. aureus at 1.6 μg/mL. The compound QTS14 exhibited the most potent antitubercular activity at the MIC of 0.78 μg/mL and anti-HIV activity at 0.97 μg/mL against HIV1 and HIV2.

Conclusion: The results obtained from this study confirm that the synthesized and biologically evaluated quinazolines showed promising antimicrobial, antitubercular and anti-HIV activities. The new scaffolds proffer a plausible lead for further development and optimization of novel antitubercular and anti-HIV drugs.

Keywords: Quinazoline, graph theory analysis, substituted thiosemicarbazide, antibacterial activity, antitubercular activity, anti-HIV activity.

Graphical Abstract
[1]
World health organization, Global tuberculosis report 2018 World health organization: Geneva Switzerland, 2018.
[2]
Balcha, T.T.; Skogmar, S.; Sturegård, E.; Björkman, P.; Winqvist, N. Outcome of tuberculosis treatment in HIV-positive adults diagnosed through active versus passive case-finding. Glob. Health Action, 2015, 8, 27048-27049.
[http://dx.doi.org/10.3402/gha.v8.27048] [PMID: 25819037]
[3]
Reid, M.J.; Shah, N.S. Approaches to tuberculosis screening and diagnosis in people with HIV in resource-limited settings. Lancet Infect. Dis., 2009, 9(3), 173-184.
[http://dx.doi.org/10.1016/S1473-3099(09)70043-X] [PMID: 19246021]
[4]
World Health Organization Tuberculosis. https://www.who.int/tb/en/
[5]
Rodrigues, L.; Cravo, P.; Viveiros, M. Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert Rev. Anti Infect. Ther., 2020, 20, 1-17.
[http://dx.doi.org/10.1080/14787210.2020.1760845] [PMID: 32434397]
[6]
Chisompola, N.K.; Streicher, E.M.; Muchemwa, C.M.K.; Warren, R.M.; Sampson, S.L. Molecular epidemiology of drug resistant Mycobacterium tuberculosis in Africa: a systematic review. BMC Infect. Dis., 2020, 20(1), 344.
[http://dx.doi.org/10.1186/s12879-020-05031-5] [PMID: 32404119]
[7]
Alagarsamy, V.; Chitra, K.; Saravanan, G.; Solomon, V.R.; Sulthana, M.T.; Narendhar, B. An overview of quinazolines: Pharmacological significance and recent developments. Eur. J. Med. Chem., 2018, 151, 628-685.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.076] [PMID: 29656203]
[8]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A.; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: A comparative patent review (2011-2016). Expert Opin. Ther. Pat., 2018, 28, 281-297.
[9]
Pavan, F.R. da S Maia, P.I.; Leite, S.R.; Deflon, V.M.; Batista, A.A.; Sato, D.N.; Franzblau, S.G.; Leite, C.Q.; Leite, C.Q. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti-Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem., 2010, 45(5), 1898-1905.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.028] [PMID: 20163897]
[10]
Güzel, O.; Karali, N.; Salman, A. Synthesis and antituberculosis activity of 5-methyl/trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives. Bioorg. Med. Chem., 2008, 16(19), 8976-8987.
[http://dx.doi.org/10.1016/j.bmc.2008.08.050] [PMID: 18804379]
[11]
Karali, N.; Gürsoy, A.; Kandemirli, F.; Shvets, N.; Kaynak, F.B.; Ozbey, S.; Kovalishyn, V.; Dimoglo, A. Synthesis and structure-antituberculosis activity relationship of 1H-indole-2,3-dione derivatives. Bioorg. Med. Chem., 2007, 15(17), 5888-5904.
[http://dx.doi.org/10.1016/j.bmc.2007.05.063] [PMID: 17561405]
[12]
Sriram, D.; Yogeeswari, P.; Thirumurugan, R.; Pavana, R.K. Discovery of new antitubercular oxazolyl thiosemicarbazones. J. Med. Chem., 2006, 49(12), 3448-3450.
[http://dx.doi.org/10.1021/jm060339h] [PMID: 16759086]
[13]
Sriram, D.; Yogeeswari, P.; Dhakla, P.; Senthilkumar, P.; Banerjee, D.; Manjashetty, T.H. 5-Nitrofuran-2-yl derivatives: synthesis and inhibitory activities against growing and dormant mycobacterium species. Bioorg. Med. Chem. Lett., 2009, 19(4), 1152-1154.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.088] [PMID: 19131245]
[14]
Saripinar, E.; Güzel, Y.; Patat, S.; Yildirim, I.; Akçamur, Y.; Dimoglo, A.S. Electron-topological investigation of structure-antitubercular activity relationship of thiosemicarbazone derivatives. Arzneimittelforschung, 1996, 46(8), 824-828.
[PMID: 9125287]
[15]
Milczarska, B.; Foks, H.; Sokołowska, J.; Janowiec, M.; Zwolska, Z.; Andrzejczyk, Z. Studies on pyrazine derivatives. XXXIII. Synthesis and tuberculostatic activity of 1-[1-(2-pyrazinyl)-ethyl]-4-N-substituted thiosemicarbazide derivatives. Acta Pol. Pharm., 1999, 56(2), 121-126.
[PMID: 10635356]
[16]
Turan-Zitouni, G.; Ozdemir, A.; Kaplancikli, Z.A.; Benkli, K.; Chevallet, P.; Akalin, G. Synthesis and antituberculosis activity of new thiazolylhydrazone derivatives. Eur. J. Med. Chem., 2008, 43(5), 981-985.
[http://dx.doi.org/10.1016/j.ejmech.2007.07.001] [PMID: 17719146]
[17]
Pandeya, S.N.; Smitha, S.; Jyoti, M.; Sridhar, S.K. Biological activities of isatin and its derivatives. Acta Pharm., 2005, 55(1), 27-46.
[PMID: 15907222]
[18]
Webb, M.E.; Smith, A.G.; Abell, C. Biosynthesis of pantothenate. Nat. Prod. Rep., 2004, 21(6), 695-721.
[http://dx.doi.org/10.1039/b316419p] [PMID: 15565250]
[19]
Mdluli, K.; Spigelman, M. Novel targets for tuberculosis drug discovery. Curr. Opin. Pharmacol., 2006, 6(5), 459-467.
[http://dx.doi.org/10.1016/j.coph.2006.06.004] [PMID: 16904376]
[20]
Grassl, S.M. Human placental brush-border membrane Na(+)-pantothenate cotransport. J. Biol. Chem., 1992, 267(32), 22902-22906.
[PMID: 1429639]
[21]
Vallari, D.S.; Rock, C.O. Isolation and characterization of Escherichia coli pantothenate permease (panF) mutants. J. Bacteriol., 1985, 164(1), 136-142.
[http://dx.doi.org/10.1128/JB.164.1.136-142.1985] [PMID: 2995306]
[22]
Meunier, B. Hybrid molecules with a dual mode of action: dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[http://dx.doi.org/10.1021/ar7000843] [PMID: 17665872]
[23]
Zhang, Y.Y.; Gao, S.; Liu, Y.X.; Wang, C.; Jiang, W.; Zhao, L.X.; Fu, Y.; Ye, F. Design, Synthesis, and Biological Activity of Novel Diazabicyclo Derivatives as Safeners. J. Agric. Food Chem., 2020, 68(11), 3403-3414.
[http://dx.doi.org/10.1021/acs.jafc.9b07449] [PMID: 32101688]
[24]
Fu, Y.; Zhang, D.; Kang, T.; Guo, Y.Y.; Chen, W.G.; Gao, S.; Ye, F. Fragment splicing-based design, synthesis and safener activity of novel substituted phenyl oxazole derivatives. Bioorg. Med. Chem. Lett., 2019, 29(4), 570-576.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.061] [PMID: 30606701]
[25]
Alagarsamy, V.; Raja Solomon, V.; Sheorey, R.V.; Jayakumar, R. 3-(3-ethylphenyl)-2-substituted hydrazino-3H-quinazolin-4-one derivatives: new class of analgesic and anti-inflammatory agents. Chem. Biol. Drug Des., 2009, 73(4), 471-479.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00794.x] [PMID: 19291107]
[26]
Alagarsamy, V.; Appani, R.; Sulthana, M.T.; Narendar, B.; Solomon, V.R. Design, synthesis and antimicrobial activities of 1-(4-oxo-3-(4-fluorophenyl)-3H-quinazolin-2-yl)-4-(substituted) thiosemicarbazide derivatives. J. Chil. Chem. Soc., 2016, 61, 2856-2860.
[http://dx.doi.org/10.4067/S0717-97072016000200002]
[27]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[28]
Saravanan, G.; Panneerselvam, T.; Alagarsamy, V.; Kunjiappan, S.; Parasuraman, P.; Murugan, I.; Dinesh Kumar, P. Design, graph theoretical analysis, density functionality theories, Insilico modeling, synthesis, characterization and biological activities of novel thiazole fused quinazolinone derivatives. Drug Dev. Res., 2018, 79(6), 260-274.
[http://dx.doi.org/10.1002/ddr.21460] [PMID: 30244475]
[29]
Saravanan, G.; Selvam, T.P.; Alagarsamy, V.; Kunjiappan, S.; Joshi, S.D.; Indhumathy, M.; Kumar, P.D. Graph theoretical analysis, in silico modeling, synthesis, anti-microbial and anti-TB evaluation of novel quinoxaline derivatives. Drug Res. (Stuttg.), 2018, 68(5), 250-262.
[http://dx.doi.org/10.1055/s-0043-120198] [PMID: 29065435]
[30]
Saravanan, G.; Panneerselvam, T.; Kunjiappan, S.; Parasuraman, P.; Alagarsamy, V.; Udayakumar, P.; Soundararajan, M.; Joshi, S.D.; Ramalingam, S.; Ammunje, D.N. Graph theoretical analysis, in silico modeling, prediction of toxicity, metabolism and synthesis of novel 2-(methyl/phenyl)-3-(4-(5-substituted-1,3,4-oxadiazol-2-yl) phenyl) quinazolin-4(3H)-ones as NMDA receptor inhibitor. Drug Dev. Res., 2019, 80(3), 368-385.
[http://dx.doi.org/10.1002/ddr.21511] [PMID: 30609096]
[31]
İnkaya, E.; Dinçer, M.; Ekici, Ö.; Cukurovali, A.N. ′-(2-methoxy-benzylidene)-N-[4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-chloro-acetic hydrazide: X-ray structure, spectroscopic characterization and DFT studies. J. Mol. Struct., 2012, 1026, 117-126.
[http://dx.doi.org/10.1016/j.molstruc.2012.05.059]
[32]
Güntepe, F.; Saraçoğlu, H.; Çalışkan, N.; Yüksektepe, Ç.; Cukurovali, A. Synthesis, molecular and crystal structure analysis of 2-bromo-4-chloro-6-{[4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenol by experimental methods and theoretical calculations. J. Mol. Struct., 2012, 1022, 204-210.
[http://dx.doi.org/10.1016/j.molstruc.2012.05.002]
[33]
Rydberg, P.; Gloriam, D.E.; Olsen, L. The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics, 2010, 26(23), 2988-2989.
[http://dx.doi.org/10.1093/bioinformatics/btq584] [PMID: 20947523]
[34]
Sriram, D.; Yogeeswari, P.; Basha, J.S.; Radha, D.R.; Nagaraja, V. Synthesis and antimycobacterial evaluation of various 7-substituted ciprofloxacin derivatives. Bioorg. Med. Chem., 2005, 13(20), 5774-5778.
[http://dx.doi.org/10.1016/j.bmc.2005.05.063] [PMID: 16039859]
[35]
Shanmugavelan, P.; Nagarajan, S.; Sathishkumar, M.; Ponnuswamy, A.; Yogeeswari, P.; Sriram, D. Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2011, 21(24), 7273-7276.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.048] [PMID: 22061642]
[36]
Kunes, J.; Bazant, J.; Pour, M.; Waisser, K.; Slosárek, M.; Janota, J. Quinazoline derivatives with antitubercular activity. Farmaco, 2000, 55(11-12), 725-729.
[http://dx.doi.org/10.1016/S0014-827X(00)00100-2] [PMID: 11204949]
[37]
Pauwels, R.; De Clercq, E.; Desmyter, J.; Balzarini, P.; Goubabu, P.; Herdesijin, P.; Vanderhaughe, H.; Vandeputle, M.J. Sensitive and rapid assay on MT-4 cells for detection of antiviral compounds against the AIDS virus. Virol. Methods, 1987, 16, 171-185.
[http://dx.doi.org/10.1016/0166-0934(87)90002-4]
[38]
Barry, A. Antibiotics in Laboratory Medicine. William and Wilkins, 5th ed; Baltimore, MD, 1991 p. 1.
[39]
Pandeya, S.N.; Sriram, D.; Nath, G.; De Clercq, E. Synthesis and antimicrobial activity of Schiff and Mannich bases of isatin and its derivatives with pyrimidine. Farmaco, 1999, 54(9), 624-628.
[http://dx.doi.org/10.1016/S0014-827X(99)00075-0] [PMID: 10555264]
[40]
Saghyan, A.S.; Simonyan, H.M.; Petrosyan, S.G.; Geolchanyan, A.V.; Roviello, G.N.; Musumeci, D.; Roviello, V. Thiophenyl-substituted triazolyl-thione L-alanine: asymmetric synthesis, aggregation and biological properties. Amino Acids, 2014, 46(10), 2325-2332.
[http://dx.doi.org/10.1007/s00726-014-1782-3] [PMID: 24952728]
[41]
Fik-Jaskółka, M.A.; Mkrtchyan, A.F.; Saghyan, A.S.; Palumbo, R.; Belter, A.; Hayriyan, L.A.; Simonyan, H.; Roviello, V.; Roviello, G.N. Spectroscopic and SEM evidences for G4-DNA binding by a synthetic alkyne-containing amino acid with anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229117884
[http://dx.doi.org/10.1016/j.saa.2019.117884] [PMID: 31927477]
[42]
Vicidomini, C.; Cioffi, F.; Broersen, K.; Roviello, V.; Riccardi, C.; Montesarchio, D.; Capasso, D.; Di Gaetano, S.; Musumeci, D.; Roviello, G.N. Benzodifurans for biomedical applications: BZ4, a selective anti-proliferative and anti-amyloid lead compound. Future Med. Chem., 2019, Online ahead of print.,
[http://dx.doi.org/10.4155/fmc-2018-0473] [PMID: 30801198]
[43]
Garofalo, A.; Goossens, L.; Baldeyrou, B.; Lemoine, A.; Ravez, S.; Six, P.; David-Cordonnier, M.H.; Bonte, J.P.; Depreux, P.; Lansiaux, A.; Goossens, J.F. Design, synthesis, and DNA-binding of N-alkyl(anilino)quinazoline derivatives. J. Med. Chem., 2010, 53(22), 8089-8103.
[http://dx.doi.org/10.1021/jm1009605] [PMID: 21033670]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy