Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Size Effects of Vacancy Formation and Oxygen Adsorption on Gas- Sensitive Tin Oxide Semiconductor: A First Principle Study

Author(s): Jianqiao Liu*, Liting Wu, Fengjiao Gao, Wusong Hong, Guohua Jin and Zhaoxia Zhai

Volume 17, Issue 2, 2021

Published on: 17 August, 2020

Page: [327 - 337] Pages: 11

DOI: 10.2174/1573413716999200817124021

Abstract

Background: Oxygen behaviors play essential roles in the receptor function in the gassensing mechanism of SnO2 semiconductors, the size effect of which is a fundamental phenomenon for the development of gas sensors.

Objective: This article discusses the size effect on the oxygen behaviors in the gas-sensitive SnO2 semiconductor.

Methods: The first principle calculation was used to investigate size effect on the formation of oxygen vacancies and adsorption of oxygen species in the SnO2 semiconductor. The electrical characteristics of conductivity, bandgap, and electron transfer in SnO2 crystallites were analyzed by the density of states and the Mulliken population.

Results: The defect of surface bridge oxygen has the lowest formation energy, and it is most likely to form in the SnO2 semiconductor. The adsorption energies for O- and O2 - are from 1.717 to 3.791 eV and 2.371 to 4.683 eV, respectively. The Mulliken population distribution illustrates that O 2p orbit captures the electrons from the orbits of Sn 5s and 5p as well as O 2s.

Conclusion: The formation energies of oxygen defects in complete and defective SnO2 super cells are of positive correlation with crystallite size. The carrier concentration and conductivity are improved by the incremental crystallite size. The adsorption energies of O- and O2 - species on defective SnO2 super cells increase with crystallite size. With the assistance of connecting Sn atoms, the adsorbates of O- and O2 - are able to capture electrons from the inner region of crystallites, resulting in an expansion of depletion layer.

Keywords: First principle calculation, tin oxide, size effect, oxygen vacancy, surface adsorption, charge transfer.

Graphical Abstract
[1]
Han, C-H.; Hong, D-W.; Han, S-D.; Gwak, J.; Singh, K.C. Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED. Sens. Actuators B Chem., 2007, 125, 224-228.
[http://dx.doi.org/10.1016/j.snb.2007.02.017]
[2]
Takeguchi, T.; Takeoh, O.; Aoyama, S.; Ueda, J.; Kikuchi, R.; Eguchi, K. Strong chemical interaction between PdO and SnO2 and the influence on catalytic combustion of methane. Appl. Catal., A, 2003, 252, 205-214.
[http://dx.doi.org/10.1016/S0926-860X(03)00418-6]
[3]
Fergus, J.W. Materials for high temperature electrochemical NOx gas sensors. Sens. Actuators B Chem., 2007, 121, 652-663.
[http://dx.doi.org/10.1016/j.snb.2006.04.077]
[4]
Park, C.O.; Fergus, J.W.; Miura, N.; Park, J.; Choi, A. Solid-state electrochemical gas sensors. Ionics, 2009, 15, 261-284.
[http://dx.doi.org/10.1007/s11581-008-0300-6]
[5]
Sadaoka, Y.; Nakayama, S.; Sakai, Y.; Wake, M. Preparation of K2O-Sm2O3-nSiO2-based solid-state electrolyte and its application to electrochemical CO2 gas sensor. Sens. Actuators B Chem., 1995, 24, 282-286.
[http://dx.doi.org/10.1016/0925-4005(95)85061-9]
[6]
Flores, I.C.; Freitas, J.N.D.; Longo, C.; Paoli, M.A.D.; Winnischofer, H.; Nogueira, A.F. Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte. J. Photochem. Photobiol. Chem., 2007, 189, 153-160.
[http://dx.doi.org/10.1016/j.jphotochem.2007.01.023]
[7]
Liu, J.; Zhai, Z.; Jin, G.; Li, Y.; Monica, F.F.; Liu, X. Simulation of the grain size effect in gas-sensitive SnO2 thin films using the oxygen vacancy gradient distribution model. Electron. Mater. Lett., 2015, 11, 34-40.
[http://dx.doi.org/10.1007/s13391-014-4176-5]
[8]
Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B, 2018, 229, 206-217.
[http://dx.doi.org/10.1016/j.mseb.2017.12.036]
[9]
Wagh, M.S.; Patil, L.A.; Seth, T.; Amalnerkar, D.P. Surface cupricated SnO2-ZnO thick films as a H2S gas sensor. Mater. Chem. Phys., 2004, 84, 228-233.
[http://dx.doi.org/10.1016/S0254-0584(03)00232-3]
[10]
Gong, S.; Liu, J.; Xia, J.; Quan, L.; Liu, H.; Zhou, D. Gas sensing characteristics of SnO2 thin films and analyses of sensor response by the gas diffusion theory. Mater. Sci. Eng. B, 2009, 164, 85-90.
[http://dx.doi.org/10.1016/j.mseb.2009.07.008]
[11]
Liu, J.; Xue, W.; Jin, G.; Zhai, Z.; Lv, J.; Hong, W.; Chen, Y. Preparation of tin oxide quantum dots in aqueous solution and applications in semiconductor gas sensors. Nanomaterials (Basel), 2019, 9(2), 240.
[http://dx.doi.org/10.3390/nano9020240 PMID: 30754695]
[12]
Oviedo, J.; Gillan, M.J. Reconstructions of strongly reduced SnO2(110) studied by first-principles methods. Surf. Sci., 2002, 513, 26-36.
[http://dx.doi.org/10.1016/S0039-6028(02)01725-9]
[13]
Ágoston, P.; Albe, K. Disordered reconstructions of the reduced SnO2-(110) surface. Surf. Sci., 2011, 605, 714-722.
[http://dx.doi.org/10.1016/j.susc.2011.01.007]
[14]
Lu, Z.; Ma, D.; Yang, L.; Wang, X.; Xu, G.; Yang, Z. Direct CO oxidation by lattice oxygen on the SnO2(110) surface: a DFT study. Phys. Chem. Chem. Phys., 2014, 16(24), 12488-12494.
[http://dx.doi.org/10.1039/C4CP00540F PMID: 24831825]
[15]
Zhang, C.; Yan, S. First-principles study on ferromagnetism in Mg-doped SnO2. Appl. Phys. Lett., 2010, 95232108.
[http://dx.doi.org/10.1063/1.3272674]
[16]
Law, M.; Kind, H.; Messer, B.; Kim, F.; Yang, P. Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed. Engl., 2002, 41(13), 2405-2408.
[http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2405:AID-ANIE2405>3.0.CO;2-3 PMID: 12203608]
[17]
Wang, S.M.; Wang, P.; Li, Z.F.; Xiao, C.H.; Xiao, B.X.; Zhao, R.; Yang, T.Y.; Zhang, M.Z. Facile fabrication and enhanced gas sensing properties of In2O3 nanoparticles. New J. Chem., 2014, 38, 4879-4884.
[http://dx.doi.org/10.1039/C4NJ00901K]
[18]
Liang, C.H.; Meng, G.W.; Lei, Y.; Phillipp, F.; Zhang, L.D. Catalytic growth of semiconducting In2O3 nanofibers. Adv. Mater., 2001, 13, 1330-1333.
[http://dx.doi.org/10.1002/1521-4095(200109)13:17<1330:AID-ADMA1330>3.0.CO;2-6]
[19]
Yan, Y.; Al-Jassim, M.M.; Wei, S.H. Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO(1010) surface. Phys. Rev. B Condens. Matter Mater. Phys., 2005, 72161307.
[http://dx.doi.org/10.1103/PhysRevB.72.161307]
[20]
Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A.P.; Laosiritaworn, Y. Reprint of - Density functional theory investigation of surface defects in Sn-doped ZnO. Surf. Coat. Tech., 2016, 306, 364-368.
[http://dx.doi.org/10.1016/j.surfcoat.2016.08.073]
[21]
Lai, T-Y.; Fang, T-H.; Hsiao, Y-J.; Kuo, E-Y. Structural and characteristics of electrospun ZnO nanofibers for gas sensing. Curr. Nanosci., 2019, 16, 187-195.
[http://dx.doi.org/10.2174/1573413715666190710165825]
[22]
El-Ghwas, D.; Mazeed, T.; El-Waseif, A.; Al-Zahrani, H.; Almaghrabi, O.; Elazzazy, A. Factorial experimental design for optimization of zinc oxide nanoparticles production. Curr. Nanosci., 2020, 16, 51-61.
[http://dx.doi.org/10.2174/1573413715666190618103127]
[23]
Jin, H.; Zhou, H.; Zhang, Y. Insight into the Mechanism of CO Oxidation on WO3(001) Surfaces for Gas Sensing: A DFT Study. Sensors (Basel), 2017, 17, 1898.
[http://dx.doi.org/10.3390/s17081898]
[24]
Li, X.L.; Lou, T.J.; Sun, X.M.; Li, Y.D. Highly sensitive WO3 hollow-sphere gas sensors. Inorg. Chem., 2004, 43(17), 5442-5449.
[http://dx.doi.org/10.1021/ic049522w PMID: 15310226]
[25]
Korotcenkov, G.; Cho, B.K. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B Chem., 2017, 244, 182-210.
[http://dx.doi.org/10.1016/j.snb.2016.12.117]
[26]
Zhang, J.X.; Li, Y.X.; Shek, C.H.; Lai, J.K.L. Sensitivity to oxygen and response characteristics of nanocrystalline SnO2 at room temperature. Nanostruct. Mater., 1998, 10, 55-63.
[http://dx.doi.org/10.1016/S0965-9773(98)00024-5]
[27]
Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama, T. Interactions of tin oxide surface with O2, H2O and H2. Surf. Sci., 1979, 86, 335-344.
[http://dx.doi.org/10.1016/0039-6028(79)90411-4]
[28]
Morrison, S.R. Mechanism of semiconductor gas sensor operation. Sens. Actuators, 1987, 11, 283-287.
[http://dx.doi.org/10.1016/0250-6874(87)80007-0]
[29]
Liu, J.; Lu, Y.; Cui, X.; Geng, Y.; Jin, G.; Zhai, Z. Gas-sensing properties and sensitivity promoting mechanism of Cu-added SnO2 thin films deposited by ultrasonic spray pyrolysis. Sens. Actuators B Chem., 2017, 248, 862-867.
[http://dx.doi.org/10.1016/j.snb.2017.01.057]
[30]
Liu, H.; Gong, S.P.; Hu, Y.X.; Liu, J.Q.; Zhou, D.X. Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors. Sens. Actuators B Chem., 2009, 140, 190-195.
[http://dx.doi.org/10.1016/j.snb.2009.04.027]
[31]
Liu, J.; Gao, Y.; Wu, X.; Jin, G.; Zhai, Z.; Liu, H. Inhomogeneous oxygen vacancy distribution in semiconductor gas sensors: Formation, migration and determination on gas sensing characteristics. Sensors (Basel), 2017, 17(8), 1852.
[http://dx.doi.org/10.3390/s17081852 PMID: 28796167]
[32]
Yamazoe, N.; Shimanoe, K. New perspectives of gas sensor technology. Sens. Actuators B Chem., 2009, 138, 100-107.
[http://dx.doi.org/10.1016/j.snb.2009.01.023]
[33]
Xu, C.; Tamaki, J.; Miura, N.; Yamazoe, N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B Chem., 1991, 3, 147-155.
[http://dx.doi.org/10.1016/0925-4005(91)80207-Z]
[34]
Yamazoe, N.; Shimanoe, K. Roles of shape and size of component crystals in semiconductor gas sensors. J. Electrochem. Soc., 2008, 155, J85-J92.
[http://dx.doi.org/10.1149/1.2832655]
[35]
Zhao, J.; Wu, S.; Liu, J.; Liu, H.; Gong, S.; Zhou, D. Tin oxide thin films prepared by aerosol-assisted chemical vapor deposition and the characteristics on gas detection. Sens. Actuators B Chem., 2010, 145, 788-793.
[http://dx.doi.org/10.1016/j.snb.2010.01.039]
[36]
Caglar, A.; Ulas, B.; Sahin, O.; Demir Kivrak, H. Few-layer graphene coated on indium tin oxide electrodes prepared by chemical vapor deposition and their enhanced glucose electrooxidation activity. Energy Storage, 2019, 1e73.
[http://dx.doi.org/10.1002/est2.73]
[37]
Traversa, E.; Di Vona, M.L.; Licoccia, S.; Sacerdoti, M.; Carotta, M.C.; Gallana, M.; Martinelli, G. Sol-gel nanosized semiconducting titania-based powders for thick-film gas sensors. J. Sol-Gel Sci. Technol., 2000, 19, 193-196.
[http://dx.doi.org/10.1023/A:1008723902604]
[38]
Gong, S.; Liu, J.; Quan, L.; Fu, Q.; Zhou, D. Preparation of tin oxide thin films on silicon substrates via sol–gel routes and the prospects for the H2S gas sensor. Sens. Lett., 2011, 9, 625-628.
[http://dx.doi.org/10.1166/sl.2011.1577]
[39]
Mitzi, D.B.; Kosbar, L.L.; Murray, C.E.; Copel, M.; Afzali, A. High-mobility ultrathin semiconducting films prepared by spin coating. Nature, 2004, 428(6980), 299-303.
[http://dx.doi.org/10.1038/nature02389 PMID: 15029191]
[40]
Marr, I.; Reiss, S.; Hagen, G.; Moos, R. Planar zeolite film-based potentiometric gas sensors manufactured by a combined thick-film and electroplating technique. Sensors (Basel), 2011, 11(8), 7736-7748.
[http://dx.doi.org/10.3390/s110807736 PMID: 22164042]
[41]
Atbas, D.; Çaglar, A.; Kivrak, H.; Kivrak, A. Microwave assisted synthesis of sn promoted pt catalysts and their ethanol electro-oxidation activities. Am. J. Nanomater., 2020, 4, 8-11.
[42]
Öztürk, S.; Kılınç, N.; Öztürk, Z.Z. Fabrication of ZnO nanorods for NO2 sensor applications: Effect of dimensions and electrode position. J. Alloys Compd., 2013, 581, 196-201.
[http://dx.doi.org/10.1016/j.jallcom.2013.07.063]
[43]
Han, M.A.; Kim, H-J.; Lee, H.C.; Park, J-S.; Lee, H-N. Effects of porosity and particle size on the gas sensing properties of SnO2 films. Appl. Surf. Sci., 2019, 481, 133-137.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.043]
[44]
Egashira, M.; Matsumoto, T.; Shimizu, Y.; Iwanaga, H. Gas-sensing characteristics of tin oxide whiskers with different morphologies. Sens. Actuators, 1988, 14, 205-213.
[http://dx.doi.org/10.1016/0250-6874(88)80067-2]
[45]
Hyodo, T.; Abe, S.; Shimizu, Y.; Egashira, M. Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof. Sens. Actuators B Chem., 2003, 93, 590-600.
[http://dx.doi.org/10.1016/S0925-4005(03)00208-9]
[46]
Korotcenkov, G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. Rep., 2008, 61, 1-39.
[http://dx.doi.org/10.1016/j.mser.2008.02.001]
[47]
Caglar, A.; Sahan, T.; Cogenli, M.S.; Yurtcan, A.B.; Aktas, N.; Kivrak, H. A novel central composite design based response surface methodology optimization study for the synthesis of Pd/CNT direct formic acid fuel cell anode catalyst. Int. J. Hydrogen Energy, 2018, 43, 11002-11011.
[http://dx.doi.org/10.1016/j.ijhydene.2018.04.208]
[48]
Kumar, A.; Kumar, M.; Kumar, R.; Singh, R.; Prasad, B.; Kumar, D. Gas sensitivity as a function of nano sized crystallite in metal oxide semiconductor based gas sensors. Mater. Today: Proc., 2019, 17, 161-167.
[http://dx.doi.org/10.1016/j.matpr.2019.06.414]
[49]
Yamazoe, N.; Shimanoe, K. Theory of power laws for semiconductor gas sensors. Sens. Actuators B Chem., 2008, 128, 566-573.
[http://dx.doi.org/10.1016/j.snb.2007.07.036]
[50]
Liu, J.; Gong, S.; Quan, L.; Deng, Z.; Liu, H.; Zhou, D. Influences of cooling rate on gas sensitive tin oxide thin films and a model of gradient distributed oxygen vacancies in SnO2 crystallites. Sens. Actuators B Chem., 2010, 145, 657-666.
[http://dx.doi.org/10.1016/j.snb.2010.01.015]
[51]
Li, Y.; Janik, M.J. Recent progress on first-principles simulations of voltammograms. Curr. Opin. Electrochem., 2019, 14, 124-132.
[http://dx.doi.org/10.1016/j.coelec.2019.01.005]
[52]
Karlberg, G.S.; Jaramillo, T.F.; Skúlason, E.; Rossmeisl, J.; Bligaard, T.; Nørskov, J.K. Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys. Rev. Lett., 2007, 99(12), 126101.
[http://dx.doi.org/10.1103/PhysRevLett.99.126101 PMID: 17930522]
[53]
Golovanov, V.; Golovanova, V.; Rantala, T.T. Thermal desorption of molecular oxygen from SnO2 (110) surface: Insights from first-principles calculations. J. Phys. Chem. Solids, 2016, 89, 15-22.
[http://dx.doi.org/10.1016/j.jpcs.2015.10.010]
[54]
Düzenli, D.; Atmaca, D.O.; Gezer, M.G.; Onal, I. A density functional theory study of partial oxidation of propylene on Cu2O(001) and CuO(001) surfaces. Appl. Surf. Sci., 2015, 355, 660-666.
[http://dx.doi.org/10.1016/j.apsusc.2015.07.155]
[55]
Sun, Y.; Liu, T.; Chang, Q.; Ma, C. Study on the intrinsic defects in tin oxide with first-principles method. J. Phys. Chem. Solids, 2018, 115, 228-232.
[http://dx.doi.org/10.1016/j.jpcs.2017.12.044]
[56]
Xu, G.; Zhang, L.; He, C.; Ma, D.; Lu, Z. Adsorption and oxidation of NO on various SnO2(110) surfaces: A density functional theory study. Sens. Actuators B Chem., 2015, 221, 717-722.
[http://dx.doi.org/10.1016/j.snb.2015.06.143]
[57]
Düzenli, D. A comparative density functional study of hydrogen peroxide adsorption and activation on the graphene surface doped with N, B, S, Pd, Pt, Au, Ag, and Cu atoms. J. Phys. Chem. C, 2016, 120, 20149-20157.
[http://dx.doi.org/10.1021/acs.jpcc.6b06131]
[58]
Bockstedte, M.; Kley, A.; Neugebauer, J.; Scheffler, M. Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comput. Phys. Commun., 1997, 107, 187-222.
[http://dx.doi.org/10.1016/S0010-4655(97)00117-3]
[59]
Milman, V.; Winkler, B.; White, J.A.; Pickard, C.J.; Payne, M.C.; Akhmatskaya, E.V.; Nobes, R.H. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem., 2015, 77, 895-910.
[http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:5<895:AID-QUA10>3.0.CO;2-C]
[60]
Milman, V.; Refson, K.; Clark, S.J.; Pickard, C.J.; Segall, M.D. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. J. Mol. Struct. THEOCHEM, 2010, 954, 22-35.
[http://dx.doi.org/10.1016/j.theochem.2009.12.040]
[61]
Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter, 1992, 46(11), 6671-6687.
[http://dx.doi.org/10.1103/PhysRevB.46.6671 PMID: 10002368]
[62]
Abuzin, Y.A.; Nikitin, N.Y. Identification of promising lines of research in the field of aluminum-based alloys using the electron theory of metals. J. Hepatobiliary Pancreat. Surg., 2012, 2, 347-351.
[63]
Oviedo, J.; Gillan, M.J. Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf. Sci., 2000, 463, 93-101.
[http://dx.doi.org/10.1016/S0039-6028(00)00612-9]
[64]
Oison, V.; Saadi, L.; Lambert-Mauriat, C.; Hayn, R. Mechanism of CO and O3 sensing on WO3 surfaces: First principle study. Sens. Actuators B Chem., 2011, 160, 505-510.
[http://dx.doi.org/10.1016/j.snb.2011.08.018]
[65]
Morrison, S.R.; Miller, P.H. Adsorption of oxygen on zinc oxide. J. Chem. Phys., 1956, 25, 1064-1065.
[http://dx.doi.org/10.1063/1.1743099]
[66]
Bechthold, P.; Pronsato, M.E.; Pistonesi, C. DFT study of CO adsorption on Pd-SnO2(110) surfaces. Appl. Surf. Sci., 2015, 347, 291-298.
[http://dx.doi.org/10.1016/j.apsusc.2015.03.149]
[67]
Caglar, A.; Düzenli, D.; Onal, I.; Tezsevin, I.; Sahin, O.; Kivrak, H. A comparative experimental and density functional study of glucose adsorption and electrooxidation on the Au-graphene and Pt-graphene electrodes. Int. J. Hydrogen Energy, 2020, 45, 490-500.
[http://dx.doi.org/10.1016/j.ijhydene.2019.10.163]
[68]
Xu, H.; Li, J.; Fu, Y.; Tian, Y.; Yang, Z. Sensitized mechanism of recovered S-SnO2 from tin sludge for CH4 detection by increasing oxygen vacancy density as an efficient strategy. Sens. Actuators B Chem., 2019, 298126838.
[http://dx.doi.org/10.1016/j.snb.2019.126838]
[69]
Mäki-Jaskari, M.A.; Rantala, T.T. Band structure and optical parameters of the SnO2 (110) surface. Phys. Rev. B Condens. Matter, 2001, 64075407.
[http://dx.doi.org/10.1103/PhysRevB.64.075407]
[70]
Pandey, S.C.; Xu, X.; Williamson, I.; Nelson, E.B.; Li, L. Electronic and vibrational properties of transition metal-oxides: Comparison of GGA, GGA+U, and hybrid approaches. Chem. Phys. Lett., 2017, 669.
[http://dx.doi.org/10.1016/j.cplett.2016.12.005]
[71]
Wang, H.; Yan, Y.; Mohammed, Y.S.; Du, X.; Li, K.; Jin, H. The role of Co impurities and oxygen vacancies in the ferromagnetism of Co-doped SnO2: GGA and GGA+U studies. J. Magn. Magn. Mater., 2009, 321, 3114-3119.
[http://dx.doi.org/10.1016/j.jmmm.2009.05.013]
[72]
Liechtenstein, A.I.; Anisimov, V.I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B Condens. Matter, 1995, 52(8), R5467-R5470.
[http://dx.doi.org/10.1103/PhysRevB.52.R5467 PMID: 9981806]
[73]
Obodo, K.O.; Chetty, N. First principles LDA + U and GGA + U study of protactinium and protactinium oxides: dependence on the effective U parameter. J. Phys. Condens. Matter, 2013, 25(14), 145603.
[http://dx.doi.org/10.1088/0953-8984/25/14/145603 PMID: 23478314]
[74]
Loschen, C.; Carrasco, J.; Neyman, K.M.; Illas, F. Erratum First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter. Phys. Rev. B Condens. Matter Mater. Phys., 2007, 75, 035115-035123.
[http://dx.doi.org/10.1103/PhysRevB.75.035115]
[75]
Wang, X.; Di, Q.; Wang, X.; Zhao, H.; Liang, B.; Yang, J. Effect of oxygen vacancies on photoluminescence and electrical properties of (200) oriented fluorine-doped SnO2 films. Mater. Sci. Eng. B, 2019, 250114433.
[http://dx.doi.org/10.1016/j.mseb.2019.114433]
[76]
Mäki-Jaskari, M.A.; Rantala, T.T.; Golovanov, V.V. Computational study of charge accumulation at SnO2(110) surface. Surf. Sci., 2005, 577, 127-138.
[http://dx.doi.org/10.1016/j.susc.2005.01.004]

© 2024 Bentham Science Publishers | Privacy Policy