Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Facile Cetyltrimethylammonium Bromide (CTAB)-assisted Synthesis of Calcium Bismuthate Nanoflakes with Solar Light Photocatalytic Performance

Author(s): Zi Wang, Hongjun Chen, Fanglv Qiu, Zeyang Xue, Chunhu Yu, Pengxiang Wang, Qianmin Cong, Lizhai Pei*, Chuangang Fan* and Yong Zhang

Volume 17, Issue 2, 2021

Published on: 17 August, 2020

Page: [315 - 326] Pages: 12

DOI: 10.2174/1573413716999200817120339

Abstract

Background: Wastewater with dyes pollutes the environment and causes serious risk to human health and aquatic biota. Gentian violet (GV) belongs to typical triphenylmethane dyes and is difficult to be degraded. Calcium bismuthate nanoflakes possess good photocatalytic activity toward GV under solar light irradiation.

Objective: The aim of the study was to prepare calcium bismuthate nanoflakes by the hydrothermal method and research on the solar light photocatalytic performance of the calcium bismuthate nanoflakes for GV degradation.

Methods: Calcium bismuthate nanoflakes were synthesized via a facile hydrothermal route assisted by cetyltrimethylammonium bromide (CTAB) based on the reaction of sodium bismuthate and calcium chloride. The calcium bismuthate products were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy and solid UV-vis diffuse reflectance spectrum.

Results: The calcium bismuthate nanoflakes possess single crystalline monoclinic CaBi2O4 phase. The size of the whole nanoflakes is about 10 μm and the thickness of the nanoflakes is about 40 nm. The morphology, size and phase of the products are closely relative to CTAB concentration, reaction temperature and reaction time. The bandgap of the calcium bismuthate nanoflakes is 2.21 eV. The photocatalytic activity of the calcium bismuthate nanoflakes is high enough to completely degrade GV under solar light irradiation for 6 h.

Conclusion: The photocatalytic performance for the removal of GV is dependent on the irradiation time, dosage of the calcium bismuthate nanoflakes and initial GV concentration. The calcium bismuthate nanoflakes exhibit great promising activity for the removal of organic pollutants.

Keywords: Calcium bismuthate nanoflakes, cetyltrimethylammonium bromide, electron microscopy, gentian violet, solar light, photocatalysis.

Graphical Abstract
[1]
Ahamed, S.T.; Bhar, S.K.; Mondal, A. Formation of a TiO2/CdS/Pd heterojunction and study of their photocatalytic degradation of organic dyes and toxic metal ion reduction. J. Mater. Sci., 2019, 30, 4400-4408.
[2]
Pei, L.Z.; Wang, S.; Xie, Y.K.; Yu, H.Y.; Guo, Y.H. Hydrothermal synthesis of Ba germanate microrods and photocatalytic degradation performance for methyl blue. J. Alloys Compd., 2014, 587, 625-631.
[http://dx.doi.org/10.1016/j.jallcom.2013.10.255]
[3]
Li, X.P.; Sun, Y.L.; Luo, C.W.; Chao, Z.S. UV-resistant hydrophobic CeO2 nanomaterial with photocatalytic depollution performance. Ceram. Int., 2018, 44, 13439-13443.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.132]
[4]
Yu, W.W.; Chen, X.A.; Mei, W.; Chen, C.S.; Tsang, Y.H. Photocatalytic and electrochemical performance of three-dimensional reduced graphene oxide-WS2/Mg-doped ZnO composites. Appl. Surf. Sci., 2017, 400, 129-138.
[http://dx.doi.org/10.1016/j.apsusc.2016.12.138]
[5]
Chen, C.S.; Liu, T.G.; Lin, L.W.; Xie, X.D.; Chen, X.H.; Liu, Q.C.; Liang, B.; Yu, W.W.; Qiu, C.Y. Multi-walled carbon nanotube-supported metal-doped ZnO nanoparticles and their photocatalytic property. J. Nanopart. Res., 2013, 15(1), 1295.
[http://dx.doi.org/10.1007/s11051-012-1295-5] [PMID: 23420492]
[6]
Chen, C.S.; Xie, X.D.; Cao, S.Y.; Liu, T.G.; Lin, L.W.; Chen, X.H.; Liu, Q.C.; Kuang, J.C.; Xiao, Y. Preparation and photocatalytic activity of multi-walled carbon nanotubes/Mg-doped ZnO nanohybrids. Mater. Sci., 2015, 33, 460-469.
[7]
Chen, C.S.; Xie, X.D.; Cao, S.Y.; Liu, Q.C.; Kuang, J.C.; Mei, Y.P.; Zhao, G.J.; Liu, T.G.; Zeng, B.; Ning, X.T. Preparation and photocatalytic property of multi-walled carbon nanotubes/TiO2 nanohybrids. Funct. Mater. Lett. (Singap.), 2013, 6, 1350018.
[http://dx.doi.org/10.1142/S1793604713500185]
[8]
Chen, C.S.; Xie, X.D.; Zhao, G.J.; Zeng, B.; Ning, X.T.; Cao, S.Y.; Xiao, Y.; Mei, Y.P.; Meng, X.M.; Huang, M.X. Graphene/multi-walled carbon nanotube composite as an effective supports to enhance the photocatalytic property of Cu-doped ZnO nanoparticles. Funct. Mater. Lett. (Singap.), 2013, 6, 1350062.
[http://dx.doi.org/10.1142/S1793604713500628]
[9]
Serrà, A.; Zhang, Y.; Sepúlveda, B.; Gómez, E.; Nogués, J.; Michler, J.; Philippe, L. Highly active ZnO-based biomimetic fern-like microleaves for photocatalytic water decontamination using sunlight. Appl. Catal. B, 2019, 248, 129-146.
[http://dx.doi.org/10.1016/j.apcatb.2019.02.017]
[10]
Boon, C.; Yong, L.; Wahab, A. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev., 2018, 81, 536-551.
[http://dx.doi.org/10.1016/j.rser.2017.08.020]
[11]
Pei, L.Z.; Wang, S.; Lin, N.; Liu, H.D.; Guo, Y.H. Vanadium doping of stronium germanate and their visible photocatalytic properties. RSC Advances, 2014, 4, 48144-48149.
[http://dx.doi.org/10.1039/C4RA07324J]
[12]
Lin, N.; Pei, L.Z.; Wei, T.; Yu, H.Y. Synthesis of Cu vanadate nanorods for visible light photocatalytic degradation of gentian violet. Cryst. Res. Technol., 2015, 50, 255-262.
[http://dx.doi.org/10.1002/crat.201400461]
[13]
Mortazavi-Derazkola, S.; Naimi-Jamal, M.R.; Ghoreishi, S.M. Synthesis, characterization, and atenolol delivery application of functionalized mesoporous hydroxyapatite nanoparticles prepared by microwave-assisted Co-precipitation method. Curr. Drug Deliv., 2016, 13(7), 1123-1129.
[http://dx.doi.org/10.2174/1567201813666160321115543] [PMID: 26996370]
[14]
Khojasteh, H.; Safajou, H.; Mortazavi-Derazkola, S.; Salavati-Niasari, M.; Heydaryan, K.; Yazdani, M. Economic procedure for facile and eco-friendly reduction of graphene oxide by plant extracts; a comparison and property investigation. J. Clean. Prod., 2019, 229, 1139-1147.
[http://dx.doi.org/10.1016/j.jclepro.2019.04.350]
[15]
Mohammadzadeh, P.; Shafiee Ardestani, M.; Mortazavi-Derazkola, S.; Bitarafan-Rajabi, A.; Ghoreishi, S.M. PEG-Citrate dendrimer second generation: is this a good carrier for imaging agents in vitro and in vivo? IET Nanobiotechnol., 2019, 13(6), 560-564.
[http://dx.doi.org/10.1049/iet-nbt.2018.5360] [PMID: 31432786]
[16]
Ebrahimzadeh, M.A.; Naghizadeh, A.; Amiri, O.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem., 2020, 94, 103425.
[http://dx.doi.org/10.1016/j.bioorg.2019.103425] [PMID: 31740048]
[17]
Mortazavi-Derazkola, S.; Ebrahimzadeh, M.A.; Amiri, O.; Goli, H.R.; Rafiei, A.; Kardan, M.; Salavati-Niasari, M. Facile green synthesis and characterization of Crataegus microphylla extract-capped silver nanoparticles (CME@Ag-NPs) and its potential antibacterial and anticancer activities against AGS and MCF-7 human cancer cells. J. Alloys Compd., 2020, 820, 153186.
[http://dx.doi.org/10.1016/j.jallcom.2019.153186]
[18]
Ardestani, M.S.; Bitarafan-Rajabi, A.; Mohammadzadeh, P.; Mortazavi-Derazkola, S.; Sabzevari, O.; Azar, A.D.; Kazemi, S.; Hosseini, S.R.; Ghoreishi, S.M. Synthesis and characterization of novel 99mTc-DGC nano-complexes for improvement of heart diagnostic. Bioorg. Chem., 2020, 96, 103572.
[http://dx.doi.org/10.1016/j.bioorg.2020.103572] [PMID: 31982818]
[19]
Ghoreishi, S.M.; Khalaj, A.; Sabzevari, O.; Badrzadeh, L.; Mohammadzadeh, P.; Mousavi Motlagh, S.S.; Bitarafan-Rajabi, A.; Shafiee Ardestani, M. Technetium-99m chelator-free radiolabeling of specific glutamine tumor imaging nanoprobe: in vitro and in vivo evaluations. Int. J. Nanomedicine, 2018, 13, 4671-4683.
[http://dx.doi.org/10.2147/IJN.S157426] [PMID: 30154653]
[20]
Assadi, A.; Najafabadi, V.S.; Shandiz, S.A.S.; Boroujeni, A.S.; Ashrafi, S.; Vaziri, A.Z.; Ghoreishi, S.M.; Aghasadeghi, M.R.; Ebrahimi, S.E.S.; Pirali-Hamedani, M.; Ardestani, M.S. Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity. OncoTargets Ther., 2016, 9, 5531-5543.
[http://dx.doi.org/10.2147/OTT.S103487] [PMID: 27660471]
[21]
Liang, Y.D.; He, Y.J.; Wang, T.T.; Lei, L.H. Adsorptive removal of gentian violet from aqueous solution using CoFe2O4/activated carbon magnetic composite. J. Water Process Eng., 2019, 27, 72-88.
[http://dx.doi.org/10.1016/j.jwpe.2018.11.013]
[22]
Bellir, K.; Bouziane, I.S.; Boutamine, Z.; Lehocine, B.M.; Meniai, A.H. Sorption study of a basic dye “gentian violet” from aqueous solutions using activated bentonite. Energy Procedia, 2012, 18, 924-933.
[http://dx.doi.org/10.1016/j.egypro.2012.05.107]
[23]
Aparecida, K.; Gusmão, G.; Gurgel, L.V.A.; Melo, T.M.S.; Gil, L.F. Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions-Kinetic and equilibrium studies. Dyes Pigm., 2012, 92, 967-974.
[http://dx.doi.org/10.1016/j.dyepig.2011.09.005]
[24]
Saquib, M.; Muneer, M. TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions. Dyes Pigm., 2003, 56, 37-49.
[http://dx.doi.org/10.1016/S0143-7208(02)00101-8]
[25]
Muruganandham, M.; Swaminathan, M. Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process. Dyes Pigm., 2006, 68, 133-142.
[http://dx.doi.org/10.1016/j.dyepig.2005.01.004]
[26]
Serrà, A.; Gómez, E.; Philippe, L. Bioinspired ZnO-based solar photocatalysts for the efficient decontamination of persistent organic pollutants and hexavalent chromium in wastewater. Catalysts, 2019, 9, 974.
[http://dx.doi.org/10.3390/catal9120974]
[27]
Serrà, A.; Zhang, Y.; Sepúlveda, B.; Gómez, E.; Nogués, J.; Michler, J.; Philippe, L. Highly reduced ecotoxicity of ZnO-based micro/nanostructures on aquatic biota: Influence of architecture, chemical composition, fixation, and photocatalytic efficiency. Water Res., 2020, 169, 115210.
[http://dx.doi.org/10.1016/j.watres.2019.115210] [PMID: 31670084]
[28]
Byrne, C.; Subramanian, G.; Pillai, S.C. Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng., 2018, 6, 3531-3555.
[http://dx.doi.org/10.1016/j.jece.2017.07.080]
[29]
Wang, H.; Lin, Q.; Yin, L.; Yang, Y.; Qiu, Y.; Lu, C.; Yang, H. Biomimetic design of hollow flower-like g-C3N4@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small, 2019, 15(16), e1900011.
[http://dx.doi.org/10.1002/smll.201900011] [PMID: 30913378]
[30]
Pei, L.Z.; Wang, S.; Lin, N.; Liu, H.D.; Yu, H.Y. Calcium germanate nanowires by vanadium doping with improved photocatalytic activities. J. Exp. Nanosci., 2015, 10, 1223-1231.
[http://dx.doi.org/10.1080/17458080.2014.989553]
[31]
Santos, A.J.; Batista, L.M.B.; Martinez-Huitle, C.A.; Alves, A.; Garcia-Segura, S. Niobium oxide catalysts as emerging material for textile wastewater reuse: Photocatalytic decolorization of azo dyes. Catalysts, 2019, 9, 1070.
[http://dx.doi.org/10.3390/catal9121070]
[32]
Batista, L.M.B.; Dos Santos, A.J.; da Silva, D.R.; Alves, A.P.M.; Garcia-Segura, S.; Martínez-Huitle, C.A. Solar photocatalytic application of NbO2OH as alternative photocatalyst for water treatment. Sci. Total Environ., 2017, 596-597, 79-86.
[http://dx.doi.org/10.1016/j.scitotenv.2017.04.019] [PMID: 28426988]
[33]
Safari-Amiri, M.; Mortazavi-Derazkola, S.; Salavati-Niasari, M.; Ghoreishi, S.M. Synthesis and characterization of Dy2O3 nanostructures: enhanced photocatalytic degradation of rhodamine B under UV irradiation. J. Mater. Sci. Mater. Electron., 2017, 28, 6467-6474.
[http://dx.doi.org/10.1007/s10854-017-6333-8]
[34]
Tang, T.; Wang, T. The hierarchical TiO2 hollow microspheres with exposed high-energy {001} crystal facets composite reduced graphene oxide and its photocatalytic activity. J. Mater. Sci. Mater. Electron., 2019, 30, 10994-11004.
[http://dx.doi.org/10.1007/s10854-019-01438-2]
[35]
Pei, L.Z.; Wei, T.; Lin, N.; Yu, H.Y. Synthesis of zinc oxide and titanium dioxide composite nanorods and their photocatalytic properties. Adv. Compos. Lett., 2016, 25, 9-15.
[http://dx.doi.org/10.1177/096369351602500102]
[36]
Pei, L.Z.; Lin, N.; Wei, T.; Yu, H.Y. Synthesis of manganese vanadate nanobelts and their visible light photocatalytic activity for methylene blue. J. Exp. Nanosci., 2016, 11, 197-214.
[http://dx.doi.org/10.1080/17458080.2015.1047418]
[37]
Pei, L.Z.; Liu, H.D.; Lin, N.; Yu, H.Y. Hydrothermal synthesis of cerium titanate nanorods and its application in visible light photocatalysis. Mater. Res. Bull., 2015, 61, 40-46.
[http://dx.doi.org/10.1016/j.materresbull.2014.09.094]
[38]
Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y. Zinc vanadate nanorods and their visible light photocatalytic activity. J. Alloys Compd., 2015, 631, 90-98.
[http://dx.doi.org/10.1016/j.jallcom.2015.01.115]
[39]
Ebrahimzadeh, M.A.; Mortazavi-Derazkola, S.; Zazouli, M.A. Eco-friendly green synthesis of novel magnetic Fe3O4/SiO2/ZnO-Pr6O11 nanocomposites for photocatalytic degradation of organic pollutant. J. Rare Earths, 2020, 38, 13-20.
[http://dx.doi.org/10.1016/j.jre.2019.07.004]
[40]
Khojasteh, H.; Salavati-Niasari, M.; Mortazavi-Derazkola, S. Synthesis, characterization and photocatalytic properties of nickel-doped TiO2 and nickel titanate nanoparticles. J. Mater. Sci. Mater. Electron., 2016, 27, 3599-3607.
[http://dx.doi.org/10.1007/s10854-015-4197-3]
[41]
Zinatloo-Ajabshir, S.; Mortazavi-Derazkola, S.; Salavati-Niasari, M. Schiff-base hydrothermal synthesis and characterization of Nd2O3 nanostructures for effective photocatalytic degradation of eriochrome black T dye as water contaminant. J. Mater. Sci. Mater. Electron., 2017, 28, 17849-17859.
[http://dx.doi.org/10.1007/s10854-017-7726-4]
[42]
Mortazavi-Derazkola, S.; Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Facile hydrothermal and novel preparation of nanostructured Ho2O3 for photodegradation of eriochrome black T dye as water pollutant. Adv. Powder Technol., 2017, 28, 747-754.
[http://dx.doi.org/10.1016/j.apt.2016.11.022]
[43]
Zhang, L.; Gonçalves, A.A.S.; Jiang, B.; Jaroniec, M. A generalized strategy for synthesizing crystalline bismuth-containing nanomaterials. Nanoscale, 2020, 12(15), 8277-8284.
[http://dx.doi.org/10.1039/D0NR01314E] [PMID: 32236221]
[44]
Pei, L.Z.; Wei, T.; Lin, N.; Cai, Z.Y.; Fan, C.G.; Yang, Z. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine. J. Electrochem. Soc., 2016, 163, H1-H8.
[http://dx.doi.org/10.1149/2.0041602jes]
[45]
Li, Z.Z.; Zhang, Z.S.; Wang, L.; Meng, X.C. Bismuth chromate (Bi2CrO6): A promising semiconductor in photocatalysis. J. Catal., 2020, 382, 40-48.
[http://dx.doi.org/10.1016/j.jcat.2019.12.001]
[46]
Pei, L.Z.; Qiu, F.L.; Ma, Y.; Lin, F.F.; Fan, C.G.; Ling, X.Z. Synthesis of polyaniline/zinc bismuthate nanocomposites and sensitive formaldehyde sensing performance. Curr. Nanosci., 2019, 15, 492-500.
[http://dx.doi.org/10.2174/1573413714666180809113244]
[47]
Piao, G.; Yoon, S.H.; Han, D.S.; Park, H. Ion-enhanced conversion of CO2 into formate on porous dendritic bismuth electrodes with high efficiency and durability. ChemSusChem, 2020, 13(4), 698-706.
[http://dx.doi.org/10.1002/cssc.201902581] [PMID: 31642201]
[48]
Pei, L.Z.; Lin, F.F.; Qiu, F.L.; Wang, W.L.; Zhang, Y.; Fan, C.G. Formation of Ba bismuthate nanobelts and sensitive electrochemical determination of tartaric acid. Mater. Res. Express, 2017, 4075047.
[http://dx.doi.org/10.1088/2053-1591/aa7e04]
[49]
Cao, S.Y.; Chen, C.S.; Xi, X.D.; Zeng, B.; Ning, X.T.; Liu, T.G.; Chen, X.H.; Meng, X.M.; Xiao, Y. Hypothermia-controlled Co-precipitation route to deposit well-dispersed β-Bi2O3 nanospheres on polymorphic graphene flakes. Vacuum, 2014, 102, 1-4.
[http://dx.doi.org/10.1016/j.vacuum.2013.10.025]
[50]
Chen, C.S.; Cao, S.Y.; Yu, W.W.; Xie, X.D.; Liu, Q.C.; Tsang, Y.H.; Xiao, Y. Adsorption, photocatalytic and sunlight-driven antibacterial activity of Bi2WO6/graphene oxide nanoflakes. Vacuum, 2015, 116, 48-53.
[http://dx.doi.org/10.1016/j.vacuum.2015.02.031]
[51]
Xiao, Y.; Chen, C.S.; Cao, S.Y.; Qian, G.P.; Nie, X.B.; Yu, W.W. Enhanced sunlight-driven photocatalytic activity of graphene oxide/Bi2WO6 nanoplates by silicon modification. Ceram. Int., 2015, 41, 10087-10094.
[http://dx.doi.org/10.1016/j.ceramint.2015.04.103]
[52]
Li, H.B.; Huang, G.Y.; Zhang, J.; Fu, S.H.; Wang, T.G.; Liao, H.W. Photochemical synthesis and enhanced photocatalytic activity of MnOx/BiPO4 heterojunction. Trans. Nonferrous Met. Soc. China, 2017, 27, 1127-1133.
[http://dx.doi.org/10.1016/S1003-6326(17)60131-6]
[53]
Pei, L.Z.; Wei, T.; Lin, N.; Yu, H.Y. Hierarchical bismuth phosphate microspheres with high photocatalytic performance. Int. J. Mater. Res., 2016, 107, 477-483.
[http://dx.doi.org/10.3139/146.111364]
[54]
Pei, L.Z.; Liu, H.D.; Lin, N.; Yu, H.Y. Bismuth titanate nanorods and their visible light photocatalytic properties. J. Alloys Compd., 2015, 622, 254-261.
[http://dx.doi.org/10.1016/j.jallcom.2014.10.008]
[55]
Zhang, Y.; Lin, F.F.; Wei, T.; Qiu, F.L.; Ma, Y.; Pei, L.Z. Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance. Int. J. Mater. Res., 2018, 109, 1035-1042.
[56]
Najafian, H.; Manteghi, F.; Beshkar, F.; Salavati-Niasari, M. Fabrication of nanocomposite photocatalyst CuBi2O4/Bi3ClO4 for removal of acid brown 14 as water pollutant under visible light irradiation. J. Hazard. Mater., 2019, 361, 210-220.
[http://dx.doi.org/10.1016/j.jhazmat.2018.08.092] [PMID: 30196033]
[57]
Bissengaliyeva, M.R.; Knyazev, A.V.; Bekturganov, N.S.; Gogol, D.B.; Taimassova, S.T.; Sukurov, B.M.; Smolenkov, Y.Y.; Tashuta, G.N. Crystal structure and thermodynamic properties of barium-thulium bismuthate with perovskite structure. J. Am. Ceram. Soc., 2013, 96, 1883-1890.
[http://dx.doi.org/10.1111/jace.12304]
[58]
Shtarev, D.S.; Ryabchuk, V.K.; Makarevich, K.S.; Shtareva, A.V.; Blokh, A.I.; Astapov, I.A.; Serpone, N. Calcium bismuthate nanoparticulates with orthorhombic and rhombohedral crystalline lattices: Effects of composition and structure on photoactivity. ChemistrySelect, 2017, 2, 9851-9863.
[http://dx.doi.org/10.1002/slct.201702204]
[59]
Li, L.J.; Chen, Z.Y.; Zhang, Q.B.; Xu, M.; Zhou, X.; Zhu, H.L.; Zhang, K.L. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 894-904.
[http://dx.doi.org/10.1039/C4TA05902F]
[60]
Chen, Z.Y.; Xu, M.; Du, B.L.; Zhu, H.L.; Xie, T.; Wang, W.H. Morphology control of lithium iron phosphate nanoparticles by soluble starch-assisted hydrothermal synthesis. J. Power Sources, 2014, 272, 837-844.
[http://dx.doi.org/10.1016/j.jpowsour.2014.09.019]
[61]
Li, H.B.; Zhang, J.; Huang, G.Y.; Fu, S.H.; Ma, C.; Wang, B.Y.; Huang, Q.R.; Liao, H.W. Hydrothermal synthesis and enhanced photocatalytic activity of hierarchical flower-like Fe-doped BiVO4. Trans. Nonferrous Met. Soc. China, 2017, 27, 868-875.
[http://dx.doi.org/10.1016/S1003-6326(17)60102-X]
[62]
Zhang, E.L.; Wang, L.J.; Zhang, B.G.; Xie, Y.P.; Wang, G.S. Shape-dependent photocatalytic performance of SnFe2O4 nanocrystals synthesized by hydrothermal method. J. Sol-Gel Sci. Technol., 2019, 89, 355-3260.
[http://dx.doi.org/10.1007/s10971-018-4868-7]
[63]
Lin, L.W.; Tang, Y.H.; Chen, C.S.; Xu, H.F. Self-assembled single crystal germanium nanowires arrays under supercritical hydrothermal conditions. CrystEngComm, 2010, 12, 2975-2981.
[http://dx.doi.org/10.1039/b927384k]
[64]
Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y. Formation of copper vanadate nanobelts and the electrochemical behaviors for the determination of ascorbic acid. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 2690-2700.
[http://dx.doi.org/10.1039/C4TA05946H]
[65]
Pei, L.Z.; Wei, T.; Lin, N.; Zhang, H.; Fan, C.G. Bismuth tellurate nanospheres and electrochemical behaviors of L-Cysteine at the nanospheres modified electrode. Russ. J. Electrochem., 2018, 54, 84-91.
[http://dx.doi.org/10.1134/S102319351711012X]
[66]
Gao, G.; Xiang, Y.; Lu, S.; Dong, B.; Chen, S.; Shi, L.; Wang, Y.; Wu, H.; Li, Z.; Abdelkader, A.; Xi, K.; Ding, S. CTAB-assisted growth of self-supported Zn2GeO4 nanosheet network on a conductive foam as a binder-free electrode for long-life lithium-ion batteries. Nanoscale, 2018, 10(3), 921-929.
[http://dx.doi.org/10.1039/C7NR05407F] [PMID: 29165476]
[67]
Sobhani, A.; Davar, F.; Salavati-Niasari, M. Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB. Appl. Surf. Sci., 2013, 257, 7982-7987.
[http://dx.doi.org/10.1016/j.apsusc.2011.04.049]
[68]
Zhang, J.; Song, B.C.; Peng, W.T.; Feng, Y.L.; Xu, B. CTAB-assisted hydrothermal synthesis of nano-sized tetragonal zirconium dioxide. Mater. Chem. Phys., 2013, 123, 606-609.
[http://dx.doi.org/10.1016/j.matchemphys.2010.05.022]
[69]
Shih, W.J.; Wang, M.C.; Hon, M.H. Morphology and crystallinity of the nanosized hydroxyapatite synthesized by hydrolysis using cetyltrimethylammonium bromide (CTAB) as a surfactant. J. Cryst. Growth, 2005, 275, e2339-e2344.
[http://dx.doi.org/10.1016/j.jcrysgro.2004.11.330]
[70]
Liu, X.B.; Que, W.X.; Kong, L.B. Hydrothermal synthesis of bamboo-shaped nanosheet KNb3O8 with enhanced photocatalytic activity. J. Alloys Compd., 2015, 627, 117-122.
[http://dx.doi.org/10.1016/j.jallcom.2014.12.115]
[71]
Zhao, B.; Wang, M.; Lin, L.; Zeng, Q.Q.; He, D.N. Synthesis of parallel squared nanosheet-assembled Bi2WO6 microstructures under alkalescent hydrothermal treatment. Ceram. Int., 2014, 40, 5831-5835.
[http://dx.doi.org/10.1016/j.ceramint.2013.11.024]
[72]
Vijayakumar, S.; Lee, S.H.; Ryu, K.S. Synthesis of Zn3V2O8 nanoplatelets for lithium-ion battery and supercapacitor applications. RSC Advances, 2015, 5, 91822-91828.
[http://dx.doi.org/10.1039/C5RA13904J]
[73]
Wang, Z.J.; Tian, Y.; Gong, J.H.; Yang, S.G.; Ma, J.H.; Xu, J. Facile seed-assisted hydrothermal fabrication of γ–AlOOH nanoflake films with superhydrophobicity. New J. Chem., 2014, 38, 1321-1327.
[http://dx.doi.org/10.1039/c3nj01323e]
[74]
Ueno, N.; Yamamoto, A.; Uchida, Y.; Egashira, Y.; Nishiyama, N. Low-temperature hydrothermal synthesis of ZnO nanosheet using organic/inorganic composite as seed layer. Mater. Lett., 2012, 86, 65-68.
[http://dx.doi.org/10.1016/j.matlet.2012.07.033]
[75]
Yu, Y.; Du, F.P.; Yu, J.C.; Zhuang, Y.Y.; Wong, P.K. One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template. J. Solid State Chem., 2004, 177, 4640-4647.
[http://dx.doi.org/10.1016/j.jssc.2004.10.025]
[76]
Zhang, J.; Song, B.C.; Peng, W.T.; Feng, Y.L.; Xu, B. CTAB-assisted hydrothermal synthesis of nano-sized tetragonal zirconium dioxide. Mater. Chem. Phys., 2010, 123, 606-609.
[http://dx.doi.org/10.1016/j.matchemphys.2010.05.022]
[77]
Maiti, U.N.; Nandy, S.; Karan, S.; Mallik, B.; Chattopadhyay, K.K. Enhanced optical and field emission properties of CTAB-assisted hydrothermal grown ZnO nanorods. Appl. Surf. Sci., 2008, 254, 7266-7271.
[http://dx.doi.org/10.1016/j.apsusc.2008.05.311]
[78]
Chen, S.H.; Carroll, D.L. Silver nanoplates: Size control in two dimensions and formation mechanisms. J. Phys. Chem. B, 2004, 108, 5500-5506.
[http://dx.doi.org/10.1021/jp031077n]
[79]
Huang, X.H.; Qiao, J.; Zhang, Q.F. Photocatalytic degradation of gentian violet using BaxSr1-xFe0.5Co0.5O3-δ. Asian J. Chem., 2014, 26, 4303-4306.
[http://dx.doi.org/10.14233/ajchem.2014.16219]
[80]
Serrà, A.; Artal, R.; García-Amorós, J.; Sepúlveda, B.; Gómez, E.; Nogués, J.; Philippe, L. Hybrid Ni@ZnO@ZnS-microalgae for circular economy: A smart route to the efficient integration of solar photocatalytic water decontamination and bioethanol production. Adv. Sci. (Weinh.), 2019, 7(3), 1902447.
[http://dx.doi.org/10.1002/advs.201902447] [PMID: 32042564]
[81]
Keijer, T.; Bakker, V.; Slootweg, J.C. Circular chemistry to enable a circular economy. Nat. Chem., 2019, 11(3), 190-195.
[http://dx.doi.org/10.1038/s41557-019-0226-9] [PMID: 30792512]

© 2024 Bentham Science Publishers | Privacy Policy