Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

A Review: Effects of Macrolides on CYP450 Enzymes

Author(s): Liyun Zhang, Xiaoqing Xu, Sara Badawy, Awais Ihsan, Zhenli Liu, Changqing Xie, Xu Wang* and Yanfei Tao*

Volume 21, Issue 12, 2020

Page: [928 - 937] Pages: 10

DOI: 10.2174/1389200221666200817113920

Price: $65

Abstract

As a kind of haemoglobin, cytochrome P450 enzymes (CYP450) participate in the metabolism of many substances, including endogenous substances, exogenous substances and drugs. It is estimated that 60% of common prescription drugs require bioconversion through CYP450. The influence of macrolides on CYP450 contributes to the metabolism and drug-drug interactions (DDIs) of macrolides. At present, most studies on the effects of macrolides on CYP450 are focused on CYP3A, but a few exist on other enzymes and drug combinations, such as telithromycin, which can decrease the activity of hepatic CYP1A2 and CYP3A2. This article summarizes some published applications of the influence of macrolides on CYP450 and the DDIs of macrolides caused by CYP450. And the article may subsequently guide the rational use of drugs in clinical trials. To a certain extent, poisoning caused by adverse drug interactions can be avoided. Unreasonable use of macrolide antibiotics may enable the presence of residue of macrolide antibiotics in animal-origin food. It is unhealthy for people to eat food with macrolide antibiotic residues. So it is of great significance to guarantee food safety and protect the health of consumers by the rational use of macrolides. This review gives a detailed description of the influence of macrolides on CYP450 and the DDIs of macrolides caused by CYP450. Moreover, it offers a perspective for researchers to further explore in this area.

Keywords: CYP450, Macrolides, CYP3A, CYP1A, DDIs, metabolic interaction.

Graphical Abstract
[1]
Venkatakrishnan, K.; Von Moltke, L.L.; Greenblatt, D.J. Human drug metabolism and the cytochromes P450: application and relevance of in vitro models. J. Clin. Pharmacol., 2001, 41(11), 1149-1179.
[http://dx.doi.org/10.1177/00912700122012724] [PMID: 11697750]
[2]
Qingzhong, Y.U.; Han, J.; Gao, X. Advances in the research of the correlation between CYP450 and lung cancer. J. Med. Mol. Biol., 2006, 3, 153-155.
[3]
Saxena, A.; Tripathi, K.P.; Roy, S.; Khan, F.; Sharma, A. Pharmacovigilance: effects of herbal components on human drugs interactions involving cytochrome P450. Bioinformation, 2008, 3(5), 198-204.
[http://dx.doi.org/10.6026/97320630003198] [PMID: 19255634]
[4]
Zanger, U.M.; Turpeinen, M.; Klein, K.; Schwab, M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal. Bioanal. Chem., 2008, 392(6), 1093-1108.
[http://dx.doi.org/10.1007/s00216-008-2291-6] [PMID: 18695978]
[5]
Yuan, R.; Madani, S.; Wei, X-X.; Reynolds, K.; Huang, S-M. Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab. Dispos., 2002, 30(12), 1311-1319.
[http://dx.doi.org/10.1124/dmd.30.12.1311] [PMID: 12433797]
[6]
Wrighton, S.A.; VandenBranden, M.; Ring, B.J. The human drug metabolizing cytochromes P450. J. Pharmacokinet. Biopharm., 1996, 24(5), 461-473.
[http://dx.doi.org/10.1007/BF02353474] [PMID: 9131485]
[7]
Fang, Y.; Gao, J.; Wang, T.; Tian, X.; Gao, N.; Zhou, J.; Zhang, H-F.; Wen, Q.; Jin, H.; Xing, Y-R.; Qiao, H.L. Intraindividual variation and correlation of cytochrome P450 activities in human liver microsomes. Mol. Pharm., 2018, 15(11), 5312-5318.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00787] [PMID: 30346185]
[8]
Dmitriev, A.V.; Filimonov, D.A.; Rudik, A.V.; Pogodin, P.V.; Karasev, D.A.; Lagunin, A.A.; Poroikov, V.V. Drug-drug interaction prediction using PASS. SAR QSAR Environ. Res., 2019, 30(9), 655-664.
[http://dx.doi.org/10.1080/1062936X.2019.1653966] [PMID: 31482727]
[9]
Baggot, J.D.; McKellar, Q.A. The absorption, distribution and elimination of anthelmintic drugs: the role of pharmacokinetics. J. Vet. Pharmacol. Ther., 1994, 17(6), 409-419.
[http://dx.doi.org/10.1111/j.1365-2885.1994.tb00271.x] [PMID: 7707485]
[10]
Wienkers, L.C.; Heath, T.G. Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov., 2005, 4(10), 825-833.
[http://dx.doi.org/10.1038/nrd1851] [PMID: 16224454]
[11]
Liu, Y.Q.; Hong, Y.J.; Zeng, S. [Recent advances in metabolism-based drug-drug interactions] Zhejiang Da Xue Xue Bao Yi Xue Ban, 2009, 38(2), 215-224.
[PMID: 19363833]
[12]
Sugimoto, H.; Matsumoto, S.; Tachibana, M.; Niwa, S.; Hirabayashi, H.; Amano, N.; Moriwaki, T. Establishment of in vitro P-glycoprotein inhibition assay and its exclusion criteria to assess the risk of drug-drug interaction at the drug discovery stage. J. Pharm. Sci., 2011, 100(9), 4013-4023.
[http://dx.doi.org/10.1002/jps.22652] [PMID: 21678427]
[13]
Ai, C.H.; Li, H.; Dong, D.L. CYP450 induction based drug-drug interaction and evaluation methodology. J. Int. Pharm. Res., 2011, 38, 52-57.
[14]
Bu, S.; Kim, Y.; Kim, S.; Lee, M. Effects of enzyme inducers and inhibitor on the pharmacokinetics of intravenous 2-(allylthio)pyrazine, a new chemoprotective agent, in rats. Biopharm. Drug Dispos., 2000, 21(4), 157-164.
[http://dx.doi.org/10.1002/1099-081X(200005)21:4<157:AID-BDD226>3.0.CO;2-C] [PMID: 11180194]
[15]
Bae, S.K.; Lee, S.J.; Kim, Y.H.; Kim, T.; Lee, M.G. Effects of enzyme inducers and inhibitors on the pharmacokinetics of intravenous ipriflavone in rats. J. Pharm. Pharmacol., 2005, 57, 443-452.
[http://dx.doi.org/10.1211/0022357055704] [PMID: 15831204]
[16]
Lu, T.L.; Su, L.L.; Ji, D.; Gu, W.; Mao, C.Q. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay] Zhongguo Zhongyao Zazhi, 2015, 40(18), 3524-3529.
[PMID: 26983193]
[17]
Bonaldo, G.; Andriani, L.A.; D’Annibali, O.; Motola, D.; Vaccheri, A. Cardiovascular safety of macrolide and fluoroquinolone antibiotics: an analysis of the WHO database of adverse drug reactions. Pharmacoepidem. Drug Saf., 2019, 28, 1457-1463.
[18]
Taniguchi, K.; Nakamura, A.; Tsurubuchi, K.; Ishii, A.; O’Hara, K.; Sawai, T. Appearance in Japan of highly macrolide-resistant Escherichia coli producing macrolide 2′-phosphotransferase II. Microbios, 1999, 97(388), 137-144.
[PMID: 10413869]
[19]
Yatsunami, J.; Fukuno, Y.; Nagata, M.; Tominaga, M.; Aoki, S.; Tsuruta, N.; Kawashima, M.; Taniguchi, S.; Hayashi, S. Antiangiogenic and antitumor effects of 14-membered ring macrolides on mouse B16 melanoma cells. Clin. Exp. Metastasis, 1999, 17(4), 361-367.
[http://dx.doi.org/10.1023/A:1006605725619] [PMID: 10545023]
[20]
Li, Y.; Azuma, A.; Takahashi, S.; Usuki, J.; Matsuda, K.; Aoyama, A.; Kudoh, S. Fourteen-membered ring macrolides inhibit vascular cell adhesion molecule 1 messenger RNA induction and leukocyte migration: role in preventing lung injury and fibrosis in bleomycin-challenged mice. Chest, 2002, 122(6), 2137-2145.
[http://dx.doi.org/10.1378/chest.122.6.2137] [PMID: 12475858]
[21]
Bray, B.J.; Brennan, N.J.; Perry, N.B.; Menkes, D.B.; Rosengren, R.J. Short term treatment with St. John’s wort, hypericin or hyperforin fails to induce CYP450 isoforms in the Swiss Webster mouse. Life Sci., 2002, 70(11), 1325-1335.
[http://dx.doi.org/10.1016/S0024-3205(01)01499-0] [PMID: 11883710]
[22]
Lowry, J.A.; Kearns, G.L.; Abdel-Rahman, S.M.; Nafziger, A.N.; Khan, I.S.; Kashuba, A.D.; Schuetz, E.G.; Bertino, J.S., Jr; van den Anker, J.N.; Leeder, J.S. Cisapride: a potential model substrate to assess cytochrome P4503A4 activity in vivo. Clin. Pharmacol. Ther., 2003, 73(3), 209-222.
[http://dx.doi.org/10.1067/mcp.2003.29] [PMID: 12621386]
[23]
Wong, S.L.; Cao, G.; Mack, R.J.; Granneman, G.R. The effect of erythromycin on the CYP3A component of sertindole clearance in healthy volunteers. J. Clin. Pharmacol., 1997, 37(11), 1056-1061.
[http://dx.doi.org/10.1002/j.1552-4604.1997.tb04287.x] [PMID: 9505999]
[24]
Shah, S.S.; Sasaki, K.; Hayashi, Y.; Motoyama, S.; Helmi, A.R.; Khalil, W.F.; Shimoda, M. Inhibitory effects of ketoconazole, cimetidine and erythromycin on hepatic CYP3A activities in cats. J. Vet. Med. Sci., 2009, 71(9), 1151-1159.
[http://dx.doi.org/10.1292/jvms.71.1151] [PMID: 19801894]
[25]
Parasrampuria, D.A.; Mendell, J.; Shi, M.; Matsushima, N.; Zahir, H.; Truitt, K. Edoxaban drug-drug interactions with ketoconazole, erythromycin, and cyclosporine. Br. J. Clin. Pharmacol., 2016, 82(6), 1591-1600.
[http://dx.doi.org/10.1111/bcp.13092] [PMID: 27530188]
[26]
Akiyoshi, T.; Ito, M.; Murase, S.; Miyazaki, M.; Guengerich, F.P.; Nakamura, K.; Yamamoto, K.; Ohtani, H. Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants. Drug Metab. Pharmacokinet., 2013, 28(5), 411-415.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RG-134] [PMID: 23514827]
[27]
McGinnity, D.F.; Berry, A.J.; Kenny, J.R.; Grime, K.; Riley, R.J. Evaluation of time-dependent cytochrome P450 inhibition using cultured human hepatocytes. Drug Metab. Dispos., 2006, 34(8), 1291-1300.
[http://dx.doi.org/10.1124/dmd.106.009969] [PMID: 16679385]
[28]
Yamazaki, H.; Hiroki, S.; Urano, T.; Inoue, K.; Shimada, T. Effects of roxithromycin, erythromycin and troleandomycin on their N-demethylation by rat and human cytochrome P450 enzymes. Xenobiotica, 1996, 26(11), 1143-1153.
[http://dx.doi.org/10.3109/00498259609050259] [PMID: 8948090]
[29]
Freeman, D.J.; Martell, R.; Carruthers, S.G.; Heinrichs, D.; Keown, P.A.; Stiller, C.R. Cyclosporin-erythromycin interaction in normal subjects. Br. J. Clin. Pharmacol., 1987, 23(6), 776-778.
[PMID: 3606938]
[30]
Lampen, A.; Christians, U.; Guengerich, F.P.; Watkins, P.B.; Kolars, J.C.; Bader, A.; Gonschior, A-K.; Dralle, H.; Hackbarth, I.; Sewing, K-F. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab. Dispos., 1995, 23(12), 1315-1324.
[PMID: 8689938]
[31]
Główka, E.; Wosicka-Frąckowiak, H.; Hyla, K.; Stefanowska, J.; Jastrzębska, K.; Klapiszewski, Ł.; Jesionowski, T.; Cal, K. Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles. Eur. J. Pharm. Biopharm., 2014, 88(1), 75-84.
[http://dx.doi.org/10.1016/j.ejpb.2014.06.019] [PMID: 25014763]
[32]
Biradar, S.V.; Patil, A.R.; Sudarsan, G.V.; Pokharkar, V.B. A comparative study of approaches used to improve solubility of roxithromycin. Powder Technol., 2006, 169, 22-32.
[http://dx.doi.org/10.1016/j.powtec.2006.07.016]
[33]
Ostrowski, M.; Wilkowska, E.; Bączek, T. Impact of pharmaceutical dosage form on stability and dissolution of roxithromycin. Open Med., 2010, 5, 83-90.
[http://dx.doi.org/10.2478/s11536-009-0113-7]
[34]
Qin, Y.; Xu, W.; Mo, L.; Li, X.; Ge, B.; Xiong, J.; Gao, L.; Xu, P.; Xue, M. Comparison of pharmacokinetics and tissue distribution kinetics of roxithromycin and expression of CYP 3A1 between pregnant mice and foetuses. Basic Clin. Pharmacol. Toxicol., 2017, 120(2), 146-151.
[http://dx.doi.org/10.1111/bcpt.12668] [PMID: 27611991]
[35]
Kaufmann, P.; Haschke, M.; Török, M.; Beltinger, J.; Bogman, K.; Wenk, M.; Terracciano, L.; Krähenbühl, S. Mechanisms of venoocclusive disease resulting from the combination of cyclophosphamide and roxithromycin. Ther. Drug Monit., 2006, 28(6), 766-774.
[http://dx.doi.org/10.1097/01.ftd.0000249943.85160.13] [PMID: 17164692]
[36]
Birkett, D.J.; Robson, R.A.; Grgurinovich, N.; Tonkin, A. Single oral dose pharmacokinetics of erythromycin and roxithromycin and the effects of chronic dosing. Ther. Drug Monit., 1990, 12(1), 65-71.
[http://dx.doi.org/10.1097/00007691-199001000-00012] [PMID: 2305423]
[37]
Aceva, R.; Blazevska, T.; Malinkov, I.; Darkovska-Serafimovska, M.; Gjorgjev, A.; Arsova-Sarafinovska, Z. A study of the interaction of roxithromycin with theophylline in asthma patients. In 35th International Medical Scientific Congress for medical students and young doctors, Ohrid, MacedoniaMay 10-13, 2012
[38]
Francavilla, R.; Lionetti, E.; Castellaneta, S.; Margiotta, M.; Piscitelli, D.; Lorenzo, L.; Cavallo, L.; Ierardi, E. Clarithromycin-resistant genotypes and eradication of Helicobacter pylori. J. Pediatr., 2010, 157(2), 228-232.
[http://dx.doi.org/10.1016/j.jpeds.2010.02.007] [PMID: 20400110]
[39]
Bruce, M.A.; Hall, S.D.; Haehner-Daniels, B.D.; Gorski, J.C. In vivo effect of clarithromycin on multiple cytochrome P450s. Drug Metab. Dispos., 2001, 29(7), 1023-1028.
[PMID: 11408369]
[40]
Michaud, V.; Turgeon, J. Assessment of competitive and mechanism-based inhibition by clarithromycin: use of domperidone as a CYP3A probe-drug substrate and various enzymatic sources including a new cell-based assay with freshly isolated human hepatocytes. Drug Metab. Lett., 2010, 4(2), 69-76.
[http://dx.doi.org/10.2174/187231210791292717] [PMID: 20446912]
[41]
Kuper, J.I.; D’Aprile, M. Drug-drug interactions of clinical significance in the treatment of patients with Mycobacterium avium complex disease. Clin. Pharmacokinet., 2000, 39(3), 203-214.
[http://dx.doi.org/10.2165/00003088-200039030-00003] [PMID: 11020135]
[42]
Moj, D.; Hanke, N.; Britz, H.; Frechen, S.; Kanacher, T.; Wendl, T.; Haefeli, W.E.; Lehr, T. Clarithromycin, midazolam, and digoxin: application of PBPK modeling to gain new insights into drug-drug interactions and co-medication regimens. AAPS J., 2017, 19(1), 298-312.
[http://dx.doi.org/10.1208/s12248-016-0009-9] [PMID: 27822600]
[43]
Uzzan, B.; Nicolas, P.; Perret, G.; Vassy, R.; Tod, M.; Petitjean, O. Effects of troleandomycin and josamycin on thyroid hormone and steroid serum levels, liver function tests and microsomal monooxygenases in healthy volunteers: a double blind placebo-controlled study. Fundam. Clin. Pharmacol., 1991, 5(6), 513-526.
[http://dx.doi.org/10.1111/j.1472-8206.1991.tb00738.x] [PMID: 1955196]
[44]
Huang, Z.; Roy, P.; Waxman, D.J. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem. Pharmacol., 2000, 59(8), 961-972.
[http://dx.doi.org/10.1016/S0006-2952(99)00410-4] [PMID: 10692561]
[45]
Sheng, L.; Tan, W.; Hu, J.P.; Chen, H.; Li, Y. [Effect of CYP3A and P-glycoprotein on the absorption of buagafuran in rat intestinal lumen] Yao Xue Xue Bao, 2010, 45(1), 43-48.
[PMID: 21351448]
[46]
Ledirac, N.; de Sousa, G.; Fontaine, F.; Agouridas, C.; Gugenheim, J.; Lorenzon, G.; Rahmani, R. Effects of macrolide antibiotics on CYP3A expression in human and rat hepatocytes: interspecies differences in response to troleandomycin. Drug Metab. Dispos., 2000, 28(12), 1391-1393.
[PMID: 11095572]
[47]
Grimsley, A.; Gallagher, R.; Hutchison, M.; Pickup, K.; Wilson, I.D.; Samuelsson, K. Drug-drug interactions and metabolism in cytochrome P450 2C knockout mice: application to troleandomycin and midazolam. Biochem. Pharmacol., 2013, 86(4), 529-538.
[http://dx.doi.org/10.1016/j.bcp.2013.05.015] [PMID: 23732297]
[48]
Togami, K.; Chono, S.; Seki, T.; Morimoto, K. Aerosol-based efficient delivery of telithromycin, a ketolide antimicrobial agent, to lung epithelial lining fluid and alveolar macrophages for treatment of respiratory infections. Drug Dev. Ind. Pharm., 2010, 36(7), 861-866.
[http://dx.doi.org/10.3109/03639040903551319] [PMID: 20515406]
[49]
Edlund, C.; Alván, G.; Barkholt, L.; Vacheron, F.; Nord, C.E. Pharmacokinetics and comparative effects of telithromycin (HMR 3647) and clarithromycin on the oropharyngeal and intestinal microflora. J. Antimicrob. Chemother., 2000, 46(5), 741-749.
[http://dx.doi.org/10.1093/jac/46.5.741] [PMID: 11062193]
[50]
Cobos-Trigueros, N.; Ateka, O.; Pitart, C.; Vila, J. [Macrolides and ketolides] Enferm. Infecc. Microbiol. Clin., 2009, 27(7), 412-418.
[http://dx.doi.org/10.1016/j.eimc.2009.06.002] [PMID: 19625112]
[51]
Sharma, P.; Butters, C.J.; Smith, V.; Elsby, R.; Surry, D. Prediction of the in vivo OATP1B1-mediated drug-drug interaction potential of an investigational drug against a range of statins. Eur. J. Pharm. Sci., 2012, 47(1), 244-255.
[http://dx.doi.org/10.1016/j.ejps.2012.04.003] [PMID: 22538052]
[52]
Reese, M.J.; Wurm, R.M.; Muir, K.T.; Generaux, G.T.; St John-Williams, L.; McConn, D.J. An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug-drug interaction. Drug Metab. Dispos., 2008, 36(7), 1198-1201.
[http://dx.doi.org/10.1124/dmd.107.020198] [PMID: 18420781]
[53]
Grönlund, J.; Saari, T.; Hagelberg, N.; Martikainen, I.K.; Neuvonen, P.J.; Olkkola, K.T.; Laine, K. Effect of telithromycin on the pharmacokinetics and pharmacodynamics of oral oxycodone. J. Clin. Pharmacol., 2010, 50(1), 101-108.
[http://dx.doi.org/10.1177/0091270009336444] [PMID: 19755414]
[54]
Nosaka, H.; Nadai, M.; Kato, M.; Yasui, K.; Yoshizumi, H.; Miyoshi, M.; Zhao, Y.L.; Baba, K.; Takagi, K.; Hasegawa, T. Effect of a newly developed ketolide antibiotic, telithromycin, on metabolism of theophylline and expression of cytochrome P450 in rats. Life Sci., 2006, 79(1), 50-56.
[http://dx.doi.org/10.1016/j.lfs.2005.12.022] [PMID: 16423372]
[55]
Lee, J.H.; Kang, H.E.; Lee, M.G. Pharmacokinetic interaction between telithromycin and metformin in diabetes mellitus rats. Xenobiotica, 2010, 40(3), 217-224.
[http://dx.doi.org/10.3109/00498250903470248] [PMID: 20039777]
[56]
Golikova, M.V.; Strukova, E.N.; Portnoy, Y.A.; Dovzhenko, S.A.; Kobrin, M.B.; Zinner, S.H.; Firsov, A.A. Resistance studies with Streptococcus pneumoniae using an in vitro dynamic model: amoxicillin versus azithromycin at clinical exposures. J. Chemother., 2019, 31(5), 252-260.
[http://dx.doi.org/10.1080/1120009X.2019.1623361] [PMID: 31179907]
[57]
Togami, K.; Hayashi, Y.; Chono, S.; Morimoto, K. Involvement of intestinal permeability in the oral absorption of clarithromycin and telithromycin. Biopharm. Drug Dispos., 2014, 35(6), 321-329.
[http://dx.doi.org/10.1002/bdd.1900] [PMID: 24801141]
[58]
Greenblatt, D.J.; Harmatz, J.S. Ritonavir is the best alternative to ketoconazole as an index inhibitor of cytochrome P450-3A in drug-drug interaction studies. Br. J. Clin. Pharmacol., 2015, 80(3), 342-350.
[http://dx.doi.org/10.1111/bcp.12668] [PMID: 25923589]
[59]
Fan, X-M. Efficiency of azithromycin and tobramycin drug combination on Pseudomonas aeruginosa. Lab. Med., 2017, 32, 879-882.
[60]
Soltow, S.M.; Brenner, G.M. Synergistic activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. Antimicrob. Agents Chemother., 2007, 51(1), 23-27.
[http://dx.doi.org/10.1128/AAC.00788-06] [PMID: 17060522]
[61]
Civitareale, C.; Fiori, M.; Ballerini, A.; Brambilla, G. Identification and quantification method of spiramycin and tylosin in feedingstuffs with HPLC-UV/DAD at 1 ppm level. J. Pharm. Biomed. Anal., 2004, 36(2), 317-325.
[http://dx.doi.org/10.1016/j.jpba.2004.06.010] [PMID: 15496324]
[62]
von Rosensteil, N.A.; Adam, D. Macrolide antibacterials. Drug interactions of clinical significance. Drug Saf., 1995, 13(2), 105-122.
[PMID: 7576262]
[63]
Kit, C.W.; Segarra, I. Simultaneous HPLC determination of metronidazole and spiramycin in plasma and brain of mouse. Curr. Pharm. Anal., 2011, 7, 262-267.
[http://dx.doi.org/10.2174/157341211797458032]
[64]
El-Mahmoudy, A.; Gheith, I. The anti-nociceptive potential of tilmicosin against chemical-induced but not thermal-induced pain in mice. Int. J. Immunopathol. Pharmacol., 2016, 29(1), 9-16.
[http://dx.doi.org/10.1177/0394632015593232] [PMID: 26519523]
[65]
Eng, H-S.; Mohamed, Z.; Calne, R.; Lang, C.C.; Mohd, M.A.; Seet, W-T.; Tan, S-Y. The influence of CYP3A gene polymorphisms on cyclosporine dose requirement in renal allograft recipients. Kidney Int., 2006, 69(10), 1858-1864.
[http://dx.doi.org/10.1038/sj.ki.5000325] [PMID: 16612333]
[66]
Misu, T.; Arai, S.; Furukawa, M.; Yamamoto, Y.; Miyazaki, T. Effects of rokitamycin and other macrolide antibiotics on Mycoplasma pneumoniae in L cells. Antimicrob. Agents Chemother., 1987, 31(11), 1843-1845.
[http://dx.doi.org/10.1128/AAC.31.11.1843] [PMID: 3124740]
[67]
Gavini, E.; Rassu, G.; Ferraro, L.; Generosi, A.; Rau, J.V.; Brunetti, A.; Giunchedi, P.; Dalpiaz, A. Influence of chitosan glutamate on the in vivo intranasal absorption of rokitamycin from microspheres. J. Pharm. Sci., 2011, 100(4), 1488-1502.
[http://dx.doi.org/10.1002/jps.22382] [PMID: 24081472]
[68]
Zhao, X-J.; Koyama, E.; Ishizaki, T. An in vitro study on the metabolism and possible drug interactions of rokitamycin, a macrolide antibiotic, using human liver microsomes. Drug Metab. Dispos., 1999, 27(7), 776-785.
[PMID: 10383920]
[69]
Miura, T.; Iwasaki, M.; Komori, M.; Ohi, H.; Kitada, M.; Mitsui, H.; Kamataki, T. Decrease in a constitutive form of cytochrome P-450 by macrolide antibiotics. J. Antimicrob. Chemother., 1989, 24(4), 551-559.
[http://dx.doi.org/10.1093/jac/24.4.551] [PMID: 2515189]
[70]
Drljević-Djurić, K.; Ivić, M.A.; Petrović, S.D.; Mijin, D.; Jadranin, M. A voltammetric method for the quantitative determination of midecamycin compared to its simultaneous HPLC determination. Russ. J. Electrochem., 2011, 47, 781-786.
[http://dx.doi.org/10.1134/S1023193511070056]
[71]
Alfonso, I.; Alcalde, G.; García-Sáiz, M.; de Cos, M.A.; Mediavilla, A. Interaction between cyclosporine A and midecamycin. Eur. J. Clin. Pharmacol., 1997, 52(1), 79-80.
[http://dx.doi.org/10.1007/s002280050253] [PMID: 9143873]
[72]
Lovmar, M.; Tenson, T.; Ehrenberg, M. Kinetics of macrolide action: the josamycin and erythromycin cases. J. Biol. Chem., 2004, 279(51), 53506-53515.
[http://dx.doi.org/10.1074/jbc.M401625200] [PMID: 15385552]
[73]
Naritomi, Y.; Teramura, Y.; Terashita, S.; Kagayama, A. Utility of microtiter plate assays for human cytochrome P450 inhibition studies in drug discovery: application of simple method for detecting quasi-irreversible and irreversible inhibitors. Drug Metab. Pharmacokinet., 2004, 19(1), 55-61.
[http://dx.doi.org/10.2133/dmpk.19.55] [PMID: 15499170]
[74]
Levy, R.H. Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia, 1995, 36(Suppl. 5), S8-S13.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb06007.x] [PMID: 8806399]
[75]
Granja, R.; Niño, A.M.; Zucchetti, R.; Niño, R.M.; Patel, R.; Salerno, A.G. Determination of erythromycin and tylosin residues in honey by LC/MS/MS. J. AOAC Int., 2009, 92(3), 975-980.
[http://dx.doi.org/10.1093/jaoac/92.3.975] [PMID: 19610392]
[76]
Chu, I.; Favreau, L.; Soares, T.; Lin, Cc.; Nomeir, A.A. Validation of higher-throughput high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry assays to conduct cytochrome P450s CYP2D6 and CYP3A4 enzyme inhibition studies in human liver microsomes. Rapid Commun. Mass Spectrom., 2000, 14(4), 207-214.
[http://dx.doi.org/10.1002/(SICI)1097-0231(20000229)14:4<207:AID-RCM863>3.0.CO;2-#] [PMID: 10669878]
[77]
Jiang, J.; Wang, J.; Cai, H.; Li, K.; Deng, Y. CYP3As catalyze nifedipine oxidation in pig liver microsomes: enzyme kinetics, inhibition and functional expression. Catal. Commun., 2011, 12, 694-697.
[http://dx.doi.org/10.1016/j.catcom.2010.12.031]
[78]
Persić-Vojinović, S.; Milavec-Puretić, V.; Dobrić, I.; Rados, J.; Spoljar, S. Disseminated Hailey-Hailey disease treated with topical tacrolimus and oral erythromycin: case report and review of the literature. Acta Dermatovenerol. Croat., 2006, 14(4), 253-257.
[PMID: 17311740]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy