Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Novel Aceclofenac Cocrystals with l-Cystine: Virtual Coformer Screening, Mechanochemical Synthesis, and Physicochemical Investigations

Author(s): Saroj Kumar*, Amresh Gupta, Rammani Prasad and Satyawan Singh

Volume 18, Issue 1, 2021

Published on: 17 August, 2020

Page: [88 - 100] Pages: 13

DOI: 10.2174/1567201817666200817110949

Price: $65

Abstract

Aim: Current work focuses on the improvement of the solubility and dissolution of ACF by the cocrystal approach.

Background: Aceclofenac (ACF) is one of the commonly used Nonsteroidal Anti-Inflammatory Drug (NSAID) representing a variety of therapeutic applications including management of pain, inflammation, rheumatoid arthritis, and osteoarthritis, etc. But very low solubility and dissolution rate of ACF compromise its therapeutic utility. Now a day’s cocrystallization technique has emerged as a novel technique for modulation of the said problems.

Objective: The Specific objectives of this research work were mechanochemical synthesis, characterization, and performance evaluation of aceclofenac cocrystal.

Methods: ACF was screened with various pharmaceutically acceptable coformers (Selected from GRAS and EAFUS list) using MOPAC software and physical screening method to find out novel cocrystals of ACF with enhanced solubility and dissolution rate. Novel cocrystals (multi-component crystalline solid) of ACF with l-cystine were prepared by a neat grinding method and by liquid assisted grinding method. The synthesized cocrystals (ACF-l-CYS NG and ACF-l-CYS LAG) were characterized carefully by Differential Scanning Calorimetry (DSC), Infrared Spectroscopy (IR), and Powder XRay Diffraction (PXRD) to verify the formation of the cocrystals. Pharmaceutically significant properties such as powder dissolution rate, solubility, and stability of the prepared cocrystals were evaluated.

Results: Compared to pure ACF, the prepared cocrystals showed superior solubility and dissolution rate. The prepared cocrystals were found to be stable and non-hygroscopic under study conditions.

Conclusion: The cocrystallization technique was successfully utilized to increase the solubility and dissolution rate of aceclofenac.

Keywords: Cocrystal, aceclofenac, mechanochemical synthesis, virtual screening, solubility study, bioavailability study.

Graphical Abstract
[1]
Aceclofenac. DrugBank, Accession No. DB06736. Available at:. https://www.drugbank.ca/drugs/DB06736
[2]
Moffat, A.C.; Osselton, M.D.; Widdop, B. Clarke’s analysis of drugs and poisons. 4rth Ed: Moffat, A.C.; Osselton, M.D.; Widdop, B., Eds.; Pharmaceutical Press, 2011, pp. 2736..
[3]
Somberg, J. Martindale: the complete drug reference. Am. J. Ther., 2005, 12(5), 472.
[PMID: 16148421]
[4]
Moore, R.A.; Derry, S.; McQuay, H.J. Single dose oral aceclofenac for postoperative pain in adults. Cochrane Database Syst. Rev., 2009, (3)CD007588
[http://dx.doi.org/10.1002/14651858.CD007588.pub2] [PMID: 19588436]
[5]
Dooley, M.; Spencer, C.M.; Dunn, C.J. Aceclofenac: a reappraisal of its use in the management of pain and rheumatic disease. Drugs, 2001, 61(9), 1351-1378.
[http://dx.doi.org/10.2165/00003495-200161090-00012] [PMID: 11511027]
[6]
Brogden, R.N.; Wiseman, L.R. Aceclofenac. A review of its pharmacodynamic properties and therapeutic potential in the treatment of rheumatic disorders and in pain management. Drugs, 1996, 52(1), 113-124.
[http://dx.doi.org/10.2165/00003495-199652010-00008] [PMID: 8799688]
[7]
Pareek, A.; Chandurkar, N. Comparison of gastrointestinal safety and tolerability of aceclofenac with diclofenac: a multicenter, randomized, double-blind study in patients with knee osteoarthritis. Curr. Med. Res. Opin., 2013, 29(7), 849-859.
[http://dx.doi.org/10.1185/03007995.2013.795139] [PMID: 23581533]
[8]
Vadher, A.H.; Parikh, J.R.; Parikh, R.H.; Solanki, A.B. Preparation and characterization of co-grinded mixtures of aceclofenac and neusilin US2 for dissolution enhancement of aceclofenac. AAPS PharmSciTech, 2009, 10(2), 606-614.
[http://dx.doi.org/10.1208/s12249-009-9221-6] [PMID: 19444620]
[9]
Verma, S.; Nanda, A.; Basu, S.P. Improvement of solubility and bioavailability of aceclofenac using cocrystallization. Drug Invent. Today, 2019, 11(1), 59-63.
[10]
Chandel, N.; Gupta, V.; Pandey, A.; Saxena, S.; Choudhary, S. Co-crystalization of aceclofenac and paracetamol and their characterization. Int. J. Pharm. Life Sci., 2011, 2(8), 1020-1028.
[11]
Goud, N.R.; Suresh, K.; Nangia, A. Solubility and stability advantage of aceclofenac salts. Cryst. Growth Des., 2013, 13(4), 1590-1601.
[http://dx.doi.org/10.1021/cg301825u]
[12]
Sohrab, M.; Mahapatra, S.P.; Tiwari, S. Enhancement of dissolution rate of aceclofenac by formation of aceclofenac-nicotinic acid cocrystal using water soluble polymers like PVPK-30, HPMCE5, SSG and Na-CMC. Indo Glob. J. Pharm. Sci., 2015, 5(3), 154-170.
[13]
Abdul-Fattah, A.M.; Bhargava, H.N. Preparation and in vitro evaluation of solid dispersions of halofantrine. Int. J. Pharm., 2002, 235(1-2), 17-33.
[http://dx.doi.org/10.1016/S0378-5173(01)00941-3] [PMID: 11879736]
[14]
Paudwal, G.; Rawat, N.; Gupta, R.; Baldi, A.; Singh, G.; Gupta, P.N. Recent advances in solid dispersion technology for efficient delivery of poorly water-soluble drugs. Curr. Pharm. Des., 2019, 25(13), 1524-1535.
[http://dx.doi.org/10.2174/1381612825666190618121553] [PMID: 31258070]
[15]
Liebenberg, W.; de Villiers, M.M.; Wurster, D.E.; Swanepoel, E.; Dekker, T.G.; Lötter, A.P. The effect of polymorphism on powder compaction and dissolution properties of chemically equivalent oxytetracycline hydrochloride powders. Drug Dev. Ind. Pharm., 1999, 25(9), 1027-1033.
[http://dx.doi.org/10.1081/DDC-100102265] [PMID: 10518242]
[16]
Moribe, K.; Tozuka, Y.; Yamamoto, K. Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation. Adv. Drug Deliv. Rev., 2008, 60(3), 328-338.
[http://dx.doi.org/10.1016/j.addr.2007.03.023] [PMID: 18006109]
[17]
Robert, C.; Crystal, L. Crystal engineering approaches to controlling the formation of molecular complexes and their polymorphs. J. Am. Chem. Soc., 2012, 4-390.
[18]
Rasenack, N.; Steckel, H.; Müller, B.W. Micronization of anti-inflammatory drugs for pulmonary delivery by a controlled crystallization process. J. Pharm. Sci., 2003, 92(1), 35-44.
[http://dx.doi.org/10.1002/jps.10274] [PMID: 12486680]
[19]
Liu, P. Nanocrystal formulation for poorly soluble drugs; HELDA, 2013, pp. 1-70.
[20]
Park, J.J.; Meghani, N.; Choi, J.S.; Lee, B.J. Development and evaluation of decorated aceclofenac nanocrystals. Colloids Surf. B Biointerfaces, 2016, 143, 206-212.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.022] [PMID: 27011350]
[21]
Merisko-Liversidge, E.; Liversidge, G.G.; Cooper, E.R. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci., 2003, 18(2), 113-120.
[http://dx.doi.org/10.1016/S0928-0987(02)00251-8] [PMID: 12594003]
[22]
Cugovčan, M.; Jablan, J.; Lovrić, J.; Cinčić, D.; Galić, N.; Jug, M. Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. J. Pharm. Biomed. Anal., 2017, 137, 42-53.
[http://dx.doi.org/10.1016/j.jpba.2017.01.025] [PMID: 28092854]
[23]
Wen, X.; Tan, F.; Jing, Z.; Liu, Z. Preparation and study the 1:2 inclusion complex of carvedilol with β-cyclodextrin. J. Pharm. Biomed. Anal., 2004, 34(3), 517-523.
[http://dx.doi.org/10.1016/S0731-7085(03)00576-4] [PMID: 15127807]
[24]
Basavoju, S.; Bostrom, D.; Velaga, P. Pharmaceutical cocrystals and salts of norfloxacin. Cryst. Growth Des., 2006, 6(12), 2699-2708.
[http://dx.doi.org/10.1021/cg060327x]
[25]
Cerreia Vioglio, P.; Chierotti, M.R.; Gobetto, R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev., 2017, 117, 86-110.
[http://dx.doi.org/10.1016/j.addr.2017.07.001] [PMID: 28687273]
[26]
Sreenivas Reddy, L.; Bethune, S.J.; Kampf, J.W.; Rodríguez-Hornedo, N. Cocrystals and salts of gabapentin: pH dependent cocrystal stability and solubility. Cryst. Growth Des., 2009, 9(1), 378-385.
[http://dx.doi.org/10.1021/cg800587y]
[27]
Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int. J. Pharm., 2011, 420(1), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.032] [PMID: 21884771]
[28]
Huang, N.; Rodríguez-Hornedo, N. Effect of micellar solubilization on cocrystal solubility and stability. Cryst. Growth Des., 2010, 10(5), 2050-2053.
[http://dx.doi.org/10.1021/cg1002176]
[29]
Chen, X.; Fadda, H.M.; Aburub, A.; Mishra, D.; Pinal, R. Cosolvency approach for assessing the solubility of drugs in poly(vinylpyrrolidone). Int. J. Pharm., 2015, 494(1), 346-356.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.016] [PMID: 26272850]
[30]
Sevukarajan, M.; Parveen, S.S.; Nair, R.; Badivaddin, T.M. Preparation and characterization of aceclofenac salt by using triethanolamine. J. Pharm. Sci. Res., 2011, 3(6), 1280-1283.
[31]
Maulvi, F.A.; Dalwadi, S.J.; Thakkar, V.T.; Soni, T.G.; Gohel, M.C.; Gandhi, T.R. Improvement of dissolution rate of aceclofenac by solid dispersion technique. Powder Technol., 2011, 207(1-3), 47-54.
[http://dx.doi.org/10.1016/j.powtec.2010.10.009]
[32]
Muatlik, S.; Usha, A.N.; Reddy, M.S.; Ranjith, A.K.; Pandey, S. Improved bioavailability of aceclofenac from spherical agglomerates: development, in vitro and preclinical studies. Pak. J. Pharm. Sci., 2007, 20(3), 218-226.
[PMID: 17545107]
[33]
Dua, K.; Pabreja, K.; Ramana, M.V.; Lather, V. Dissolution behavior of β-cyclodextrin molecular inclusion complexes of aceclofenac. J. Pharm. Bioallied Sci., 2011, 3(3), 417-425.
[http://dx.doi.org/10.4103/0975-7406.84457] [PMID: 21966164]
[34]
Shan, N.; Zaworotko, M.J. The role of cocrystals in pharmaceutical science. Drug Discov. Today, 2008, 13(9-10), 440-446.
[http://dx.doi.org/10.1016/j.drudis.2008.03.004] [PMID: 18468562]
[35]
Perlovich, G.L.; Manin, A.N. Design of pharmaceutical cocrystals for drug solubility improvement. Russ. J. Gen. Chem., 2014, 56(3), 146-154.
[36]
Almarsson, Ö.; Peterson, M.L.; Zaworotko, M. The A to Z of pharmaceutical cocrystals: a decade of fast-moving new science and patents. Pharm. Pat. Anal., 2012, 1(3), 313-327.
[http://dx.doi.org/10.4155/ppa.12.29] [PMID: 24236844]
[37]
Lindeman, J.A. Pharmaceutical cocrystals and their physicochemical properties. Am. Chem. Soc., 2009, 9(6), 2950-2967.
[38]
Zalte, A.G.; Darekar, A.B.; Gondkar, S.B. Cocrystals: an emerging approach to modify physicochemical properties of drugs. Am. J. PharmTech Res., 2014, 4, 22.
[39]
Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: an overview. Int. J. Pharm., 2011, 419(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.037] [PMID: 21827842]
[40]
Bolla, G.; Nangia, A. Pharmaceutical cocrystals: walking the talk. Chem. Commun. (Camb.), 2016, 52(54), 8342-8360.
[http://dx.doi.org/10.1039/C6CC02943D] [PMID: 27278109]
[41]
Sevukarajan, M.; Thanuja, B.; Sodanapalli, R.; Nair, R. Synthesis and characterization of a pharmaceutical co-crystal : (aceclofenac : nicotinamide). J. Pharm. Sci. Res., 2011, 3(6), 1288-1293.
[42]
Ganesh, M.; Jeon, U.J.; Ubaidulla, U.; Hemalatha, P.; Saravanakumar, A.; Peng, M.M.; Jang, H.T. Chitosan cocrystals embedded alginate beads for enhancing the solubility and bioavailability of aceclofenac. Int. J. Biol. Macromol., 2015, 74, 310-317.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.038] [PMID: 25557368]
[43]
Sharma, G.; Saini, M.K.; Thakur, K.; Kapil, N.; Garg, N.K.; Raza, K.; Goni, V.G.; Pareek, A.; Katare, O.P. Aceclofenac cocrystal nanoliposomes for rheumatoid arthritis with better dermatokinetic attributes: a preclinical study. Nanomedicine, 2017, 12(6), 615-638..
[http://dx.doi.org/10.2217/nnm-2016-0405] [PMID: 28186461]
[44]
Verma, S.; Nanda, A.; Basu, S.P. Screening, preparation, and characterization of aceclofenac cocrystals. Aceclofenac Cocrystals., 2019, 11(1), 81-87.
[45]
Aakeröy, C.B.; Grommet, A.B.; Desper, J. Co-crystal screening of diclofenac. Pharmaceutics, 2011, 3(3), 601-614.
[http://dx.doi.org/10.3390/pharmaceutics3030601] [PMID: 24310599]
[46]
Aini, N.; Rosli, B. Carbamazepine-ibuprofen co-crystal screening using non-stoichiometric method. MALRep., 2014, pp. 1-24..
[47]
Yuliandra, Y.; Zaini, E.; Syofyan, S.; Pratiwi, W.; Putri, L.N.; Pratiwi, Y.S.; Arifin, H. Cocrystal of Ibuprofen-nicotinamide: solid-state characterization and in vivo analgesic activity evaluation. Sci. Pharm., 2018, 86(2)E23
[http://dx.doi.org/10.3390/scipharm86020023] [PMID: 29867030]
[48]
Basavoju, S.; Boström, D.; Velaga, S.P. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm. Res., 2008, 25(3), 530-541.
[http://dx.doi.org/10.1007/s11095-007-9394-1] [PMID: 17703346]
[49]
Ferretti, V.; Dalpiaz, A.; Bertolasi, V.; Ferraro, L.; Beggiato, S.; Spizzo, F.; Spisni, E.; Pavan, B. Indomethacin co-crystals and their parent mixtures: does the intestinal barrier recognize them differently? Mol. Pharm., 2015, 12(5), 1501-1511.
[http://dx.doi.org/10.1021/mp500826y] [PMID: 25794305]
[50]
Panzade, P.; Shendarkar, G.; Shaikh, S.; Balmukund Rathi, P. Pharmaceutical cocrystal of piroxicam: design, formulation and evaluation. Adv. Pharm. Bull., 2017, 7(3), 399-408.
[http://dx.doi.org/10.15171/apb.2017.048] [PMID: 29071222]
[51]
Emami, S.; Adibkia, K.; Barzegar-Jalali, M.; Siahi-Shadbad, M. Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties. Pharm. Dev. Technol., 2018, 0(0), 1-12.
[PMID: 29557714]
[52]
Li, D.; Li, J.; Deng, Z.; Zhang, H. Piroxicam-clonixin drug-drug cocrystal solvates with enhanced hydration stability. CrystEngComm, 2019, 21(28), 4145-4149.
[http://dx.doi.org/10.1039/C9CE00666D]
[53]
Pathak, C.D.; Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Cocrystal formation of paracetamol with indomethacin and mefenamic acid: an efficient approach to enhance solubility. Int. J. Pharm. Pharm. Sci., 2013, 5(4), 414-419.
[54]
Nechipadappu, S.K.; Tekuri, V.; Trivedi, D.R. Pharmaceutical co-crystal of flufenamic acid: synthesis and characterization of two novel drug-drug co-crystal. J. Pharm. Sci., 2017, 106(5), 1384-1390.
[http://dx.doi.org/10.1016/j.xphs.2017.01.033] [PMID: 28185907]
[55]
SCOGS (Select Committee on GRAS Substances). https://www. accessdata.fda.gov/scripts/fdcc/?set=SCOGS
[57]
Oliveira, M.A.; Peterson, M.L.; Davey, R.J. Relative enthalpy of formation for co-crystals of small organic molecules. Cryst. Growth Des., 2011, 11(2), 449-457.
[http://dx.doi.org/10.1021/cg101214m]
[58]
L-Cystine. C6H12N2O4S2 - PubChem,. https://pubchem.ncbi.nlm. nih.gov/compound/67678
[59]
Cystine. DrugBank, Available at:. https://www.drugbank.ca/drugs/
[60]
Douroumis, D.; Ross, S.A.; Nokhodchi, A. Advanced methodologies for cocrystal synthesis. Adv. Drug Deliv. Rev., 2017, 117, 178-195.
[http://dx.doi.org/10.1016/j.addr.2017.07.008] [PMID: 28712924]
[61]
Kumar, S.; Prakash, O.; Gupta, A.; Singh, S. Solvent-free methods for co-crystal synthesis: a review. Curr. Org. Synth., 2019, 16(3), 385-397.
[http://dx.doi.org/10.2174/1570179416666190329194926] [PMID: 31984900]
[62]
Braga, D.; Maini, L.; Grepioni, F. Mechanochemical preparation of co-crystals. Chem. Soc. Rev., 2013, 42(18), 7638-7648.
[http://dx.doi.org/10.1039/c3cs60014a] [PMID: 23549606]
[63]
Silva Filho, S.F.; Pereira, A.C.; Sarraguça, J.M.G.; Sarraguça, M.C.; Lopes, J. Façanha Filho, P.de F.; dos Santos, A.O.; da Silva Ribeiro, P.R. Synthesis of a glibenclamide cocrystal: full spectroscopic and thermal characterization. J. Pharm. Sci., 2018, 107(6), 1597-1604.
[http://dx.doi.org/10.1016/j.xphs.2018.01.029]
[64]
Blagden, N.; Coles, S.J.; Berry, D.J. Pharmaceutical co-crystals-are we there yet? CrystEngComm, 2014, 16(26), 5753-5761.
[http://dx.doi.org/10.1039/C4CE00127C]
[65]
Singhal, D.; Curatolo, W. Drug polymorphism and dosage form design: a practical perspective. Adv. Drug Deliv. Rev., 2004, 56(3), 335-347.
[http://dx.doi.org/10.1016/j.addr.2003.10.008] [PMID: 14962585]
[66]
Reggane, M.; Wiest, J.; Saedtler, M.; Harlacher, C.; Gutmann, M.; Zottnick, S.H.; Piechon, P.; Dix, I.; Müller-Buschbaum, K.; Holzgrabe, U.; Meinel, L.; Galli, B. Bioinspired co-crystals of Imatinib providing enhanced kinetic solubility. Eur. J. Pharm. Biopharm., 2018, 128, 290-299.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.012] [PMID: 29733951]
[67]
Blokhina, S.; Sharapova, A.; Ol’khovich, M.; Perlovich, G. Thermodynamic study of aceclofenac solubility, distribution and sublimation. J. Chem. Thermodyn., 2019, 137, 13-21.
[http://dx.doi.org/10.1016/j.jct.2019.05.014]
[68]
Mathur, V.; Satrawala, Y.; Rajput, M. Biopharmaceutical perform-ance and stability of co-crystal. Int. J. Pharm. Front. Res., 2011, 1(1), 135-145.
[69]
Murikipudi, V.; Gupta, P.; Sihorkar, V. Efficient throughput method for hygroscopicity classification of active and inactive pharmaceutical ingredients by water vapor sorption analysis. Pharm. Dev. Technol., 2013, 18(2), 348-358.
[http://dx.doi.org/10.3109/10837450.2011.618947] [PMID: 21981708]
[70]
Healy, A.M.; Worku, Z.A.; Kumar, D.; Madi, A.M. Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals. Adv. Drug Deliv. Rev., 2017, 117, 25-46.
[http://dx.doi.org/10.1016/j.addr.2017.03.002] [PMID: 28342786]
[71]
Trask, A.V.; Motherwell, W.D.S.; Jones, W. Physical stability enhancement of theophylline via cocrystallization. Int. J. Pharm., 2006, 320(1-2), 114-123.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.018] [PMID: 16769188]
[72]
Ullah, M.; Hussain, I.; Sun, C.C. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Drug Dev. Ind. Pharm., 2016, 42(6), 969-976.
[http://dx.doi.org/10.3109/03639045.2015.1096281] [PMID: 26460090]
[73]
Bhogala, B.R.; Basavoju, S.; Nangia, A. Tape and layer structures in cocrystals of some di- and tricarboxylic acids with 4,4′-bipyridines and isonicotinamide. From binary to ternary cocrystals. CrystEngComm, 2005, 7, 551-562.
[http://dx.doi.org/10.1039/b509162d]
[74]
Cruz-Cabeza, A.J. Acid-base crystalline complexes and the pKa rule. CrystEngComm, 2012, 14(20), 6362-6365.
[http://dx.doi.org/10.1039/c2ce26055g]
[75]
Loschen, C.; Klamt, A. COSMOtherm as a valuable tool for cocrystal screening and development. COSMOlogic, 2013, 2011, 1-9.
[76]
Loschen, C.; Klamt, A. Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering. J. Pharm. Pharmacol., 2015, 67(6), 803-811.
[http://dx.doi.org/10.1111/jphp.12376] [PMID: 25851032]
[77]
Cysewski, P. In silico screening of dicarboxylic acids for cocrystallization with phenylpiperazine derivatives based on both cocrystallization propensity and solubility advantage. J. Mol. Model., 2017, 23(4), 136.
[http://dx.doi.org/10.1007/s00894-017-3287-y] [PMID: 28349342]
[78]
Aitipamula, S.; Banerjee, R.; Bansal, A.K.; Biradha, K.; Cheney, M.L.; Choudhury, A.R.; Desiraju, G.R.; Dikundwar, A.G.; Dubey, R.; Duggirala, N. Polymorphs, salts, and cocrystals: What’s in a name? Cryst. Growth Des., 2012, 12(5), 2147-2152.
[http://dx.doi.org/10.1021/cg3002948]
[79]
Aakeröy, C.B.; Fasulo, M.E.; Desper, J. Cocrystal or salt: does it really matter? Mol. Pharm., 2007, 4(3), 317-322.
[http://dx.doi.org/10.1021/mp060126o] [PMID: 17497799]
[80]
Bavishi, D.D.; Borkhataria, C.H. Spring and parachute: how cocrystals enhance solubility. Prog. Cryst. Growth Charact. Mater., 2016, 62(3), 1-8.
[http://dx.doi.org/10.1016/j.pcrysgrow.2016.07.001]
[81]
Stanton, M.K.; Bak, A. Physicochemical properties of pharmaceutical co-crystals: a case study of ten AMG 517 co-crystals. Cryst. Growth Des., 2008, 8(10), 3856-3862.
[http://dx.doi.org/10.1021/cg800173d]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy