Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Different Pharmacokinetic Responses to an Acute Dose of Inorganic Nitrate in Patients with Type 2 Diabetes

Author(s): Zahra Bahadoran, Parvin Mirmiran, Mattias Carlström, Reza Norouzirad, Sajad Jeddi, Fereidoun Azizi and Asghar Ghasemi*

Volume 21, Issue 5, 2021

Published on: 13 August, 2020

Page: [878 - 886] Pages: 9

DOI: 10.2174/1871530320666200813135251

Price: $65

Abstract

Aim: In this study, we aimed to compare the pharmacokinetics of nitrate (NO3) in patients with type 2 diabetes mellitus (T2DM) and healthy adults. Potential effects of salivary nitrate reductase (NR) activity on cardiometabolic responses to an acute dose of NO3 was also assessed.

Methods: Nine healthy adults and nine T2DM patients were recruited to consume a NO3-rich breakfast (~410 mg NO3). Pharmacokinetics of NO3 were examined using repeated measurements of NOx (nitrate+ nitrite) concentrations of serum and saliva over 8 hours and NO3 concentrations of spot and 24-h urine samples. Cardiometabolic parameters, including serum levels of glucose, insulin, and triglycerides as well as blood pressure were also measured.

Results: Compared to patients with T2DM, serum NOx concentration (Δ1= 16.7 vs. 4.4 μmol/L, P=0.057) of healthy subjects sharply increased within 1 hour after NO3 loading. Healthy subjects had a higher NR activity index, and higher peak salivary NO3 concentration with a lower time to peak. Diabetic patients with high- compared to low-NR values had a higher whole-body NOx exposure (103±31.4 vs. 58.9±22.1 μmol.h/L); they also showed a better glycemic response and more reduction of blood pressure following ingestion of a NO3-rich meal.

Conclusion: T2DM may be associated with a different pattern of NOx pharmacokinetics (especially salivary NOx metabolism). Salivary NR activity may have a critical role in postprandial metabolism of NO3, and diabetic patients with higher NR activity may take more advantages from NO3 supplementation.

Keywords: Beetroot, nitrate, nitric oxide, nitrite, type 2 diabetes mellitus, pharmacokinetics.

Graphical Abstract
[1]
Sansbury, B.E.; Hill, B.G. Regulation of obesity and insulin resistance by nitric oxide. Free Radic. Biol. Med., 2014, 73, 383-399.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.016] [PMID: 24878261]
[2]
Lundberg, J.O.; Carlström, M.; Weitzberg, E. Metabolic effects of dietary nitrate in health and disease. Cell Metab., 2018, 28(1), 9-22.
[http://dx.doi.org/10.1016/j.cmet.2018.06.007] [PMID: 29972800]
[3]
Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov., 2008, 7(2), 156-167.
[http://dx.doi.org/10.1038/nrd2466] [PMID: 18167491]
[4]
Lundberg, J.O.; Weitzberg, E. NO generation from inorganic nitrate and nitrite: role in physiology, nutrition and therapeutics. Arch. Pharm. Res., 2009, 32(8), 1119-1126.
[http://dx.doi.org/10.1007/s12272-009-1803-z] [PMID: 19727604]
[5]
Bahadoran, Z.; Ghasemi, A.; Mirmiran, P.; Azizi, F.; Hadaegh, F. Beneficial effects of inorganic nitrate/nitrite in type 2 diabetes and its complications. Nutr. Metab. (Lond.), 2015, 12, 16.
[http://dx.doi.org/10.1186/s12986-015-0013-6] [PMID: 25991919]
[6]
Gilchrist, M.; Winyard, P.G.; Aizawa, K.; Anning, C.; Shore, A.; Benjamin, N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radic. Biol. Med., 2013, 60, 89-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.024] [PMID: 23395779]
[7]
(a)Gheibi, S.; Bakhtiarzadeh, F.; Jeddi, S.; Farrokhfall, K.; Zardooz, H.; Ghasemi, A. Nitrite increases glucose-stimulated insulin secretion and islet insulin content in obese type 2 diabetic male rats. Nitric Oxide, 2017, 64, 39-51.
[http://dx.doi.org/10.1016/j.niox.2017.01.003] [PMID: 28089828]
(b)Gheibi, S.; Jeddi, S.; Carlstrom, M.; Kashfi, K.; Ghasemi, A. Hydrogen sulfide potentiates the favorable metabolic effects of inorganic nitrite in type 2 diabetic rats. Nitric Oxide, 2019, 92, 60-72.
[http://dx.doi.org/10.1016/j.niox.2019.08.006] [PMID: 31479766]
[8]
(a)Lundberg, J.O.; Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med., 2004, 37(3), 395-400.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.027] [PMID: 15223073]
(b)Qin, L.; Liu, X.; Sun, Q.; Fan, Z.; Xia, D.; Ding, G.; Ong, H.L.; Adams, D.; Gahl, W.A.; Zheng, C.; Qi, S.; Jin, L.; Zhang, C.; Gu, L.; He, J.; Deng, D.; Ambudkar, I.S.; Wang, S. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc. Natl. Acad. Sci. USA, 2012, 109(33), 13434-13439.
[http://dx.doi.org/10.1073/pnas.1116633109] [PMID: 22778404]
[9]
Walker, R. The metabolism of dietary nitrites and nitrates. Biochem. Soc. Trans., 1996, 24(3), 780-785.
[http://dx.doi.org/10.1042/bst0240780] [PMID: 8878847]
[10]
Lundberg, J.O.; Weitzberg, E.; Cole, J.A.; Benjamin, N. Nitrate, bacteria and human health. Nat. Rev. Microbiol., 2004, 2(7), 593-602.
[http://dx.doi.org/10.1038/nrmicro929] [PMID: 15197394]
[11]
Vanhatalo, A.; Blackwell, J.R.; L’Heureux, J.E.; Williams, D.W.; Smith, A.; van der Giezen, M.; Winyard, P.G.; Kelly, J.; Jones, A.M. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic. Biol. Med., 2018, 124, 21-30.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.078] [PMID: 29807159]
[12]
(a)Kapil, V.; Haydar, S. M.; Pearl, V.; Lundberg, J. O.; Weitzberg, E.; Ahluwalia, A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic. Biol. Med., 2017, 55, 93-100.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.013] [PMID: 23183324]
(b)Bondonno, C. P.; Liu, A. H.; Croft, K. D.; Considine, M. J.; Puddey, I. B.; Woodman, R. J.; Hodgson, J. M. Antibacterial mouthwash blunts oral nitrate reduction and increases blood pressure in treated hypertensive men and women. Am. J. Hypertens., 2014, 28(5), 572-575.
[http://dx.doi.org/10.1093/ajh/hpu192] [PMID: 25359409]
(c)Joshipura, K. J.; Muñoz-Torres, F. J.; Morou-Bermudez, E.; Patel, R. P. Over-the-counter mouthwash use and risk of prediabetes/diabetes. Nitric oxide : biology and chemistry, 2017, 71, 14-20.
[http://dx.doi.org/10.1016/j.niox.2017.09.004] [PMID: 28939409]
[13]
Montenegro, M.F.; Sundqvist, M.L.; Larsen, F.J.; Zhuge, Z.; Carlström, M.; Weitzberg, E.; Lundberg, J.O. Blood pressure-lowering effect of orally ingested nitrite is abolished by a proton pump inhibitor. Hypertension, 2017, 69(1), 23-31.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08081] [PMID: 27802417]
[14]
Greenway, F.L.; Predmore, B.L.; Flanagan, D.R.; Giordano, T.; Qiu, Y.; Brandon, A.; Lefer, D.J.; Patel, R.P.; Kevil, C.G. Single-dose pharmacokinetics of different oral sodium nitrite formulations in diabetes patients. Diabetes Technol. Ther., 2012, 14(7), 552-560.
[http://dx.doi.org/10.1089/dia.2011.0291] [PMID: 22468627]
[15]
Bahadoran, Z.; Mirmiran, P.; Nourozirad, R.; Jeddi, S.; Rajab, A.; Azizi, F.; Ghasemi, A. The effects of inorganic nitrate on carbohydrate and lipid metabolism in type 2 diabetes: the protocol of a randomized placebo-controlled clinical trial. Herbal Med. J., 2018, 3(1), 31-45.
[http://dx.doi.org/10.22087/hmj.v3i1.701]
[16]
Bahadoran, Z.; Mirmiran, P.; Jeddi, S.; Azizi, F.; Ghasemi, A.; Hadaegh, F. Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats. J. Food Compos. Anal., 2016, 51, 93-105.
[http://dx.doi.org/10.1016/j.jfca.2016.06.006]
[17]
Ma, W-Y.; Yang, C-Y.; Shih, S-R.; Hsieh, H-J.; Hung, C.S.; Chiu, F-C.; Lin, M-S.; Liu, P-H.; Hua, C-H.; Hsein, Y-C.; Chuang, L-M.; Lin, J-W.; Wei, J-N.; Li, H-Y. Measurement of waist circumference: midabdominal or iliac crest? Diabetes Care, 2013, 36(6), 1660-1666.
[http://dx.doi.org/10.2337/dc12-1452] [PMID: 23275359]
[18]
Doel, J.J.; Hector, M.P.; Amirtham, C.V.; Al-Anzan, L.A.; Benjamin, N.; Allaker, R.P. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries. Eur. J. Oral Sci., 2004, 112(5), 424-428.
[http://dx.doi.org/10.1111/j.1600-0722.2004.00153.x] [PMID: 15458501]
[19]
Tohidi, M.; Ghasemi, A.; Hadaegh, F.; Derakhshan, A.; Chary, A.; Azizi, F. Age- and sex-specific reference values for fasting serum insulin levels and insulin resistance/sensitivity indices in healthy Iranian adults: Tehran lipid and glucose study. Clin. Biochem., 2014, 47(6), 432-438.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.02.007] [PMID: 24530467]
[20]
(a)Miranda, K.M.; Espey, M.G.; Wink, D.A.A. Rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 2001, 5(1), 62-71.
[http://dx.doi.org/10.1006/niox.2000.0319] [PMID: 11178938]
(b)Ghasemi, A.; Hedayati, M.; Biabani, H. Protein precipitation methods evaluated for determination of serum nitric oxide end products by the Griess assay. JMSR, 2007, 2(15), 29-32.
[21]
(a)Chen, M-L.; Lesko, L.; Williams, R.L. Measures of exposure versus measures of rate and extent of absorption. Clin. Pharmacokinet., 2001, 40(8), 565-572.
[http://dx.doi.org/10.2165/00003088-200140080-00001] [PMID: 11523723]
(b)Chow, S-C. Bioavailability and bioequivalence in drug development. Wiley Interdiscip. Rev. Comput. Stat., 2014, 6(4), 304-312.
[http://dx.doi.org/10.1002/wics.1310] [PMID: 25215170]
[22]
Zamani, P.; Tan, V.; Soto-Calderon, H.; Beraun, M.; Brandimarto, J.A.; Trieu, L.; Varakantam, S.; Doulias, P.T.; Townsend, R.R.; Chittams, J.; Margulies, K.B.; Cappola, T.P.; Poole, D.C.; Ischiropoulos, H.; Chirinos, J.A. Pharmacokinetics and pharmacodynamics of inorganic nitrate in heart failure with preserved ejection fraction. Circ. Res., 2017, 120(7), 1151-1161.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309832] [PMID: 27927683]
[23]
Jambhekar, S.S.; Breen, P.J. Extravascular routes of drug administration. Basic pharmacokinetics; Jambhekar, S.S; Breen, P.J., Ed.; Pharmaceutical Press London: UK, 2012, Vol. 76, .
[24]
Bahadoran, Z.; Mirmiran, P.; Kabir, A.; Azizi, F.; Ghasemi, A. The nitrate-independent blood pressure-lowering effect of beetroot juice: a systematic review and meta-analysis. Adv. Nutr., 2017, 8(6), 830-838.
[http://dx.doi.org/10.3945/an.117.016717] [PMID: 29141968]
[25]
Bahadoran, Z.; Mirmiran, P.; Jeddi, S.; Momenan, A.A.; Azizi, F.; Ghasemi, A. The nitrate-nitrite-nitric oxide pathway: findings from 20 years of the tehran lipid and glucose study. Int. J. Endocrinol. Metab., 2018, 16(4)(Suppl.)e84775
[http://dx.doi.org/10.5812/ijem.84775] [PMID: 30584441]
[26]
Zhurakivska, K.; Troiano, G.; Caponio, V.C.A.; Dioguardi, M.; Laino, L.; Maffione, A.B.; Lo Muzio, L. Do changes in oral microbiota correlate with plasma nitrite response? A systematic review. Front. Physiol., 2019, 10, 1029.
[http://dx.doi.org/10.3389/fphys.2019.01029] [PMID: 31456696]
[27]
Liddle, L.; Burleigh, M.C.; Monaghan, C.; Muggeridge, D.J.; Sculthorpe, N.; Pedlar, C.R.; Butcher, J.; Henriquez, F.L.; Easton, C. Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: an assessment of the critical difference. Nitric Oxide, 2019, 83, 1-10.
[http://dx.doi.org/10.1016/j.niox.2018.12.003] [PMID: 30528912]
[28]
Casarin, R.C.; Barbagallo, A.; Meulman, T.; Santos, V.R.; Sallum, E.A.; Nociti, F.H.; Duarte, P.M.; Casati, M.Z.; Gonçalves, R.B. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J. Periodontal Res., 2013, 48(1), 30-36.
[http://dx.doi.org/10.1111/j.1600-0765.2012.01498.x] [PMID: 22762355]
[29]
Smith, A.; Benjamin, N.; Weetman, D.; Mackenzie, D.; MacFarlane, T. The microbial generation of nitric oxide in the human oral cavity. Microb. Ecol. Health Dis., 1999, 11(1), 23-27.
[30]
Lopez-Pintor, R.M.; Casanas, E.; Gonzalez-Serrano, J. Xerostomia, Hyposalivation, and Salivary Flow in Diabetes Patients., 2016, 20164372852
[31]
Kheirmand Parizi, M.; Akbari, H.; Malek-Mohamadi, M.; Kheirmand Parizi, M.; Kakoei, S. Association of salivary levels of immunoglobulin-a and amylase with oral-dental manifestations in patients with controlled and non-controlled type 2 diabetes. BMC Oral Health, 2019, 19(1), 175-175.
[http://dx.doi.org/10.1186/s12903-019-0868-4] [PMID: 31387562]
[32]
Granli, T.; Dahl, R.; Brodin, P.; Bøckman, O.C. Nitrate and nitrite concentrations in human saliva: variations with salivary flow-rate. Food Chem. Toxicol., 1989, 27(10), 675-680.
[http://dx.doi.org/10.1016/0278-6915(89)90122-1] [PMID: 2606404]
[33]
Lundberg, J.O. Nitrate transport in salivary glands with implications for NO homeostasis. Proc. Natl. Acad. Sci. USA, 2012, 109(33), 13144-13145.
[http://dx.doi.org/10.1073/pnas.1210412109] [PMID: 22851765]
[34]
McDonagh, S.T.J.; Wylie, L.J.; Webster, J.M.A.; Vanhatalo, A.; Jones, A.M. Influence of dietary nitrate food forms on nitrate metabolism and blood pressure in healthy normotensive adults. Nitric Oxide, 2018, 72, 66-74.
[http://dx.doi.org/10.1016/j.niox.2017.12.001] [PMID: 29223585]
[35]
(a)Bartholomew, B.; Hill, M.J. The pharmacology of dietary nitrate and the origin of urinary nitrate. Food Chem. Toxicol., 1984, 22(10), 789-795.
(b)Mitchell, H.; Shonle, H.; Grindley, H. The origin of the nitrates in the urine. J. Biol. Chem., 1916, 24(4), 461-490.
[36]
Weinberg, J.B.; Lang, T.; Wilkinson, W.E.; Pisetsky, D.S.; St Clair, E.W. Serum, urinary, and salivary nitric oxide in rheumatoid arthritis: complexities of interpreting nitric oxide measures. Arthritis Res. Ther., 2006, 8(5), R140-R140.
[http://dx.doi.org/10.1186/ar2030] [PMID: 16907988]
[37]
Pannala, A.S.; Mani, A.R.; Spencer, J.P.; Skinner, V.; Bruckdorfer, K.R.; Moore, K.P.; Rice-Evans, C.A. The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radic. Biol. Med., 2003, 34(5), 576-584.
[http://dx.doi.org/10.1016/S0891-5849(02)01353-9] [PMID: 12614846]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy