Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Phthalazinone Scaffold: Emerging Tool in the Development of Target Based Novel Anticancer Agents

Author(s): Jyoti Singh*, Amruta Suryan, Sandeep Kumar and Shweta Sharma

Volume 20, Issue 18, 2020

Page: [2228 - 2245] Pages: 18

DOI: 10.2174/1871520620666200807220146

Price: $65

Abstract

Phthalazinones are important nitrogen-rich heterocyclic compounds which have been a topic of considerable medicinal interest because of their diversified pharmacological activities. This versatile scaffold forms a common structural feature for many bioactive compounds, which leads to the design and development of novel anticancer drugs with fruitful results. The current review article discusses the progressive development of novel phthalazinone analogues that are targets for various receptors such as PARP, EGFR, VEGFR-2, Aurora kinase, Proteasome, Hedgehog pathway, DNA topoisomerase and P-glycoprotein. It describes mechanistic insights into the anticancer properties of phthalazinone derivatives and also highlights various simple and economical techniques for the synthesis of phthalazinones.

Keywords: Cancer, phthalazinone, PARP inhibitor, VEGFR and EGFR inhibitors, aurora kinase inhibitors, proteasome inhibitors, hedgehog pathway inhibitors, DNA topoisomerases inhibitors, P-glycoprotein inhibitors.

Graphical Abstract
[1]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[2]
Horton, J.K.; Wilson, S.H. Strategic combination of DNA-damaging agent and PARP inhibitor results in enhanced cytotoxicity. Front. Oncol., 2013, 3, 257.
[http://dx.doi.org/10.3389/fonc.2013.00257] [PMID: 24137565]
[3]
Carneiro, B.A.; Meeks, J.J.; Kuzel, T.M.; Scaranti, M.; Abdulkadir, S.A.; Giles, F.J. Emerging therapeutic targets in bladder cancer. Cancer Treat. Rev., 2015, 41(2), 170-178.
[http://dx.doi.org/10.1016/j.ctrv.2014.11.003] [PMID: 25498841]
[4]
Kumar, S.; Ahmad, M.K.; Waseem, M.; Pandey, A.K. Drug targets for cancer treatment: An overview. Med. Chem., 2015, 5(3), 115-123.
[5]
Marzouk, M.I.; Shaker, S.A.; Abdel Hafiz, A.A.; El-Baghdady, K.Z. Design and synthesis of new phthalazinone derivatives containing benzyl moiety with anticipated antitumor activity. Biol. Pharm. Bull., 2016, 39(2), 239-251.
[http://dx.doi.org/10.1248/bpb.b15-00656] [PMID: 26830483]
[6]
Sangshetti, J.; Pathan, S.K.; Patil, R.; Akber Ansari, S.; Chhajed, S.; Arote, R.; Shinde, D.B. Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review. Bioorg. Med. Chem., 2019, 27(18), 3979-3997.
[http://dx.doi.org/10.1016/j.bmc.2019.07.050] [PMID: 31401008]
[7]
Terán, C.; Besada, P.; Vila, N.; Costas-Lago, M.C. Recent advances in the synthesis of phthalazin-1(2H)-one core as a relevant pharmacophore in medicinal chemistry. Eur. J. Med. Chem., 2019, 161, 468-478.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.047] [PMID: 30388463]
[8]
Yang, L.; Zhu, Y.; Shui, M.; Zhou, T.; Cai, Y.; Wang, W.; Xu, F.; Niu, Y.; Wang, C.; Zhang, J.L.; Xu, P.; Yuan, L.; Liang, L. Rational design of fluorescent phthalazinone derivatives for one‐ and two‐photon imaging. Chemistry, 2016, 22(35), 12363-12370.
[http://dx.doi.org/10.1002/chem.201601499] [PMID: 27440529]
[9]
Li, Y.X.; Luo, Y.P.; Xi, Z.; Niu, C.; He, Y.Z.; Yang, G.F. Design and syntheses of novel phthalazin-1(2H)-one derivatives as acetohydroxyacid synthase inhibitors. J. Agric. Food Chem., 2006, 54(24), 9135-9139.
[http://dx.doi.org/10.1021/jf061976j] [PMID: 17117801]
[10]
Payton, M.; Bush, T.L.; Chung, G.; Ziegler, B.; Eden, P.; McElroy, P.; Ross, S.; Cee, V.J.; Deak, H.L.; Hodous, B.L.; Nguyen, H.N.; Olivieri, P.R.; Romero, K.; Schenkel, L.B.; Bak, A.; Stanton, M.; Dussault, I.; Patel, V.F.; Geuns-Meyer, S.; Radinsky, R.; Kendall, R.L. Preclinical evaluation of AMG 900, a novel potent and highly selective pan-aurora kinase inhibitor with activity in taxane-resistant tumor cell lines. Cancer Res., 2010, 70(23), 9846-9854.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3001] [PMID: 20935223]
[11]
Gupta, P.; Mulkey, F.; Hasserjian, R.P.; Sanford, B.L.; Vij, R.; Hurd, D.D.; Odenike, O.M.; Bloomfield, C.D.; Owzar, K.; Stone, R.M.; Larson, R.A. A phase II study of the oral VEGF receptor tyrosine kinase inhibitor vatalanib (PTK787/ZK222584) in myelodysplastic syndrome: Cancer and Leukemia Group B study 10105 (Alliance). Invest. New Drugs, 2013, 31(5), 1311-1320.
[http://dx.doi.org/10.1007/s10637-013-9978-z] [PMID: 23700288]
[12]
Dumas, J.; Dixon, J.A. VEGF receptor kinase inhibitors: Phthalazines, anthranilamides and related structures. Expert Opin. Ther. Pat., 2005, 15(6), 647-658.
[http://dx.doi.org/10.1517/13543776.15.6.647] [PMID: 20141503]
[13]
Menear, K.A.; Adcock, C.; Boulter, R.; Cockcroft, X.L.; Copsey, L.; Cranston, A.; Dillon, K.J.; Drzewiecki, J.; Garman, S.; Gomez, S.; Javaid, H.; Kerrigan, F.; Knights, C.; Lau, A.; Loh, V.M., Jr; Matthews, I.T.; Moore, S.; O’Connor, M.J.; Smith, G.C.; Martin, N.M. 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: A novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J. Med. Chem., 2008, 51(20), 6581-6591.
[http://dx.doi.org/10.1021/jm8001263] [PMID: 18800822]
[14]
Papeo, G.; Casale, E.; Montagnoli, A.; Cirla, A. PARP inhibitors in cancer therapy: An update. Expert Opin. Ther. Pat., 2013, 23(4), 503-514.
[http://dx.doi.org/10.1517/13543776.2013.768615] [PMID: 23379721]
[15]
Cockcroft, X.L.; Dillon, K.J.; Dixon, L.; Drzewiecki, J.; Kerrigan, F.; Loh, V.M., Jr; Martin, N.M.; Menear, K.A.; Smith, G.C. Phthalazinones 2: Optimisation and synthesis of novel potent inhibitors of poly(ADP-ribose)polymerase. Bioorg. Med. Chem. Lett., 2006, 16(4), 1040-1044.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.081] [PMID: 16290932]
[16]
Russo, A.L.; Kwon, H.C.; Burgan, W.E.; Carter, D.; Beam, K.; Weizheng, X.; Zhang, J.; Slusher, B.S.; Chakravarti, A.; Tofilon, P.J.; Camphausen, K. In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin. Cancer Res., 2009, 15(2), 607-612.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2079] [PMID: 19147766]
[17]
Johannes, J.W.; Almeida, L.; Daly, K.; Ferguson, A.D.; Grosskurth, S.E.; Guan, H.; Howard, T.; Ioannidis, S.; Kazmirski, S.; Lamb, M.L.; Larsen, N.A.; Lyne, P.D.; Mikule, K.; Ogoe, C.; Peng, B.; Petteruti, P.; Read, J.A.; Su, N.; Sylvester, M.; Throner, S.; Wang, W.; Wang, X.; Wu, J.; Ye, Q.; Yu, Y.; Zheng, X.; Scott, D.A. Discovery of AZ0108, an orally bioavailable phthalazinone PARP inhibitor that blocks centrosome clustering. Bioorg. Med. Chem. Lett., 2015, 25(24), 5743-5747.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.079] [PMID: 26546219]
[18]
Wang, B.; Chu, D.; Feng, Y.; Shen, Y.; Aoyagi-Scharber, M.; Post, L.E. Discovery and characterization of (8S, 9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de] phthalazin-3-one (BMN 673, Talazoparib), a novel, highly potent, and orally efficacious poly (ADP-ribose) polymerase-1/2 inhibitor, as an anticancer agent. J. Med. Chem., 2016, 59(1), 335-357.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01498] [PMID: 26652717]
[19]
Giri, P.; Gupta, L.; Singh, S.; Patel, N.; Srinivas, N.R.; Srivastva, B.K.; Desai, R.C.; Patel, P.R. Assessment of the in vitro cytochrome P450 (CYP) inhibition potential of ZYTP1, a novel poly (ADP-ribose) polymerase inhibitor. Xenobiotica, 2019, 49(10), 1164-1172.
[http://dx.doi.org/10.1080/00498254.2018.1546916] [PMID: 30488748]
[20]
Yuan, B.; Ye, N.; Song, S.S.; Wang, Y.T.; Song, Z.; Chen, H.D.; Chen, C.H.; Huan, X.J.; Wang, Y.Q.; Su, Y.; Shen, Y.Y.; Sun, Y.M.; Yang, X.Y.; Chen, Y.; Guo, S.Y.; Gan, Y.; Gao, Z.W.; Chen, X.Y.; Ding, J.; He, J.X.; Zhang, A.; Miao, Z.H. Poly(ADP-ribose)polymerase (PARP) inhibition and anticancer activity of simmiparib, a new inhibitor undergoing clinical trials. Cancer Lett., 2017, 386, 47-56.
[http://dx.doi.org/10.1016/j.canlet.2016.11.010] [PMID: 27847302]
[21]
Bao, X.; Peng, Y.; Lu, X.; Yang, J.; Zhao, W.; Tan, W.; Dong, X. Synthesis and evaluation of novel benzylphthalazine derivatives as hedgehog signaling pathway inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(13), 3048-3051.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.009] [PMID: 27180012]
[22]
Watanabe, N.; Kabasawa, Y.; Takase, Y.; Matsukura, M.; Miyazaki, K.; Ishihara, H.; Kodama, K.; Adachi, H. 4-Benzylamino-1-chloro-6-substituted phthalazines: synthesis and inhibitory activity toward phosphodiesterase 5. J. Med. Chem., 1998, 41(18), 3367-3372.
[http://dx.doi.org/10.1021/jm970815r] [PMID: 9719589]
[23]
Prime, M.E.; Courtney, S.M.; Brookfield, F.A.; Marston, R.W.; Walker, V.; Warne, J.; Boyd, A.E.; Kairies, N.A.; von der Saal, W.; Limberg, A.; Georges, G.; Engh, R.A.; Goller, B.; Rueger, P.; Rueth, M. Phthalazinone pyrazoles as potent, selective, and orally bioavailable inhibitors of Aurora-A kinase. J. Med. Chem., 2011, 54(1), 312-319.
[http://dx.doi.org/10.1021/jm101346r] [PMID: 21128645]
[24]
Becker, H.; King, S.B.; Taniguchi, M.; Vanhessche, K.P.; Sharpless, K.B. New ligands and improved enantioselectivities for the asymmetric dihydroxylation of olefins. J. Org. Chem., 1995, 60(13), 3940-3941.
[http://dx.doi.org/10.1021/jo00118a005]
[25]
Demirayak, S.; Karaburun, A.C.; Beis, R. Some pyrrole substituted aryl pyridazinone and phthalazinone derivatives and their antihypertensive activities. Eur. J. Med. Chem., 2004, 39(12), 1089-1095.
[http://dx.doi.org/10.1016/j.ejmech.2004.09.005] [PMID: 15571871]
[26]
Kümmerle, A.E.; Vieira, M.M.; Schmitt, M.; Miranda, A.L.; Fraga, C.A.; Bourguignon, J.J.; Barreiro, E.J. Design, synthesis and analgesic properties of novel conformationally-restricted N-acylhydrazones (NAH). Bioorg. Med. Chem. Lett., 2009, 19(17), 4963-4966.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.075] [PMID: 19646868]
[27]
Vila, N.; Besada, P.; Viña, D.; Sturlese, M.; Moro, S.; Terán, C. Synthesis, biological evaluation and molecular modeling studies of phthalazin-1(2H)-one derivatives as novel cholinesterase inhibitors. RSC Advances, 2016, 6(52), 46170-46185.
[http://dx.doi.org/10.1039/C6RA03841G]
[28]
Liang, L.; Wang, W.; Wu, J.; Xu, F.; Niu, Y.; Xu, B.; Xu, P. Rational design, green synthesis, and initial evaluation of a series of full-color tunable fluorescent dyes enabled by the copper-catalyzed N-arylation of 6-phenyl pyridazinones and their application in cell imaging. Chemistry, 2013, 19(41), 13774-13782.
[http://dx.doi.org/10.1002/chem.201302495] [PMID: 24038329]
[29]
Grasso, S.; De Sarro, G.; De Sarro, A.; Micale, N.; Zappalà, M.; Puja, G.; Baraldi, M.; De Micheli, C. Synthesis and anticonvulsant activity of novel and potent 6,7-methylenedioxyphthalazin-1(2H)-ones. J. Med. Chem., 2000, 43(15), 2851-2859.
[http://dx.doi.org/10.1021/jm001002x] [PMID: 10956193]
[30]
Nielsen, J.; Rasmussen, P.H. Implementation of a combinatorial cleavage and deprotection scheme 1. Synthesis of phthalhydrazide libraries. Tetrahedron Lett., 1996, 37(19), 3351-3354.
[http://dx.doi.org/10.1016/0040-4039(96)00544-8]
[31]
Vila, N.; Besada, P.; Costas, T.; Costas-Lago, M.C.; Terán, C. Phthalazin-1(2H)-one as a remarkable scaffold in drug discovery. Eur. J. Med. Chem., 2015, 97, 462-482.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.043] [PMID: 25482553]
[32]
Van der Mey, M.; Hatzelmann, A.; Van der Laan, I.J.; Sterk, G.J.; Thibaut, U.; Timmerman, H. Novel selective PDE4 inhibitors. 1. Synthesis, structure-activity relationships, and molecular modeling of 4-(3,4-dimethoxyphenyl)-2H-phthalazin-1-ones and analogues. J. Med. Chem., 2001, 44(16), 2511-2522.
[http://dx.doi.org/10.1021/jm010837k] [PMID: 11472205]
[33]
Abd Alla, M.S.; Hegab, M.I.; Abo Taleb, N.A.; Hasabelnaby, S.M.; Goudah, A. Synthesis and anti-inflammatory evaluation of some condensed [4-(3,4-dimethylphenyl)-1(2H)-oxo-phthalazin-2-yl]acetic acid hydrazide. Eur. J. Med. Chem., 2010, 45(4), 1267-1277.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.028] [PMID: 20149488]
[34]
Moos, W.H.; Humblet, C.C.; Sircar, I.; Rithner, C.; Weishaar, R.E.; Bristol, J.A.; McPhail, A.T. Cardiotonic agents. 8. Selective inhibitors of adenosine 3′,5′-cyclic phosphate phosphodiesterase III. Elaboration of a five-point model for positive inotropic activity. J. Med. Chem., 1987, 30(11), 1963-1972.
[http://dx.doi.org/10.1021/jm00394a006] [PMID: 2822927]
[35]
Cheng, L.; Ying, L.; Feng, J.; Wang, C.Y.; Li, J.L.; Xu, Z. Novel heterocyclic poly (arylene ether ketone)s: Synthesis and polymerization of 4‐(4′‐hydroxyaryl)(2H) phthalazin‐1‐ones with methyl groups. J. Polym. Sci. A Polym. Chem., 2007, 45(8), 1525-1535.
[http://dx.doi.org/10.1002/pola.21880]
[36]
Ismail, M.F.; El-Bassiouny, F.A.; Younes, H.A. New convenient one-step synthesis of 4-arylphthalaz-1-ones. Tetrahedron, 1984, 40(15), 2983-2984.
[http://dx.doi.org/10.1016/S0040-4020(01)91312-2]
[37]
Acosta, A.; De la Cruz, P.; De Miguel, P.; Diez-Barra, E.; De la Hoz, A.; Langa, F.; Loupy, A.; Majdoub, M.; Martin, N.; Sanchez, C.; Seoane, C. Microwave assisted synthesis of heterocyclic fused quinones in dry media. Tetrahedron Lett., 1995, 36(12), 2165-2168.
[http://dx.doi.org/10.1016/0040-4039(95)00202-N]
[38]
Mennen, S.M.; Mak-Jurkauskas, M.L.; Bio, M.M.; Hollis, L.S.; Nadeau, K.A.; Clausen, A.M.; Hansen, K.B. Synthesis of 4-substituted phthalazin-1-(2H)-ones from 2-acylbenzoic acids: Controlling hydrazine in a pharmaceutical intermediate through PAT-guided process development. Org. Process Res. Dev., 2015, 19(7), 884-891.
[http://dx.doi.org/10.1021/acs.oprd.5b00135]
[39]
Nguyen, H.N.; Cee, V.J.; Deak, H.L.; Du, B.; Faber, K.P.; Gunaydin, H.; Hodous, B.L.; Hollis, S.L.; Krolikowski, P.H.; Olivieri, P.R.; Patel, V.F.; Romero, K.; Schenkel, L.B.; Geuns-Meyer, S.D. Synthesis of 4-substituted chlorophthalazines, dihydrobenzoazepinediones, 2-pyrazolylbenzoic acid, and 2-pyrazolylbenzohydrazide via 3-substituted 3-hydroxyisoindolin-1-ones. J. Org. Chem., 2012, 77(8), 3887-3906.
[http://dx.doi.org/10.1021/jo3000628] [PMID: 22458369]
[40]
Ruxer, J.M.; Lachoux, C.; Ousset, J.B.; Torregrosa, J.L.; Mattioda, G. Synthesis of 1,4‐dihydro‐4‐oxopyrrolo [1,2‐b] pyridazine‐3‐carboxylic acids and 1,4‐dihydro‐4‐oxoimidazo [1,5‐b] pyridazine‐3‐carboxylic acids as potential antibacterial agents. J. Heterocycl. Chem., 1994, 31(2), 409-417.
[http://dx.doi.org/10.1002/jhet.5570310228]
[41]
Saito, Y.; Sakamoto, T.; Kikugawa, Y. A new and convenient synthesis of 3-aryl-3-hydroxyisoindol-1-ones and their aza analogs. Synthesis, 2001, 2001(02), 221-224.
[http://dx.doi.org/10.1055/s-2001-10804]
[42]
Chun, T.G.; Kim, K.S.; Lee, S.; Jeong, T.S.; Lee, H.Y.; Kim, Y.H.; Lee, W.S. Synthesis of 4‐alkyl‐1 (2H)‐phthalazinones and 4‐alkyl‐2, 3‐benzoxazin‐1‐ones via ring cleavage of 3‐substituted N‐alkylated‐3‐hydroxyisoindolin‐1‐ones. Synth. Commun., 2004, 34(7), 1301-1308.
[http://dx.doi.org/10.1081/SCC-120030319]
[43]
Brzeziński, J.Z.; Bzowski, H.B.; Epsztajn, J. A concise regioselective synthesis of hydroxyazaisoindolinones and their conversion into pyridopyridazinones. Tetrahedron, 1996, 52(9), 3261-3272.
[http://dx.doi.org/10.1016/0040-4020(95)01109-9]
[44]
Malinowski, Z.; Sroczyński, D.; Szcześniak, A.K. Synthesis of some novel N-substituted phthalazinone and pyridopyridazinone derivatives. Synth. Commun., 2015, 45(15), 1743-1750.
[http://dx.doi.org/10.1080/00397911.2015.1025282]
[45]
Havaldar, F.H.; Dabholkar, B.V.; Mule, G.B. Microwave-promoted synthesis of some novel 4-(4-methyl-phenyl)-substituted phthalazin-1-one derivatives. Synth. Commun., 2013, 43(8), 1127-1137.
[http://dx.doi.org/10.1080/00397911.2011.622847]
[46]
Munín, J.; Santana, L.; Uriarte, E.; Borges, F.; Quezada, E. A comparative synthesis of 6-benzyl-2,3-dihydroimidazo [2,1-a] phthalazine and 2H-7-benzyl-3, 4-dihydropyrimido [2,1-a] phthalazine. Tetrahedron Lett., 2015, 56(6), 828-830.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.121]
[47]
Mylari, B.L.; Larson, E.R.; Beyer, T.A.; Zembrowski, W.J.; Aldinger, C.E.; Dee, M.F.; Siegel, T.W.; Singleton, D.H. Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl] methyl]-1-phthalazineacetic acid (zopolrestat) and congeners. J. Med. Chem., 1991, 34(1), 108-122.
[http://dx.doi.org/10.1021/jm00105a018] [PMID: 1899452]
[48]
Buil, M.A.; Calbet, M.; Castillo, M.; Castro, J.; Esteve, C.; Ferrer, M.; Forns, P.; González, J.; López, S.; Roberts, R.S.; Sevilla, S.; Vidal, B.; Vidal, L.; Vilaseca, P. Structure-Activity Relationships (SAR) and Structure-Kinetic Relationships (SKR) of sulphone-based CRTh2 antagonists. Eur. J. Med. Chem., 2016, 113, 102-133.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.023] [PMID: 26922232]
[49]
Bhattacharjee, D.; Popp, F.D. New compounds: Reissert compound studies XXXII: Facile synthesis of 3-azapapaverine. J. Pharm. Sci., 1980, 69(1), 120-121.
[http://dx.doi.org/10.1002/jps.2600690140] [PMID: 7354426]
[50]
Napoletano, M.; Norcini, G.; Pellacini, F.; Marchini, F.; Morazzoni, G.; Ferlenga, P.; Pradella, L. Phthalazine PDE4 inhibitors. Part 2: The synthesis and biological evaluation of 6-methoxy-1,4-disubstituted derivatives. Bioorg. Med. Chem. Lett., 2001, 11(1), 33-37.
[http://dx.doi.org/10.1016/S0960-894X(00)00587-4] [PMID: 11140727]
[51]
McAlees, A.J.; McCrindle, R.; Sneddon, D.W. Reduction of substituted phthalic anhydrides with sodium borohydride. J. Chem. Soc., Perkin Trans. 1, 1977, 18, 2037-2038.
[http://dx.doi.org/10.1039/p19770002037]
[52]
Dhage, G.R.; Deshmukh, S.R.; Thopate, S.R. Synthesis of 1, 2-dihydro-1-oxophthalazin-4-yl trifluoromethanesulfonate and its application in the synthesis of 4-(aryl/heteroaryl/alkynyl) phthalazin-1 (2H)-one. RSC Advances, 2015, 5(42), 33377-33384.
[http://dx.doi.org/10.1039/C5RA03390J]
[53]
Pal, M.; Batchu, V.R.; Parasuraman, K.; Yeleswarapu, K.R. Aluminum chloride-induced heteroarylation of arenes and heteroarenes. 2. A new synthesis of 4-substituted phthalazin-1(2H)-ones. J. Org. Chem., 2003, 68(17), 6806-6809.
[http://dx.doi.org/10.1021/jo034510y] [PMID: 12919054]
[54]
Elagawany, M.; Ibrahim, M.A.; Ali Ahmed, H.E.; El-Etrawy, A. Sh.; Ghiaty, A.; Abdel-Samii, Z.K.; El-Feky, S.A.; Bajorath, J. Design, synthesis, and molecular modelling of pyridazinone and phthalazinone derivatives as protein kinases inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(7), 2007-2013.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.027] [PMID: 23453843]
[55]
Chaitanya, M.; Anbarasan, P. Rhodium catalyzed C2-selective cyanation of indoles and pyrroles. J. Org. Chem., 2015, 80(7), 3695-3700.
[http://dx.doi.org/10.1021/acs.joc.5b00142] [PMID: 25763805]
[56]
Krishnananthan, S.; Smith, D.; Wu, D.R.; Yip, S.; Gunaga, P.; Mathur, A.; Li, J. Regioselective synthesis of substituted 4-alkylamino and 4-arylaminophthalazin-1(2H)-ones. J. Org. Chem., 2016, 81(4), 1520-1526.
[http://dx.doi.org/10.1021/acs.joc.5b02652] [PMID: 26795884]
[57]
Chaves, M.; Bio, M.; Peterson, M. Crystalline forms of N-(4-((3- (2-amino-4-pyrimidinyl)-2-pyridinyl) oxy) phenyl)-4-(4-methyl-2- thienyl)-1-phthalazinamine salts and uses thereof. Japnese Patent 2019189615-A 2018.
[58]
Martin, N.M.; Smith, G.C.; Jackson, S.P.; Loh, V.J.; Cockcroft, X.L.; Matthews, I.T.; Menear, K.A.; Kerrigan, F.; Ashworth, A. Phthalazinone derivatives. U.S. Patent 10,449,192, 2019.
[59]
Chu, D.; Wang, B.; Feng, Y.; Shen, Y.; Post, L.E. Dihydropyridophthalazinone inhibitors of poly (ADP-ribose) polymerase (PARP) for use in treatment of diseases associated with a PTEN deficiency. U.S. Patent 8,541,403 2013.
[60]
Liu, G.; Yu, H.; Ren, Y.; Du, J.; Yang, D.; Li, X.; Wang, K.; Liu, W.; Tang, J.; Wu, Y.; Zeng, H.; Qing, Y.; Song, H.; Li, S. Phthalazinone derivative, and preparation method and use thereof. WIPO Patent 2,017,101,796-A1, 2017.
[61]
Tang, P.C.; Li, X.; Li, X.; Chen, Y.; Wang, B.; Zhu, Z. Methods of using phthalazinone ketone derivatives. U. S. Patent 9,566,277B2,, 2017.
[62]
Kang, J.H.; Lee, H.S.; Lee, Y.S.; Park, J.T.; An, K.M.; Jeong, J.A.; Kim, K.S.; Kim, J.G.; Hong, C.H.; Park, S.Y.; Song, D.K. Phtalazinone derivatives and manufacturing process thereof. Chinese Patent 1,05,793,248B, 2016.
[63]
Srivastava, B.K.; Desai, R.C.; Patel, P.R. Substituted phthalazin-1 (2H)-one derivatives as selective inhibitors of poly (ADP-ribose) polymerase-1 WIPO Patent 2,014,102,817A1, 2014.
[64]
Gandhi, V.B.; Giranda, V.L.; Gong, J.; Penning, T.D.; Zhu, G.D. U.S. Patent 20,080,269,234A1,, 2013.
[65]
Chenxi, L.; Ya, C.; Weisheng, S. Substituted 2,3-phthalazinone compounds and application thereof. Chinese Patent 102,485,721A, 2012.
[66]
Deng, B.; Li, X.; Wang, B.; Li, X.; Chen, Y.; Chen, X.; Zhang, L.; Song, M. Phthalazinone derivative, its preparation method and application in medicament. Chinese Patent 102,372,706A, 2012.
[67]
Tang, P.C.; Li, X.; Li, X.; Chen, Y.; Wang, B.; Zhu, Z. Phthalazinone ketone derivative, preparation method thereof, and pharmaceutical use thereof. Canadian Patent 2,806,324A1, 2012.
[68]
Zhu, G.; Gandhi, V.B.; Shoemaker, A.R.; Penning, T.D. Phthalazin-(2H)-one inhibitors of kinases. WIPO Patent 2,011,130,478A1, 2011.
[69]
Hawkins, N. Phthalazinone compound as parp inhibitor. WIPO Patent 2,011,007,145A1, 2011.
[70]
Javaid, M.H.; Menear, K.A.; Martin, N.M.B.; Smith, G.C.M.; Rudge, D.A.; Roberts, C.A. Phthalazinone derivatives as inhibitors parp-1. WIPO Patent 2,009,004,356A1, 2009.
[71]
Menear, K.A.; Hummersone, M.G.; Gomez, S.; Javaid, M.H.; Martin, N.M.B. Phthalazinone derivatives and their use as medicament to treat cancer. WIPO Patent 2,008,122,810A1, 2008.
[72]
Martin, N.M.; Smith, G.C.; Jackson, S.P.; Loh, V.J.; Cockcroft, X.L.; Matthews, I.T.; Menear, K.A.; Kerrigan, F.; Ashworth, A. Phthalazinone derivatives. WIPO Patent 2,008,114,023A2, 2008.
[73]
Martin, N.M.; Smith, G.C.; Jackson, S.P.; Loh, V.J.; Cockcroft, X.L.; Matthews, I.T.; Menear, K.A.; Kerrigan, F.; Ashworth, A. Phthalazinone derivatives. U.S. Patent 20,050,059,663A1,, 2005.
[74]
Martin, N.M.; Smith, G.C.; Jackson, S.P.; Loh, V.J.; Cockcroft, X.L.; Matthews, I.T.; Menear, K.A.; Kerrigan, F.; Ashworth, A. Phthalazinone derivatives. WIPO Patent 2,004,080,976A1, 2006.
[75]
Martin, N.M.; Smith, G.C. Phthalazinone derivatives. WIPO Patent 2,004,080,976A1,, 2003.
[76]
Hassa, P.O.; Hottiger, M.O. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front. Biosci., 2008, 13, 3046-3082.
[http://dx.doi.org/10.2741/2909] [PMID: 17981777]
[77]
Rouleau, M.; Patel, A.; Hendzel, M.J.; Kaufmann, S.H.; Poirier, G.G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer, 2010, 10(4), 293-301.
[http://dx.doi.org/10.1038/nrc2812] [PMID: 20200537]
[78]
Murahari, M.S.; Yergeri, M.C. Current overview on the usage of poly(ADP- ribose)polymerase (PARP) inhibitors in treating cancer. Clin. Cancer Drugs, 2015, 1, 127-148.
[http://dx.doi.org/10.2174/2212697X01666140128002849]
[79]
Amé, J.C.; Rolli, V.; Schreiber, V.; Niedergang, C.; Apiou, F.; Decker, P.; Muller, S.; Höger, T.; Ménissier-de Murcia, J.; de Murcia, G. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem., 1999, 274(25), 17860-17868.
[http://dx.doi.org/10.1074/jbc.274.25.17860] [PMID: 10364231]
[80]
Schreiber, V.; Dantzer, F.; Ame, J.C.; de Murcia, G. Poly(ADP-ribose): Novel functions for an old molecule. Nat. Rev. Mol. Cell Biol., 2006, 7(7), 517-528.
[http://dx.doi.org/10.1038/nrm1963] [PMID: 16829982]
[81]
Scott, C.L.; Swisher, E.M.; Kaufmann, S.H. Poly (ADP-ribose) polymerase inhibitors: Recent advances and future development. J. Clin. Oncol., 2015, 33(12), 1397-1406.
[http://dx.doi.org/10.1200/JCO.2014.58.8848] [PMID: 25779564]
[82]
Almahli, H.; Hadchity, E.; Jaballah, M.Y.; Daher, R.; Ghabbour, H.A.; Kabil, M.M.; Al-Shakliah, N.S.; Eldehna, W.M. Development of novel synthesized phthalazinone-based PARP-1 inhibitors with apoptosis inducing mechanism in lung cancer. Bioorg. Chem., 2018, 77, 443-456.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.034] [PMID: 29453076]
[83]
Curtin, N.J. Poly (ADP-ribose) polymerase (PARP) and PARP inhibitors. Drug Discov. Today Dis. Models, 2012, 9(2), 51-58.
[http://dx.doi.org/10.1016/j.ddmod.2012.01.004]
[84]
Chen, W.; Guo, N.; Qi, M.; Dai, H.; Hong, M.; Guan, L.; Huan, X.; Song, S.; He, J.; Wang, Y.; Xi, Y.; Yang, X.; Shen, Y.; Su, Y.; Sun, Y.; Gao, Y.; Chen, Y.; Ding, J.; Tang, Y.; Ren, G.; Miao, Z.; Li, J. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy. Eur. J. Med. Chem., 2017, 138, 514-531.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.053] [PMID: 28692916]
[85]
Jain, M.R.; Mohapatra, J.; Bandhyopadhyay, D.; Chatterjee, A.; Ghoshdastidar, K.; Patel, D.; Patel, A.; Bhayani, H.; Srivastava, B.K.; Shedage, S.A.; Kadam, P.; Sundar, R.; Patel, H.; Giri, P.; Patel, P.; Gupta, L.; Srinivas, N.R.; Patel, P.R.; Desai, R.C. Identification and preclinical characterization of a novel and potent poly (ADP-ribose) polymerase (PARP) inhibitor ZYTP1. Cancer Chemother. Pharmacol., 2018, 82(4), 635-647.
[http://dx.doi.org/10.1007/s00280-018-3653-1] [PMID: 30046848]
[86]
Wang, L.X.; Zhou, X.B.; Xiao, M.L.; Jiang, N.; Liu, F.; Zhou, W.X.; Wang, X.K.; Zheng, Z.B.; Li, S. Synthesis and biological evaluation of substituted 4-(thiophen-2-ylmethyl)-2H-phthalazin-1-ones as potent PARP-1 inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(16), 3739-3743.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.001] [PMID: 25086680]
[87]
Loh, V.M., Jr; Cockcroft, X.L.; Dillon, K.J.; Dixon, L.; Drzewiecki, J.; Eversley, P.J.; Gomez, S.; Hoare, J.; Kerrigan, F.; Matthews, I.T.; Menear, K.A.; Martin, N.M.; Newton, R.F.; Paul, J.; Smith, G.C.; Vile, J.; Whittle, A.J. Phthalazinones. Part 1: The design and synthesis of a novel series of potent inhibitors of poly(ADP-ribose)polymerase. Bioorg. Med. Chem. Lett., 2005, 15(9), 2235-2238.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.026] [PMID: 15837300]
[88]
Oliveira-Cunha, M.; Newman, W.G.; Siriwardena, A.K. Epidermal growth factor receptor in pancreatic cancer. Cancers (Basel), 2011, 3(2), 1513-1526.
[http://dx.doi.org/10.3390/cancers3021513] [PMID: 24212772]
[89]
Nair, P. Epidermal growth factor receptor family and its role in cancer progression. Curr. Sci., 2005, 88, 890-898.
[90]
Dvorak, H.F. Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol., 2002, 20(21), 4368-4380.
[http://dx.doi.org/10.1200/JCO.2002.10.088] [PMID: 12409337]
[91]
Ta, N.L.; Chakrabandhu, K.; Huault, S.; Hueber, A.O. The tyrosine phosphorylated pro-survival form of Fas intensifies the EGF-induced signal in colorectal cancer cells through the nuclear EGFR/STAT3-mediated pathway. Sci. Rep., 2018, 8(1), 12424.
[http://dx.doi.org/10.1038/s41598-018-30804-z] [PMID: 30127519]
[92]
Abou-Seri, S.M.; Eldehna, W.M.; Ali, M.M.; Abou El Ella, D.A. 1-Piperazinylphthalazines as potential VEGFR-2 inhibitors and anticancer agents: Synthesis and in vitro biological evaluation. Eur. J. Med. Chem., 2016, 107, 165-179.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.053] [PMID: 26590508]
[93]
Boraei, A.T.A.; Ashour, H.K.; El Tamany, E.S.H.; Abdelmoaty, N.; El-Falouji, A.I.; Gomaa, M.S. Design and synthesis of new phthalazine-based derivatives as potential EGFR inhibitors for the treatment of hepatocellular carcinoma. Bioorg. Chem., 2019, 85, 293-307.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.039] [PMID: 30654221]
[94]
Amin, K.M.; Barsoum, F.F.; Awadallah, F.M.; Mohamed, N.E. Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity. Eur. J. Med. Chem., 2016, 123, 191-201.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.049] [PMID: 27484508]
[95]
Eldehna, W.M.; Abou-Seri, S.M.; El Kerdawy, A.M.; Ayyad, R.R.; Hamdy, A.M.; Ghabbour, H.A.; Ali, M.M.; Abou El Ella, D.A. Increasing the binding affinity of VEGFR-2 inhibitors by extending their hydrophobic interaction with the active site: Design, synthesis and biological evaluation of 1-substituted-4-(4-methoxybenzyl) phthalazine derivatives. Eur. J. Med. Chem., 2016, 113, 50-62.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.029] [PMID: 26922228]
[96]
Duncton, M.A.; Piatnitski Chekler, E.L.; Katoch-Rouse, R.; Sherman, D.; Wong, W.C.; Smith, L.M., II; Kawakami, J.K.; Kiselyov, A.S.; Milligan, D.L.; Balagtas, C.; Hadari, Y.R.; Wang, Y.; Patel, S.N.; Rolster, R.L.; Tonra, J.R.; Surguladze, D.; Mitelman, S.; Kussie, P.; Bohlen, P.; Doody, J.F. Arylphthalazines as potent, and orally bioavailable inhibitors of VEGFR-2. Bioorg. Med. Chem., 2009, 17(2), 731-740.
[http://dx.doi.org/10.1016/j.bmc.2008.11.049] [PMID: 19101155]
[97]
Bold, G.; Altmann, K.H.; Frei, J.; Lang, M.; Manley, P.W.; Traxler, P.; Wietfeld, B.; Brüggen, J.; Buchdunger, E.; Cozens, R.; Ferrari, S.; Furet, P.; Hofmann, F.; Martiny-Baron, G.; Mestan, J.; Rösel, J.; Sills, M.; Stover, D.; Acemoglu, F.; Boss, E.; Emmenegger, R.; Lässer, L.; Masso, E.; Roth, R.; Schlachter, C.; Vetterli, W. New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor-driven angiogenesis. J. Med. Chem., 2000, 43(12), 2310-2323.
[http://dx.doi.org/10.1021/jm9909443] [PMID: 10882357]
[98]
Li, J.J.; Li, S.A. Mitotic kinases: The key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol. Ther., 2006, 111(3), 974-984.
[http://dx.doi.org/10.1016/j.pharmthera.2006.02.006] [PMID: 16603252]
[99]
Carmena, M.; Earnshaw, W.C. The cellular geography of aurora kinases. Nat. Rev. Mol. Cell Biol., 2003, 4(11), 842-854.
[http://dx.doi.org/10.1038/nrm1245] [PMID: 14625535]
[100]
Katayama, H.; Brinkley, W.R.; Sen, S. The Aurora kinases: Role in cell transformation and tumorigenesis. Cancer Metastasis Rev., 2003, 22(4), 451-464.
[http://dx.doi.org/10.1023/A:1023789416385] [PMID: 12884918]
[101]
Vader, G.; Lens, S.M. The Aurora kinase family in cell division and cancer. Biochim. Biophys. Acta, 2008, 1786(1), 60-72.
[PMID: 18662747]
[102]
Glover, D.M.; Leibowitz, M.H.; McLean, D.A.; Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell, 1995, 81(1), 95-105.
[http://dx.doi.org/10.1016/0092-8674(95)90374-7] [PMID: 7720077]
[103]
Nigg, E.A. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol., 2001, 2(1), 21-32.
[http://dx.doi.org/10.1038/35048096] [PMID: 11413462]
[104]
Borisa, A.C.; Bhatt, H.G. A comprehensive review on Aurora kinase: Small molecule inhibitors and clinical trial studies. Eur. J. Med. Chem., 2017, 140, 1-19.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.045] [PMID: 28918096]
[105]
Wang, W.; Feng, X.; Liu, H.X.; Chen, S.W.; Hui, L. Synthesis and biological evaluation of 2,4-disubstituted phthalazinones as Aurora kinase inhibitors. Bioorg. Med. Chem., 2018, 26(12), 3217-3226.
[http://dx.doi.org/10.1016/j.bmc.2018.04.048] [PMID: 29705376]
[106]
Buac, D.; Shen, M.; Schmitt, S.; Kona, F.R.; Deshmukh, R.; Zhang, Z.; Neslund-Dudas, C.; Mitra, B.; Dou, Q.P. From bortezomib to other inhibitors of the proteasome and beyond. Curr. Pharm. Des., 2013, 19(22), 4025-4038.
[http://dx.doi.org/10.2174/1381612811319220012] [PMID: 23181572]
[107]
Borissenko, L.; Groll, M. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem. Rev., 2007, 107(3), 687-717.
[http://dx.doi.org/10.1021/cr0502504] [PMID: 17316053]
[108]
Yang, L.; Wang, W.; Sun, Q.; Xu, F.; Niu, Y.; Wang, C.; Liang, L.; Xu, P. Development of novel proteasome inhibitors based on phthalazinone scaffold. Bioorg. Med. Chem. Lett., 2016, 26(12), 2801-2805.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.067] [PMID: 27158142]
[109]
Bariwal, J.; Kumar, V.; Dong, Y.; Mahato, R.I. Design of Hedgehog pathway inhibitors for cancer treatment. Med. Res. Rev., 2019, 39(3), 1137-1204.
[http://dx.doi.org/10.1002/med.21555] [PMID: 30484872]
[110]
Pomeroy, S.L.; Tamayo, P.; Gaasenbeek, M.; Sturla, L.M.; Angelo, M.; McLaughlin, M.E.; Kim, J.Y.; Goumnerova, L.C.; Black, P.M.; Lau, C.; Allen, J.C.; Zagzag, D.; Olson, J.M.; Curran, T.; Wetmore, C.; Biegel, J.A.; Poggio, T.; Mukherjee, S.; Rifkin, R.; Califano, A.; Stolovitzky, G.; Louis, D.N.; Mesirov, J.P.; Lander, E.S.; Golub, T.R. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 2002, 415(6870), 436-442.
[http://dx.doi.org/10.1038/415436a] [PMID: 11807556]
[111]
Heretsch, P.; Tzagkaroulaki, L.; Giannis, A. Modulators of the hedgehog signaling pathway. Bioorg. Med. Chem., 2010, 18(18), 6613-6624.
[http://dx.doi.org/10.1016/j.bmc.2010.07.038] [PMID: 20708941]
[112]
Rudin, C.M.; Hann, C.L.; Laterra, J.; Yauch, R.L.; Callahan, C.A.; Fu, L.; Holcomb, T.; Stinson, J.; Gould, S.E.; Coleman, B.; LoRusso, P.M.; Von Hoff, D.D.; de Sauvage, F.J.; Low, J.A. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med., 2009, 361(12), 1173-1178.
[http://dx.doi.org/10.1056/NEJMoa0902903] [PMID: 19726761]
[113]
Von Hoff, D.D.; LoRusso, P.M.; Rudin, C.M.; Reddy, J.C.; Yauch, R.L.; Tibes, R.; Weiss, G.J.; Borad, M.J.; Hann, C.L.; Brahmer, J.R.; Mackey, H.M.; Lum, B.L.; Darbonne, W.C.; Marsters, J.C., Jr; de Sauvage, F.J.; Low, J.A. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med., 2009, 361(12), 1164-1172.
[http://dx.doi.org/10.1056/NEJMoa0905360] [PMID: 19726763]
[114]
Scales, S.J.; de Sauvage, F.J. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci., 2009, 30(6), 303-312.
[http://dx.doi.org/10.1016/j.tips.2009.03.007] [PMID: 19443052]
[115]
Miller-Moslin, K.; Peukert, S.; Jain, R.K.; McEwan, M.A.; Karki, R.; Llamas, L.; Yusuff, N.; He, F.; Li, Y.; Sun, Y.; Dai, M.; Perez, L.; Michael, W.; Sheng, T.; Lei, H.; Zhang, R.; Williams, J.; Bourret, A.; Ramamurthy, A.; Yuan, J.; Guo, R.; Matsumoto, M.; Vattay, A.; Maniara, W.; Amaral, A.; Dorsch, M.; Kelleher, J.F., III 1-amino-4-benzylphthalazines as orally bioavailable smoothened antagonists with antitumor activity. J. Med. Chem., 2009, 52(13), 3954-3968.
[http://dx.doi.org/10.1021/jm900309j] [PMID: 19469545]
[116]
Lucas, B.S.; Aaron, W.; An, S.; Austin, R.J.; Brown, M.; Chan, H.; Chong, A.; Hungate, R.; Huang, T.; Jiang, B.; Johnson, M.G.; Kaizerman, J.A.; Lee, G.; McMinn, D.L.; Orf, J.; Powers, J.P.; Rong, M.; Toteva, M.M.; Uyeda, C.; Wickramasinghe, D.; Xu, G.; Ye, Q.; Zhong, W. Design of 1-piperazinyl-4-arylphthalazines as potent Smoothened antagonists. Bioorg. Med. Chem. Lett., 2010, 20(12), 3618-3622.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.110] [PMID: 20493695]
[117]
Stewart, L.; Redinbo, M.R.; Qiu, X.; Hol, W.G.; Champoux, J.J. A model for the mechanism of human topoisomerase I. Science, 1998, 279(5356), 1534-1541.
[http://dx.doi.org/10.1126/science.279.5356.1534] [PMID: 9488652]
[118]
Champoux, J.J. Domains of human topoisomerase I and associated functions. Prog. Nucleic Acid Res. Mol. Biol., 1998, 60, 111-132.
[http://dx.doi.org/10.1016/S0079-6603(08)60891-0] [PMID: 9594573]
[119]
Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[120]
Hekal, M.H.; El-Naggar, A.M.; El-Azm, F.S.; El-Sayed, W.M. Synthesis of new oxadiazol-phthalazinone derivatives with anti-proliferative activity; molecular docking, pro-apoptotic, and enzyme inhibition profile. RSC Advances, 2020, 10(7), 3675-3688.
[http://dx.doi.org/10.1039/C9RA09016A]
[121]
Shen, D.Q.; Wu, Z.P.; Wu, X.W.; An, Z.Y.; Bu, X.Z.; Gu, L.Q.; Huang, Z.S.; An, L.K. Synthesis and antiproliferative activity of indolizinophthalazine-5,12-dione derivatives, DNA topoisomerase IB inhibitors. Eur. J. Med. Chem., 2010, 45(9), 3938-3942.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.048] [PMID: 20638158]
[122]
El Nezhawy, A.O.; Radwan, M.A.; Gaballah, S.T. Synthesis of chiral N-(2-(1-oxophthalazin-2 (1H)-yl) ethanoyl)-α-amino acid derivatives as antitumor agents. ARKIVOC, 2009, 1(12), 119-130.
[123]
Locher, K.P. Structure and mechanism of ATP-binding cassette transporters. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1514), 239-245.
[http://dx.doi.org/10.1098/rstb.2008.0125] [PMID: 18957379]
[124]
Sarkadi, B.; Homolya, L.; Szakács, G.; Váradi, A. Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system. Physiol. Rev., 2006, 86(4), 1179-1236.
[http://dx.doi.org/10.1152/physrev.00037.2005] [PMID: 17015488]
[125]
Fletcher, J.I.; Williams, R.T.; Henderson, M.J.; Norris, M.D.; Haber, M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat., 2016, 26, 1-9.
[http://dx.doi.org/10.1016/j.drup.2016.03.001] [PMID: 27180306]
[126]
Palmeira, A.; Sousa, E.; Vasconcelos, M.H.; Pinto, M.M. Three decades of P-gp inhibitors: Skimming through several generations and scaffolds. Curr. Med. Chem., 2012, 19(13), 1946-2025.
[http://dx.doi.org/10.2174/092986712800167392] [PMID: 22257057]
[127]
Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res., 1981, 41(5), 1967-1972.
[PMID: 7214365]
[128]
Krishna, R.; Mayer, L.D. Multidrug Resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci., 2000, 11(4), 265-283.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[129]
Ferry, D.R.; Traunecker, H.; Kerr, D.J. Clinical trials of P-glycoprotein reversal in solid tumours. Eur. J. Cancer, 1996, 32A(6), 1070-1081.
[http://dx.doi.org/10.1016/0959-8049(96)00091-3] [PMID: 8763349]
[130]
Qiu, Q.; Zhou, J.; Shi, W.; Kairuki, M.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of N-(4-(2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)phenyl)-4-oxo-3,4-dihydrophthalazine-1-carboxamide derivatives as novel P-glycoprotein inhibitors reversing multidrug resistance. Bioorg. Chem., 2019, 86, 166-175.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.039] [PMID: 30710850]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy