Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

A DNA Repair Pathway Polymorphism (rs25487) and Angiographically Proven Coronary Artery Patients in a Population of Southern Iran

Author(s): Seyed M. Hoseini, Mahdi Bijanzadeh* and Seyed M. Seyedian

Volume 19, Issue 1, 2021

Published on: 05 August, 2020

Page: [76 - 82] Pages: 7

DOI: 10.2174/1871525718666200805113813

Price: $65

Abstract

Background: Coronary Artery Disease (CAD), which is a multifactorial genetic disease, is known as one of the most common causes of death worldwide. In this regard, X-ray Repair Cross-Complementing group 1 (XRCC1), a DNA repair protein involved in Single-Strand Breaks (SSBs), and Base Excision Repair (BER) pathways have been reported to be responsible for the efficient repair of single strand breaks and damaged bases in DNA.

Objectives: In the current study, we analyzed Arg399Gln (rs25487), which is one of the most common polymorphisms of XRCC1 gene that might be associated with the increased risk for CAD.

Methods: This case-control study was performed to investigate the relationship between this polymorphism and CAD development. In this study, 290 patients and 216 controls were diagnosed by cardiac angiography and then screened for the above-mentioned polymorphism using Restriction Fragment Length Polymorphisms (RFLP) method.

Results: The frequency of the GA genotype of XRCC1 Arg399Gln (rs25487) was significantly higher in CAD patients compared to the controls (p=0.002, OR: 1.21, 95% CI: 1.06-1.37). Moreover, its dominant mode (AA + GA) genotype had a 1.851-fold increase in the risk of CAD (p = 0.005).

Conclusion: Our findings demonstrated that Arg399Gln polymorphism of XRCC1 (rs25487) has a significant relationship with CAD and also plays a probable predisposing role in that. Our results support the role of DNA damages and the malfunctions of DNA repair system in the patients with CAD.

Keywords: Coronary artery disease, angiography, restriction fragment length polymorphisms, DNA, SSB, BER.

Graphical Abstract
[1]
Weber, C.; Noels, H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med., 2011, 17(11), 1410-1422.
[http://dx.doi.org/10.1038/nm.2538] [PMID: 22064431]
[2]
Bazo, A.P.; Salvadori, D., Jr; Salvadori, R.A.; Sodré, L.P.; da Silva, G.N.; de Camargo, E.A.; Ribeiro, L.R.; Salvadori, D.M. DNA repair gene polymorphism is associated with the genetic basis of atherosclerotic coronary artery disease. Cardiovasc. Pathol., 2011, 20(1), e9-e15.
[http://dx.doi.org/10.1016/j.carpath.2009.12.004] [PMID: 20093049]
[3]
Dalen, J.E.; Alpert, J.S.; Goldberg, R.J.; Weinstein, R.S. The epidemic of the 20th century: Coronary heart disease. Am. J. Med., 2014, 127(9), 807-812.
[http://dx.doi.org/10.1016/j.amjmed.2014.04.015] [PMID: 24811552]
[4]
Thiery, J.; Teupser, D. [Genetic factors in the development of atherosclerosis]. Z. Kardiol., 1998, 87(10), 777-788.
[http://dx.doi.org/10.1007/s003920050232] [PMID: 9857453]
[5]
Winkelmann, B.R.; Hager, J. Genetic variation in coronary heart disease and myocardial infarction: Methodological overview and clinical evidence. Pharmacogenomics, 2000, 1(1), 73-94.
[http://dx.doi.org/10.1517/14622416.1.1.73] [PMID: 11258599]
[6]
Botto, N.; Masetti, S.; Petrozzi, L.; Vassalle, C.; Manfredi, S.; Biagini, A.; Andreassi, M.G. Elevated levels of oxidative DNA damage in patients with coronary artery disease. Coron. Artery Dis., 2002, 13(5), 269-274.
[http://dx.doi.org/10.1097/00019501-200208000-00004] [PMID: 12394651]
[7]
Karam, R.A.; Al Jiffry, B.O.; Al Saeed, M.; Abd El Rahman, T.M.; Hatem, M.; Amer, M.G. DNA repair genes polymorphisms and risk of colorectal cancer in Saudi patients. Arab J. Gastroenterol., 2016, 17(3), 117-120.
[http://dx.doi.org/10.1016/j.ajg.2016.08.005] [PMID: 27686263]
[8]
Wood, R.D.; Mitchell, M.; Sgouros, J.; Lindahl, T. Human DNA repair genes. Sci., 2001, 291(5507), 1284-1289.
[http://dx.doi.org/10.1126/science.1056154] [PMID: 11181991]
[9]
Frosina, G. Overexpression of enzymes that repair endogenous damage to DNA. Eur. J. Biochem., 2000, 267(8), 2135-2149.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01266.x] [PMID: 10759836]
[10]
Caldecott, K.W. XRCC1 and DNA strand break repair. Amst, 2003, 2, 955-969.
[11]
Monaco, R.; Rosal, R.; Dolan, M.A.; Pincus, M.R.; Brandt-Rauf, P.W. Conformational effects of a common codon 399 polymorphism on the BRCT1 domain of the XRCC1 protein. Protein J., 2007, 26(8), 541-546.
[http://dx.doi.org/10.1007/s10930-007-9095-y] [PMID: 17899335]
[12]
Murgia, E.; Maggini, V.; Barale, R.; Rossi, A.M. Micronuclei, genetic polymorphisms and cardiovascular disease mortality in a nested case-control study in Italy. Mutat. Res., 2007, 621(1-2), 113-118.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.02.015] [PMID: 17448506]
[13]
Caldecott, K.W. DNA repair. Amst, 2003, 2, 955-969.
[14]
Lunn, R.M.; Langlois, R.G.; Hsieh, L.L.; Thompson, C.L.; Bell, D.A. XRCC1 polymorphisms: Effects on aflatoxin B1-DNA adducts and glycophorin a variant frequency. Cancer Res., 1999, 59(11), 2557-2561.
[PMID: 10363972]
[15]
Ahmadi, A.; Behmanesh, M.; Boroumand, M.A.; Tavallaei, M. Up-regulation of MSH2, XRCC1 and ATM genes in patients with type 2 diabetes and coronary artery disease. Diabetes Res. Clin. Pract., 2015, 109(3), 500-506.
[http://dx.doi.org/10.1016/j.diabres.2015.05.049] [PMID: 26088318]
[16]
Guo, S.J.; Zhou, Y.T.; Liu, W.Y.; Zuo, Q.N.; Li, X.H. The polymorphism of XRCC1 and coronary artery disease risk: A meta-analysis. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(7), 1559-1567.
[PMID: 28429350]
[17]
Ma, W.Q.; Han, X.Q.; Wang, X.; Wang, Y.; Zhu, Y.; Liu, N.F. Associations between XRCC1 gene polymorphisms and coronary artery disease: A meta-analysis. PLoS One, 2016, 11(11)e0166961
[http://dx.doi.org/10.1371/journal.pone.0166961] [PMID: 27870881]
[18]
Hameed, H.; Faryal, M.; Aslam, M.A.; Akbar, A.; Saad, A.B.; Pasha, M.B.; Latif, M.; Rehan Sadiq Shaikh, R.R.; Ali, M.; Iqbal, F. Association of Polymorphisms (rs 1799782, rs25489 and rs25487) in XRCC1 and (rs 13181) XPD genes with acute coronary artery syndrome in subjects from Multan, Pakistan. Pak. J.
[19]
Ritsinger, V.; Hero, C.; Svensson, A.M.; Saleh, N.; Lagerqvist, B.; Eeg-Olofsson, K.; Norhammar, A. Mortality and extent of coronary artery disease in 2776 patients with type 1 diabetes undergoing coronary angiography: A nationwide study. Eur. J. Prev. Cardiol., 2017, 24(8), 848-857.
[http://dx.doi.org/10.1177/2047487316687860] [PMID: 28084092]
[20]
Kuchta, A.; Strzelecki, A.; Ćwiklińska, A.; Gruchała, M.; Zdrojewski, Z.; Kortas-Stempak, B.; Wieczorek, E.; Gliwińska, A.; Dąbkowski, K.; Jankowski, M. HDL subpopulations containing apoA-I without apoA-II (LpA-I) in patients with angiographically proven coronary artery disease. J. Cardiol., 2017, 69(3), 523-528.
[http://dx.doi.org/10.1016/j.jjcc.2016.04.007] [PMID: 27169356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy