Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Assessment of Effects of Solvents on Cocrystallization by Computational Simulation Approach

Author(s): Manami Dhibar*, Santanu Chakraborty and Souvik Basak

Volume 18, Issue 1, 2021

Published on: 04 August, 2020

Page: [44 - 53] Pages: 10

DOI: 10.2174/1567201817666200804110837

Price: $65

Abstract

Purpose: The sole purpose of this study is to improve the solubility and dissolution of telmisartan by cocrystallization technique and apply a computational simulation approach to assess the nature of chemical interactions between telmisartan and coformer as well as the solvent contribution to the molecules for furnishing cocrystallization.

Methods: The effects of various concentrations of coformer i.e. oxalic acid on physicochemical parameters and drug release were investigated.

Results: Solubility studies suggested that cocrystallization technique with oxalic acid helps to increase the solubility of pure telmisartan of about 7 folds and drug release study revealed that telmisartan-oxalic acid cocrystals showed greater dissolution as compared to pure telmisartan. SEM study suggested that prepared telmisartan cocrystals showed rhomboid-shaped crystals with sharp edges and smooth surface. FTIR study revealed that shifting in the vibrational frequencies of C=O group of telmisartan in telmisartan- oxalic acid cocrystal indicates the formation of supra molecular hetero synthon of the cocrystal. DSC and XRD studies confirmed the formation of telmisartan-oxalic acid cocrystals. Computational simulation approach revealed that telmisartan and oxalic acid can interact with each other in the presence of methanol and water where oxalic acid can form interactions principally with the others. The interactions, thereof, may form several associations or bondings in between the drug and carrier modifying the planarity, bond energy, bond angles of both which subsequently lead to cocrystallization.

Conclusion: So, the present research concluded that prepared telmisartan-oxalic acid cocrystal is a successful application of crystal engineering approach to improve the physicochemical properties as well as to enhance the solubility and dissolution of telmisartan.

Keywords: Computational simulation approach, cocrystals, telmisartan, solubility enhancement, interaction studies, bonding.

Graphical Abstract
[1]
Yadav, A.V.; Shete, A.S.; Dabke, A.P.; Kulkarni, P.V.; Sakhare, S.S. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci., 2009, 71(4), 359-370.
[http://dx.doi.org/10.4103/0250-474X.57283] [PMID: 20502540]
[2]
Ku, M.S.; Dulin, W. A biopharmaceutical classification-based right-first-time formulation approach to reduce human pharmacokinetic variability and project cycle time from first-in-human to clinical proof-of-concept. Pharm. Dev. Technol., 2012, 17(3), 285-302.
[http://dx.doi.org/10.3109/10837450.2010.535826] [PMID: 21121705]
[3]
Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev., 2007, 59(7), 617-630.
[http://dx.doi.org/10.1016/j.addr.2007.05.011] [PMID: 17597252]
[4]
Bittner, B.; Mountfield, R.J. Intravenous administration of poorly soluble new drug entities in early drug discovery: the potential impact of formulation on pharmacokinetic parameters. Curr. Opin. Drug Discov. Devel., 2002, 5(1), 59-71.
[PMID: 11865674]
[5]
Jain, S.; Patel, N.; Lin, S. Solubility and dissolution enhancement strategies: current understanding and recent trends. Drug Dev. Ind. Pharm., 2015, 41(6), 875-887.
[http://dx.doi.org/10.3109/03639045.2014.971027] [PMID: 25342479]
[6]
Miroshnyk, I.; Mirza, S.; Sandler, N. Pharmaceutical co-crystals-an opportunity for drug product enhancement. Expert Opin. Drug Deliv., 2009, 6(4), 333-341.
[http://dx.doi.org/10.1517/17425240902828304] [PMID: 19348603]
[7]
Boetker, J.; Raijada, D.; Aho, J.; Khorasani, M.; Søgaard, S.V.; Arnfast, L.; Bohr, A.; Edinger, M.; Water, J.J.; Rantanen, J. In silico product design of pharmaceuticals. Asian J. Pharm. Sci, 2016, 11, 492-499.
[http://dx.doi.org/10.1016/j.ajps.2016.02.010]
[8]
Zaworotko, M. Crystal engineering of co-crystals and their relevance to pharmaceuticals and solid-state chemistry. Acta Crystallogr., 2008, 64, 11-12.
[http://dx.doi.org/10.1107/S0108767308099637]
[9]
Yadav, S.; Gupta, P.C.; Sharma, N.; Kumar, J. Cocrystals: an alternative approach to modify physicochemical properties of drugs. Int. J. Pharm. Chem. Biol. Sci., 2015, 5, 427-436.
[10]
Sanjay, A.N.; Manohar, S.D.; Bhanudas, S.R. Pharmaceutical cocrystallization: a review. J. Adv. Pharm. Educ. Res., 2014, 4, 388-396.
[11]
Tran, P.H.L.; Tran, H.T.T.; Lee, B.J. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J. Control. Release, 2008, 129(1), 59-65.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.001] [PMID: 18501462]
[12]
Stangier, J.; Su, C.A.; Roth, W. Pharmacokinetics of orally and intravenously administered telmisartan in healthy young and elderly volunteers and in hypertensive patients. J. Int. Med. Res., 2000, 28(4), 149-167.
[http://dx.doi.org/10.1177/147323000002800401] [PMID: 11014323]
[13]
Zhong, L.; Zhu, X.; Luo, X.; Su, W. Dissolution properties and physical characterization of telmisartan-chitosan solid dispersions prepared by mechanochemical activation. AAPS PharmSciTech, 2013, 14(2), 541-550.
[http://dx.doi.org/10.1208/s12249-013-9937-1] [PMID: 23430728]
[14]
Akram, M.A.; Nazir, T.; Taha, N.; Adil, A.; Sarfraz, M.; Nazir, S.R. Designing, development and formulation of mouth disintegrating telmisartan tablet with extended release profile using response surface methodology. J. Bioequivalence Bioavailab., 2015, 7, 262-266.
[15]
Zhang, Y.; Zhi, Z.; Jiang, T.; Zhang, J.; Wang, Z.; Wang, S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J. Control. Release, 2010, 145(3), 257-263.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.029] [PMID: 20450945]
[16]
Zhang, Y.; Jiang, T.; Zhang, Q.; Wang, S. Inclusion of telmisartan in mesocellular foam nanoparticles: drug loading and release property. Eur. J. Pharm. Biopharm., 2010, 76(1), 17-23.
[http://dx.doi.org/10.1016/j.ejpb.2010.05.010] [PMID: 20685333]
[17]
Chadha, R.; Bhandari, S.; Haneef, J.; Khullar, S.; Mandal, S. Cocrystals of telmisartan: characterization, structure elucidation, in vivo and toxicity studies. CrystEngComm, 2014, 16, 8375-8389.
[http://dx.doi.org/10.1039/C4CE00797B]
[18]
Kalaiselvan, V.; Kumar, R.; Singh, G.N. Indian pharmacopoeia commission’s partners for promoting public health. Adv. Pharmacoepidemiol. Drug Saf., 2015, 4, 3.
[19]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[20]
Alatas, F.; Ratih, H.; Soewandhi, S.N. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid cocrystal formation. Int. J. Pharm. Pharm. Sci., 2015, 7, 423-426.
[21]
Corrigan, O.I.; Stanley, C.T. Mechanism of drug dissolution rate enhancement from β-cyclodextrin-drug systems. J. Pharm. Pharmacol., 1982, 34(10), 621-626.
[http://dx.doi.org/10.1111/j.2042-7158.1982.tb04689.x] [PMID: 6128383]
[22]
Schultheiss, N.; Newman, A. A pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des., 2009, 9(6), 2950-2967.
[http://dx.doi.org/10.1021/cg900129f] [PMID: 19503732]
[23]
Gupta, M.K.; Vanwert, A.; Bogner, R.H. Formation of physically stable amorphous drugs by milling with Neusilin. J. Pharm. Sci., 2003, 92(3), 536-551.
[http://dx.doi.org/10.1002/jps.10308] [PMID: 12587115]
[24]
Tong, P.; Taylor, L.S.; Zografi, G. Influence of alkali metal counterions on the glass transition temperature of amorphous indomethacin salts. Pharm. Res., 2002, 19(5), 649-654.
[http://dx.doi.org/10.1023/A:1015310213887] [PMID: 12069168]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy