Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Methods and Strategies Used in Green Chemistry: A Review

Author(s): Anjali Sharma, Sharad Wakode*, Supriya Sharma, Faizana Fayaz and Faheem Hyder Pottoo

Volume 24, Issue 22, 2020

Page: [2555 - 2565] Pages: 11

DOI: 10.2174/1385272824999200802025233

Price: $65

Abstract

Green chemistry plays an important role in the development of sustainable production systems which involves tremendous research efforts on the design of synthetic and analytical techniques through resource-efficient ways. The improvement in synthetic reaction performances encourages the modern society to minimize energy and reagent consumption and waste generation. Explosion of the chemicals are referred as extremely toxic substances and have been allied with major harmful health effects, though no cure has been established due to the lack of curative therapeutic approaches. In view of the facts, green chemistry strategies trigger a new hope in the synthesis of safer biologically active compounds to meet the demands of disease free environment. Here, we highlighted the development of various compounds and greener techniques such as ultrasoundassisted method, microwave-assisted method, green solvent reactions, solvent free reactions, biomolecules and nanoformulations as a new healthy approach.

Keywords: Green solvents, microwave assisted synthesis, ultrasound-assisted synthesis, nanocatalysts, solvent free approaches, biomolecule, nanoformulations, green chemistry techniques.

Graphical Abstract
[1]
Jiang, S.; Ladewig, B.P. Green synthesis of polymeric membranes: recent advances and future prospects. Curr. Opin. Green Sustain. Chem., 2020, 21, 1-8.
[http://dx.doi.org/10.1016/j.cogsc.2019.07.002]
[2]
Maertens, A.; Anastas, N.; Spencer, P.J.; Stephens, M.; Goldberg, A.; Hartung, T. Food for thought : green toxicology. ALTEX. Altern. Anim. Exp., 2014, 31, 243-249.
[http://dx.doi.org/10.14573/altex.1406181]
[3]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[4]
Wilson, K.B.; Bleecker, M.L. Neuropsychological impairment following inorganic arsenic exposure. J. Occup. Med., 1987, 29(6), 500-503.
[PMID: 3612324]
[5]
Brouwer, O.F.; Onkenhout, W.; Edelbroek, P.M.; de Kom, J.F.M.; de Wolff, F.A.; Peters, A.C.B. Increased neurotoxicity of arsenic in methylenetetrahydrofolate reductase deficiency. Clin. Neurol. Neurosurg., 1992, 94(4), 307-310.
[http://dx.doi.org/10.1016/0303-8467(92)90179-7] [PMID: 1335858]
[6]
Stollery, B.T.; Broadbent, D.E.; Banks, H.A.; Lee, W.R. Short term prospective study of cognitive functioning in lead workers. Br. J. Ind. Med., 1991, 48(11), 739-749.
[http://dx.doi.org/10.1136/oem.48.11.739] [PMID: 1954152]
[7]
Khalil, N.; Morrow, L.A.; Needleman, H.; Talbott, E.O.; Wilson, J.W.; Cauley, J.A. Association of cumulative lead and neurocognitive function in an occupational cohort. Neuropsychology, 2009, 23(1), 10-19.
[http://dx.doi.org/10.1037/a0013757] [PMID: 19210029]
[8]
Stewart, W.F.; Schwartz, B.S. Effects of lead on the adult brain: a 15-year exploration. Am. J. Ind. Med., 2007, 50(10), 729-739.
[http://dx.doi.org/10.1002/ajim.20434] [PMID: 17311281]
[9]
Angerer, J.; Lehnert, G. Occupational chronic exposure to organic solvents. Int. Arch. Occup. Environ. Health, 1979, 43, 145-150.
[http://dx.doi.org/10.1007/BF00381095] [PMID: 8482587]
[10]
Carlsson, A.; Lindqvist, T. Exposure of animals and man to toluene. Scand. J. Work Environ. Health, 1977, 3(3), 135-143.
[http://dx.doi.org/10.5271/sjweh.2780] [PMID: 910123]
[11]
Debnath, P. Recent advances in the Hofmann rearrangement and its application to natural product synthesis. Curr. Org. Chem., 2019, 23(22), 2402-2435.
[http://dx.doi.org/10.2174/1385272823666191021115508]
[12]
Tilvi, S.; Khan, S.; Majik, M.S. γ-Hydroxybutenolide containing marine natural products and their synthesis: a review. Curr. Org. Chem., 2019, 23(22), 2436-2468.
[http://dx.doi.org/10.2174/1385272823666191021122810]
[13]
Schmiedel, V.M.; Reissig, H-U. Alkoxyallenes as starting materials for the syntheses of natural products. Curr. Org. Chem., 2019, 23(27), 2976-3003.
[http://dx.doi.org/10.2174/1385272824666191218115731]
[14]
Rammohan, P.; Shampa, K.; Taradas, S. First application of fruit juice of citrus limon for facile and green synthesis of bis- and tris (indolyl) methanes in water. Chem. J., 1998, 3(1), 7-12.
[15]
Sharma, P.; Sharma, A.; Fayaz, F.; Wakode, S.; Pottoo, F.H. Biological signatures of Alzheimer’s disease. Curr. Top. Med. Chem., 2020, 20(9), 770-781.
[http://dx.doi.org/10.2174/1568026620666200228095553] [PMID: 32108008]
[16]
Tanay, P.; Aadil Hussain, P.; Richa, G.; Joginder, S.; Simranjeet, S. Dihydropyrimidinone derivatives: green synthesis and effect of electronic factor on their antimicrobial properties. Res. J. Pharm. Biol. Chem. Sci., 1998, 6(1), 1152-1157.
[17]
Bakht, M.A. Lemon juice catalyzed ultrasound assisted synthesis of Schiff’s base : a total green approach. Bull. Environ. Pharmacol. Life Sci., 2015, 4(10), 94-100.
[18]
Anastas, P.T.; Warner, J.C. Principles of green chemistry. In:Green Chemistry: Theory and Practice; Oxford University Press, 1998, pp. 29-56.
[19]
Grandjean, P.; Landrigan, P.J. Developmental neurotoxicity of industrial chemicals. Lancet, 2006, 368(9553), 2167-2178.
[http://dx.doi.org/10.1016/S0140-6736(06)69665-7] [PMID: 17174709]
[20]
Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green chemistry metrics with special reference to green analytical chemistry. Molecules, 2015, 20(6), 10928-10946.
[http://dx.doi.org/10.3390/molecules200610928] [PMID: 26076112]
[21]
Dubé, M.A.; Salehpour, S. Applying the principles of green chemistry to polymer production technology. Macromol. React. Eng., 2014, 8(1), 7-28.
[http://dx.doi.org/10.1002/mren.201300103]
[22]
Crawford, D.E.; Casaban, J. Recent developments in mechanochemical materials synthesis by extrusion. Adv. Mater., 2016, 28(27), 5747-5754.
[http://dx.doi.org/10.1002/adma.201505352] [PMID: 26932541]
[23]
Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and techniques for solvent selection. Green solvent selection guides. Sustain. Chem. Process., 2016, 4(1), 1-24.
[http://dx.doi.org/10.1186/s40508-016-0051-z]
[24]
Garay, A.L.; Pichon, A.; James, S.L. Solvent-free synthesis of metal complexes. Chem. Soc. Rev., 2007, 36(6), 846-855.
[http://dx.doi.org/10.1039/b600363j] [PMID: 17534472]
[25]
Hashemi, B.; Zohrabi, P.; Dehdashtian, S. Application of green solvents as sorbent modifiers in sorptive-based extraction techniques for extraction of environmental pollutants. TrAC-. Trends Analyt. Chem., 2018, 109, 50-61.
[http://dx.doi.org/10.1016/j.trac.2018.09.026]
[26]
Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci., 2019, 26, 87-93.
[http://dx.doi.org/10.1016/j.cofs.2019.04.003]
[27]
Abd-Elmonem, M.; Mekheimer, A.R.; M., Hayallah A.; A. Abo Elsoud, F.; U. Sadek, K. Recent advances in the utility of glycerol as a benign and biodegradable medium in heterocyclic synthesis. Curr. Org. Chem., 2019, 23(28), 3226-3246.
[http://dx.doi.org/10.2174/1385272823666191025150646]
[28]
Riadi, Y. Green, rapid and efficient synthesis of new antibacterial pyridopyrimidinone mediated by eutectic mixture of urea/CuCl2. Sustain. Chem. Pharm., 2020, 15, 1-4.
[http://dx.doi.org/10.1016/j.scp.2020.100233]
[29]
Elguezabal, A.A.; Saenz, T.L.; Aguirre, M.; Contreras, A.L. Ionic liquid as green solvent for the synthesis of α-terpineol from α-pinene. Sustain. Chem. Pharm., 2020, 15, 1-4.
[http://dx.doi.org/10.1016/j.scp.2019.100207]]
[30]
Kaur, P.; Chopra, H.K. Recent advances in applications of supported ionic liquids. Curr. Org. Chem., 2019, 23(26), 2881-2915.
[http://dx.doi.org/10.2174/1385272823666191204151803]
[31]
O’Brien, D.M.; Atkinson, R.L.; Cavanagh, R.; Pacheco, A.A.C.; Larder, R.; Kortsen, K.; Krumins, E.; Haddleton, A.J.; Alexander, C.; Stockman, R.A.A. ‘greener’ one-pot synthesis of monoterpene-functionalised lactide oligomers. Eur. Polym. J., 2020, 125109516
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109516]
[32]
Kumar, A.; Jad, Y.E.; El-faham, A.; De, B.G.; Albericio, F. Green solid-phase peptide synthesis 4. c-Valerolactone and N-formylmorpholine as green solvents for solid phase peptide synthesis. Tetrahedron Lett., 2017, 58(30), 2986-2988.
[http://dx.doi.org/10.1016/j.tetlet.2017.06.058]
[33]
Subratti, A.; Lalgee, L.J.; Jalsa, N.K. Liquified Dimethyl Ether (DME): a green solvent for the extraction of hemp (Cannabis Sativa L.) seed oil. Sustain. Chem. Pharm., 2019, 12100144
[http://dx.doi.org/10.1016/j.scp.2019.100144]
[34]
Shivhare, K.N.; Srivastava, A.; Siddiqui, I.R. Catalyst-free glycerol promoted green synthesis of 2-amino-1,8- naphthyridine -3-carbonitriles and 2-amino-3-quinolinecarbonitriles. Curr. Green Chem., 2019, 6(1), 62-68.
[http://dx.doi.org/10.2174/2452273203666190114145322]
[35]
Pan, W.Y.; Xiao, Y.M.; Xiong, H.Q.; Lü, C.W. Et3N Catalyzed cascade reaction of Meldrum’s acid with ortho-hydroxyaryl aldehydes for the synthesis of coumarin-3-carboxylic acids under solvent-less condition. Res. Chem. Intermed., 2016, 42(9), 7057-7063.
[http://dx.doi.org/10.1007/s11164-016-2517-8]
[36]
Mahmoud, M.A.; Narayanan, R.; El-Sayed, M.A. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Acc. Chem. Res., 2013, 46(8), 1795-1805.
[http://dx.doi.org/10.1021/ar3002359] [PMID: 23387515]
[37]
Gates, B.C. Supported gold catalysts: new properties offered by nanometer and sub-nanometer structures. Chem. Commun. (Camb.), 2013, 49(72), 7876-7877.
[http://dx.doi.org/10.1039/c3cc44942d] [PMID: 23904034]
[38]
Kamalifar, S.; Kiyani, H. An expeditious one-pot three-component synthesis of 4-aryl-3,4-dihydrobenzo[g] quinoline-2,5,10(1H)-triones under green conditions. Curr. Org. Chem., 2019, 23(23), 2626-2634.
[http://dx.doi.org/10.2174/1385272823666191108123330]
[39]
Hu, H.; Xin, J.H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions - a review. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(21), 11157-11182.
[http://dx.doi.org/10.1039/C5TA00753D]
[40]
Zhou, X.; Gan, Y.; Du, J.; Tian, D.; Zhang, R.; Yang, C.; Dai, Z. A review of hollow Pt-based nanocatalysts applied in proton exchange membrane fuel cells. J. Power Sources, 2013, 232, 310-322.
[http://dx.doi.org/10.1016/j.jpowsour.2013.01.062]
[41]
Hansen, T.W.; Delariva, A.T.; Challa, S.R.; Datye, A.K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res., 2013, 46(8), 1720-1730.
[http://dx.doi.org/10.1021/ar3002427] [PMID: 23634641]
[42]
Melaet, G.; Lindeman, A.E.; Somorjai, G.A. Cobalt particle size effects in the Fischer-Tropsch synthesis and in the hydrogenation of CO2 studied with nanoparticle model catalysts on silica. Top. Catal., 2014, 57(6-9), 500-507.
[http://dx.doi.org/10.1007/s11244-013-0206-z]
[43]
Cao, A.; Lu, R.; Veser, G. Stabilizing metal nanoparticles for heterogeneous catalysis. Phys. Chem. Chem. Phys., 2010, 12(41), 13499-13510.
[http://dx.doi.org/10.1039/c0cp00729c] [PMID: 20820585]
[44]
Kambourakis, S.; Draths, K.M.; Frost, J.F. Synthesis of gallic acid and pyrogallol from glucose: replacing natural product isolation with microbial catalysis. J. Am. Chem. Soc., 2000, 122, 9042-9043.
[http://dx.doi.org/10.1021/ja000853r]
[45]
Sarkar, S.M.; Rahman, M.L.; Yusoff, M.M. Heck, Suzuki and Sonogashira cross-coupling reactions using ppm level of SBA-16 supported Pd-complex. New J. Chem., 2015, 39(5), 3564-3570.
[http://dx.doi.org/10.1039/C4NJ02319F]
[46]
Rimus, A.; Tri, R.; Fajri, M. The utilization of Fe3O4 nanocatalyst in modifying cinnamaldehyde compound to synthesis 2-amino-4H-chromene derivative. Mater. Today Proc., 2020, 22, 193-198.
[http://dx.doi.org/10.1016/j.matpr.2019.08.087]
[47]
Mahmoud, A.; Adam, M.; Deng, M.; Zhu, A.; Zhang, Q.; Liu, Q. Facile one-step room temperature synthesis of PdAg nanocatalysts supported on multi-walled carbon nanotubes towards electro-oxidation of methanol and ethanol. Electrochim. Acta, 2020, 339135929
[http://dx.doi.org/10.1016/j.electacta.2020.135929]
[48]
Lupacchini, M.; Mascitti, A.; Giachi, G.; Tonucci, L.; d’Alessandro, N.; Martinez, J.; Colacino, E. Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron, 2017, 73(6), 609-653.
[http://dx.doi.org/10.1016/j.tet.2016.12.014]
[49]
Al-hunaiti, A.; Al-said, N.; Halawani, L.; Abu, M.; Baqaien, R.; Taher, D. Synthesis of magnetic CuFe2O4 nanoparticles as green catalyst for toluene oxidation under solvent-free conditions. Arab. J. Chem., 2020, 13(4), 4945-4953.
[http://dx.doi.org/10.1016/j.arabjc.2020.01.017]
[50]
Cao, Q.; Crawford, D.E.; Shi, C.; James, S.L. greener dye synthesis: continuous, solvent-free synthesis of commodity perylene diimides by twin-screw extrusion. Angew. Chem. Int. Ed. Engl., 2020, 59(11), 4478-4483.
[http://dx.doi.org/10.1002/anie.201913625] [PMID: 31829494]
[51]
Olaniyan, B.; Saha, B. Comparison of catalytic activity of ZIF-8 and Zr/ZIF-8 for greener synthesis of chloromethyl ethylene carbonate by CO2 utilization. Energies, 2020, 13(3), 521.
[http://dx.doi.org/10.3390/en13030521]
[52]
Ganesan, N.S.; Suresh, P. Nitrogen-doped graphene oxide as a sustainable carbonaceous catalyst for greener synthesis : benign and solvent-free synthesis of pyranopyrazoles. ChemistrySelect, 2020, 5(16), 4988-4993.
[http://dx.doi.org/10.1002/slct.202000748]]
[53]
Prasad, D.; Preetam, A.; Nath, M. Microwave-assisted green synthesis of dibenzo[a,j]xanthenes using p -dodecylbenzenesulfonic acid as an efficient Bronsted acid catalyst under solvent-free conditions. C. R. Chim., 2012, 15(8), 675-678.
[http://dx.doi.org/10.1016/j.crci.2012.05.018]
[54]
Nazeef, M.; Shivhare, K.N.; Ali, S.; Ansari, K.; Ansari, M.D.; Tiwari, S.K.; Yadav, V.; Siddiqui, I.R. Visible-light-promoted C-N and C-S bonds formation: a catalyst and solvent-free photochemical approach for the synthesis of 1,3-thiazolidin-4-ones. J. Photochem. Photobiol. Chem., 2019, 390112347
[http://dx.doi.org/10.1016/j.jphotochem.2019.112347]
[55]
Guenin, E.; Meziane, D. Microwave assisted phosphorus organic chemistry: a review. Curr. Org. Chem., 2012, 15(19), 3465-3485.
[http://dx.doi.org/10.2174/138527211797374724]
[56]
Khanna, P.; Khanna, L.; Thomas, S.J.; Asiri, A.M.; Panda, S.S. Microwave assisted synthesis of spiro heterocyclic systems: a review. Curr. Org. Chem., 2017, 22(1), 67-84.
[http://dx.doi.org/10.2174/1385272821666170818161517]
[57]
Joshi, S.; More, U.; Kulkarni, V.; Aminabhavi, T. Pyrrole: chemical synthesis, microwave assisted synthesis, reactions and applications: a review. Curr. Org. Chem., 2013, 17(20), 2279-2304.
[http://dx.doi.org/10.2174/13852728113179990040]
[58]
Majid; Heravi, M.; Moghimi, S. Solid-supported reagents in organic synthesis using microwave irradiation. Curr. Org. Chem., 2013, 17(5), 504-527.
[http://dx.doi.org/10.2174/1385272811317050007]
[59]
Messina, F.; Rosati, O. Superheated water as solvent in microwave assisted organic synthesis of compounds of valuable pharmaceutical interest. Curr. Org. Chem., 2013, 17(11), 1158-1178.
[http://dx.doi.org/10.2174/1385272811317110004]
[60]
Neochoritis, C.G.; Tzitzikas, T.Z.; Tsoleridis, C.A.; Stephanatou, J.S.; Kontogiorgis, C.A.; Litina, D.J.H.; Papadopoulou, T.C. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones. Eur. J. Med. Chem., 2011, 46(1), 297-306.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.018] [PMID: 21146903]
[61]
Biradar, J.S.; Sasidhar, B.S. Solvent-free, microwave assisted Knoevenagel condensation of novel 2,5-disubstituted indole analogues and their biological evaluation. Eur. J. Med. Chem., 2011, 46(12), 6112-6118.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.004] [PMID: 22014995]
[62]
Sahoo, B.M. Mazaharunnisa; Rao, N. S.; Raju, B.; Banik, B. K. Microwave assisted green synthesis of benzimidazole derivatives and evaluation of their anticonvulsant activity. Curr. Microw. Chem., 2019, 6, 23-29.
[http://dx.doi.org/10.2174/2213335606666190429124745]
[63]
Kahrilas, G.A.; Wally, L.M.; Fredrick, S.J.; Hiskey, M.; Prieto, A.L.; Owens, J.E. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. Am. Chem. Soc., 2013, 2(3), 1-10.
[http://dx.doi.org/10.1021/sc4003664]]
[64]
Ranganathan, K.; Kamalakkannan, D.; Suresh, R.; Sakthinathan, S.P.; Arulkumaran, R.; Sundararajan, R.; Manikandan, V.; Venkatachalam, P.; Rajalakshmi, S.; Muthuvel, I. Cu2+/Zeolite catalyzed aldol condensation: greener synthesis of 4′-piperidinophenyl enones. Mater. Today Proc., 2020, 22, 1196-1199.
[http://dx.doi.org/10.1016/j.matpr.2019.12.120]
[65]
Brahmachari, G. Room Temperature one-pot green synthesis of coumarin-3-carboxylic acids in water: a practical method for the large-scale synthesis. ACS Sustain. Chem.& Eng., 2015, 3(9), 2350-2358.
[http://dx.doi.org/10.1021/acssuschemeng.5b00826]
[66]
Rathod, A.S.; Reddy, P.V.; Biradar, J.S. Microwave-assisted synthesis of some indole and isoniazid derivatives as antitubercular agents and molecular docking study. Russ. J. Org. Chem., 2020, 56(4), 662-670.
[http://dx.doi.org/10.1134/S1070428020040156]
[67]
Manno, R.; Ranjan, P.; Sebastian, V.; Mallada, R.; Irusta, S.; Sharma, U.K.; Van der Eycken, E.V.; Santamaria, J. Continuous microwave-assisted synthesis of silver nanoclusters confined in mesoporous SBA-15: application in alkyne cyclizations. Chem. Mater., 2020, 32(7), 2874-2883.
[http://dx.doi.org/10.1021/acs.chemmater.9b04935]
[68]
Kranjc, K.; Kocevar, M. Microwave-assisted organic synthesis: general considerations and transformations of heterocyclic compounds. Curr. Org. Chem., 2010, 14(10), 1050-1074.
[http://dx.doi.org/10.2174/138527210791130488]
[69]
Chauhan, D.S.; Mazumder, M.A.J.; Quraishi, M.A.; Ansari, K.R.; Suleiman, R.K. Microwave-assisted synthesis of a new Piperonal-Chitosan Schiff base as a bio-inspired corrosion inhibitor for oil-well acidizing. Int. J. Biol. Macromol., 2020, 158, 231-243.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.195] [PMID: 32344086]
[70]
Kumari, K.A.; Reddy, G.B.; Mittapalli, V. Microwave assisted synthesis of gold nanoparticles with Phyla Nodiflora (L.) Greene leaves extract and its studies of catalytic reduction of organic pollutants. Mater. Today Proc, 2020, 27(2), 1449-1454.
[http://dx.doi.org/10.1016/j.matpr.2020.02.877]]
[71]
Sharma, A.; Wakode, S.; Fayaz, F.; Khasimbi, S.; Pottoo, F.H.; Kaur, A. An overview of piperazine Scaffold as promising nucleus for different therapeutic targets. Curr. Pharm. Des., 2020, 26, 1-13.
[http://dx.doi.org/10.2174/1381612826666200417154810] [PMID: 32303168]
[72]
Piplani, P.; Jain, A.; Devi, D. Anjali; Sharma, A.; Silakari, P. Design, synthesis and pharmacological evaluation of some novel indanone derivatives as acetylcholinesterase inhibitors for the management of cognitive dysfunction. Bioorg. Med. Chem., 2018, 26(1), 215-224.
[http://dx.doi.org/10.1016/j.bmc.2017.11.033] [PMID: 29195794]
[73]
Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Advances, 2020, 10(24), 14170-14197.
[http://dx.doi.org/10.1039/D0RA01378A]
[74]
Kranjc, K.; Kocevar, M. From conventional reaction conditions to microwave-assisted catalytic transformations of various substrates. Curr. Org. Chem., 2013, 17(5), 448-456.
[http://dx.doi.org/10.2174/1385272811317050003]
[75]
Zhang, J.; Hu, Y.; Zhang, F.; Lu, J.; Huang, J.; Liu, C.; Jia, P.; Hu, L.; An, R.; Zhou, Y. Recent progress in microwave-assisted modification of vegetable oils or their derivatives. Curr. Org. Chem., 2020, 24, 870-884.
[http://dx.doi.org/10.2174/1385272824999200510231702]
[76]
Fayaz, F.; Pottoo, F.H.; Shafi, S.; Wani, M.A.; Wakode, S.; Sharma, A. Denouementof chemicals on amyotrophic lateral sclerosis: is green chemistry the answer. Med. Chem., 2020, 16, 1-11.
[http://dx.doi.org/10.2174/1573406416666200413111330] [PMID: 32282307]
[77]
Povedano, M.M.D.; Luque de Castro, M.D. Ultrasound-assisted analytical emulsification-extraction. TrAC-. Trends Analyt. Chem., 2013, 45, 1-13.
[http://dx.doi.org/10.1016/j.trac.2012.12.011]
[78]
Teh, C.Y.; Wu, T.Y.; Juan, J.C. An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. Chem. Eng. J., 2017, 317, 586-612.
[http://dx.doi.org/10.1016/j.cej.2017.01.001]
[79]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[80]
Joshi, R.S.; Mandhane, P.G.; Diwakar, S.D.; Gill, C.H. Ultrasound assisted green synthesis of bis(indol-3-yl)methanes catalyzed by 1-hexenesulphonic acid sodium salt. Ultrason. Sonochem., 2010, 17(2), 298-300.
[http://dx.doi.org/10.1016/j.ultsonch.2009.08.015] [PMID: 19767231]
[81]
Khezeli, T.; Daneshfar, A.; Sahraei, R.; Talanta, A. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta, 2016, 150, 577-585.
[http://dx.doi.org/10.1016/j.talanta.2015.12.077] [PMID: 26838445]
[82]
Mu, J.; He, L.; Huang, P.; Chen, X. Engineering of nanoscale coordination polymers with biomolecules for advanced applications. Coord. Chem. Rev., 2019, 399213039
[http://dx.doi.org/10.1016/j.ccr.2019.213039]
[83]
Datta, L.P.; Manchineella, S.; Govindaraju, T. Biomolecules-derived biomaterials. Biomaterials, 2020, 230119633
[http://dx.doi.org/10.1016/j.biomaterials.2019.119633] [PMID: 31831221]
[84]
Sattari, R.; Khayati, G.R.; Hoshyar, R. Biosynthesis and characterization of silver nanoparticles capped by biomolecules by Fumaria parviflora extract as green approach and evaluation of their cytotoxicity against human breast cancer MDA-MB-468 cell lines. Mater. Chem. Phys., 2019, 241122438
[http://dx.doi.org/10.1016/j.matchemphys.2019.122438]
[85]
Liu, C.; Zhang, L.; Chen, X.; Li, S.; Han, Q.; Li, L.; Wang, C. Biomolecules-assisted synthesis of degradable bismuth nanoparticles for dual-modal imaging-guided chemo-photothermal therapy. Chem. Eng. J., 2020, 382122720
[http://dx.doi.org/10.1016/j.cej.2019.122720]
[86]
Mortezaee, K.; Potes, Y.; Mahyari, H.M.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Boosting immune system against cancer by melatonin: a mechanistic viewpoint. Life Sci., 2019, 238116960
[http://dx.doi.org/10.1016/j.lfs.2019.116960] [PMID: 31629760]
[87]
Mortezaee, K.; Salehi, E.; Mahyari, H.M.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of apoptosis modulation by curcumin: implications for cancer therapy. J. Cell. Physiol., 2019, 234(8), 12537-12550.
[http://dx.doi.org/10.1002/jcp.28122] [PMID: 30623450]
[88]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr. Cancer Drug Targets, 2020, 20(2), 130-145.
[http://dx.doi.org/10.2174/1568009619666191019143539] [PMID: 31738153]
[89]
Deogade, S.C.; Ghate, S. Curcumin: therapeutic applications in systemic and oral health. Int. J. Biol. Pharm. Res., 2015, 6(4), 281-290.
[90]
Maiorano, G.; Rizzello, L.; Malvindi, M.A.; Shankar, S.S.; Martiradonna, L.; Falqui, A.; Cingolani, R.; Pompa, P.P. Monodispersed and size-controlled multibranched gold nanoparticles with nanoscale tuning of surface morphology. Nanoscale, 2011, 3(5), 2227-2232.
[http://dx.doi.org/10.1039/c1nr10107b] [PMID: 21461435]
[91]
Mandal, M.; Jaiswal, P.; Mishra, A. Role of curcumin and its nanoformulations in neurotherapeutics: a comprehensive review. J. Biochem. Mol. Toxicol., 2019, 2020, 1-17.
[http://dx.doi.org/10.1002/jbt.22478] [PMID: 32124518]
[92]
Sun, L.; Hu, Y.; Mishra, A.; Sreeharsha, N.; Moktan, J.B.; Kumar, P.; Wang, L. Protective role of poly(lactic-co-glycolic) acid nanoparticle loaded with resveratrol against isoproterenol-induced myocardial infarction. Biofactors, 2020, 46(3), 421-431.
[http://dx.doi.org/10.1002/biof.1611] [PMID: 31926035]
[93]
Pottoo, F.H.; Sharma, S.; Javed, M.N.; Barkat, M.A. Harshita; Alam, M.S.; Naim, M.J.; Alam, O.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev., 2020, 52(1), 185-204.
[http://dx.doi.org/10.1080/03602532.2020.1726942] [PMID: 32116044]
[94]
Azmath, P.; Baker, S.; Rakshith, D.; Satish, S. Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm. J., 2016, 24(2), 140-146.
[http://dx.doi.org/10.1016/j.jsps.2015.01.008] [PMID: 27013906]
[95]
Mastuli, M.S.; Rusdi, R.; Mahat, A.M.; Saat, N.; Kamarulzaman, N. Sol-gel synthesis of highly stable nano sized MgO from magnesium oxalate dihydrate. Adv. Mat. Res., 2014, 2012(545), 137-142.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.545.137]
[96]
Aruna, A.; Nandhini, R.; Karthikeyan, V.; Bose, P. Synthesis and characterization of silver nanoparticles of insulin plant (costus pictus D. Don) leaves. Asian J. Biomed. Pharm. Sci., 2014, 2016(04), 4-9.
[http://dx.doi.org/10.15272/ajbps.v4i34.532]
[97]
Ansari, M.A.; Chung, I-M.; Rajakumar, G.; Alzohairy, M.A.; Alomary, M.N.; Thiruvengadam, M.; Pottoo, F.H.; Ahmad, N. Current nanoparticle approaches in nose to brain drug delivery and anticancer therapy - a review. Curr. Pharm. Des., 2020, 26(11), 1128-1137.
[http://dx.doi.org/10.2174/1381612826666200116153912] [PMID: 31951165]
[98]
Barkat, M.A. Harshita; Rizwanullah, M.; Pottoo, F.H.; Beg, S.; Akhter, S.; Ahmad, F.J. Therapeutic nanoemulsion: concept to delivery. Curr. Pharm. Des., 2020, 26(11), 1145-1166.
[http://dx.doi.org/10.2174/1381612826666200317140600] [PMID: 32183664]
[99]
Kumar, B.; Pandey, M.; Pottoo, F.H.; Fayaz, F.; Sharma, A.; Sahoo, P.K. Liposomes: novel drug delivery approach for targeting Parkinson’s disease. Curr. Pharm. Des., 2020, 26(37), 4721-4737.
[http://dx.doi.org/10.2174/1381612826666200128145124]
[100]
Natarajan, K.; Selvaraj, S.; Murty, V.R. Microbial production of silver nanoparticles. Dig. J. Nanomater. Biostruct., 2010, 5(1), 135-140.
[101]
Saranyaadevi, K.; Subha, V.; Ravindran, R.S.E.; Renganathan, S. Synthesis and characterization of copper nanoparticle using Capparis zeylanica leaf extract. Int. J. Chemtech Res., 2014, 6(10), 4533-4541.
[102]
Sulaiman, G.M.; Tawfeeq, A.T.; Jaaffer, M.D. Biogenic synthesis of copper oxide nanoparticles using Olea europaea leaf extract and evaluation of their toxicity activities: an in vivo and in vitro study. Formul. Eng. Biomater, 2017, 34(1), 1-38.
[http://dx.doi.org/10.1002/btpr.2568] [PMID: 28960911]
[103]
Alijani, H.Q.; Pourseyedi, S.; Mahani, M.T.; Seifalian, A.; Khatami, M. Bimetallic nickel-ferrite nanorod particles: greener synthesis using rosemary and its biomedical efficiency. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 242-251.
[http://dx.doi.org/10.1080/21691401.2019.1699830] [PMID: 31851843]
[104]
Ali, S.H.; Sulaiman, G.M.; Al-Halbosiy, M.M.F.; Jabir, M.S.; Hameed, A.H. Fabrication of hesperidin nanoparticles loaded by poly lactic co-glycolic acid for improved therapeutic efficiency and cytotoxicity. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 378-394.
[http://dx.doi.org/10.1080/21691401.2018.1559175] [PMID: 30691314]
[105]
Suganya, J.; Radha, M.; Naorem, D.L.; Nishandhini, M. In silico docking studies of selected flavonoids--natural healing agents against breast cancer. Asian Pac. J. Cancer Prev., 2014, 15(19), 8155-8159.
[http://dx.doi.org/10.7314/APJCP.2014.15.19.8155] [PMID: 25338999]
[106]
Sulaiman, G.M.; Jabir, M.S.; Hameed, A.H. Nanoscale modification of Chrysin for improved of therapeutic efficiency and cytotoxicity. Artif. Cells Nanomed. Biotechnol., 2018, 46, 708-720.
[http://dx.doi.org/10.1080/21691401.2018.1434661]
[107]
Jeeva, K.; Thiyagarajan, M.; Elangovan, V.; Geetha, N.; Venkatachalam, P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind. Crops Prod., 2014, 52, 714-720.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.037]
[108]
Sinha, S.N.; Paul, D. Eco-friendly green synthesis and spectrophotometric characterization of silver nanoparticles synthesized using some common indian spices. Int. J. Green Herb. Chem., 2014, 3(1), 401-408.
[109]
Verma, V.C.; Kharwar, R.N.; Gange, A.C. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine (Lond.), 2010, 5(1), 33-40.
[http://dx.doi.org/10.2217/nnm.09.77] [PMID: 20025462]
[110]
Sulaiman, G.M.; Hussien, H.T.; Saleem, M.M.N.M. Biosynthesis of silver nanoparticles synthesized by Aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties. Bull. Mater. Sci., 2015, 38(3), 639-644.
[http://dx.doi.org/10.1007/s12034-015-0905-0]
[111]
Taha, Z.K.; Howar, S.N.; Sulaiman, G. Isolation and identification of Penicillium italicum from Iraqi citrus lemon fruits and its ability manufacture of silver nanoparticles and their antibacterial and antifungal activity. Res. J. Pharm. Technol., 2019, 12(3), 1320-1326.
[http://dx.doi.org/10.5958/0974-360X.2019.00221.X]
[112]
Taha, Z.K.; Hawar, S.N.; Sulaiman, G.M. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol. Lett., 2019, 41(8-9), 899-914.
[http://dx.doi.org/10.1007/s10529-019-02699-x] [PMID: 31201601]
[113]
Zaid, A.A.A.; Ezzeldeen, N.A.; Nazar, F.A.; Pharm, I.J.; Allied, R. Antibacterial effect of some types of nanoparticles against methicillin- resistant Staphylococcus aureus isolated from milk. IJPRAS, 2016, 5(1), 122-134.
[114]
Al-Shmgani, H.S.A.; Mohammed, W.H.; Sulaiman, G.M.; Saadoon, A.H. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif. Cells Nanomed. Biotechnol., 2017, 45(6), 1-7.
[http://dx.doi.org/10.1080/21691401.2016.1220950] [PMID: 27534756]
[115]
Sulaiman, G.M.; Mohammad, A.A.W.; Abdul-Wahed, H.E.; Ismail, M.M. Biosynthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Rosmarinus officinalis extract. Dig. J. Nanomater. Biostruct., 2013, 8, 273-280.
[116]
Velayutham, K.; Rahuman, A.A.; Rajakumar, G.; Roopan, S.M.; Elango, G.; Kamaraj, C.; Marimuthu, S.; Santhoshkumar, T.; Iyappan, M.; Siva, C. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac. J. Trop. Med., 2013, 6(2), 95-101.
[http://dx.doi.org/10.1016/S1995-7645(13)60002-4] [PMID: 23339909]
[117]
Sulaiman, G.M.; Ali, E.H.; Jabbar, I.I.; Saleem, A.H. Synthesis, characterization, antibacterial and cytotoxic effects of silver nanoparticles. Dig. J. Nanomater. Biostruct., 2014, 9(2), 787-796.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy