Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Ionic Liquid Assisted C-C Bond Formation

Author(s): Mandeep Kaur, Opinder Kaur, Rahul Badru*, Sandeep Kaushal* and Pritpal Singh

Volume 24, Issue 16, 2020

Page: [1853 - 1875] Pages: 23

DOI: 10.2174/1385272824999200801022221

Price: $65

Abstract

With their ability to dissolve inorganic as well as organic materials, ionic liquids have emerged as a versatile solvent system for a diverse range of organic transformations. In the past few decades, the literature has witnessed remarkable advances in a wide range of organic conversions carried out in the presence of various imidazolium, pyridinium, pyrrolidinium, quinolinium and diazobicyclo-octane based ionic liquids. In the reaction, ionic liquids serve as a solvent, catalyst or sometimes both. In certain cases, they are also modified with metal nanoparticles or complexes to form heterogeneous catalysts or are immobilized onto solid support like agar-agar to act as solid-support catalysts. Reactions catalysed by ionic liquids incorporating chiral catalysts possess the advantageous features of being highly enantioselective and reproducible, besides being economical and easy to handle. In this review, an updated insight regarding the role played by ionic liquids in various C-C bond-forming organic reactions, has been summarized.

Keywords: Ionic liquids, organic transformations, organocatalysts, solventless, chiral, condensations.

Graphical Abstract
[1]
Hellweg, S.; Fischer, U.; Scheringer, M.; Hungerbuhler, K. Environmental assessment of chemicals: methods and application to a case study of organic solvents. Green Chem., 2004, 6, 418-427.
[2]
Tobiszewski, M.; Namiesnik, J.; Pereira, F.P. Environmental risk-based ranking of solvents using the combination of a multimedia model and multi-criteria decision analysis. Green Chem., 2017, 19, 1034-1042.
[3]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
[4]
Gabriel, S.; Weiner, J. Ueber Einige Abkommlinge des Propylamins. Ber. Dtsch. Chem. Ges., 1888, 21, 2669-2679.
[5]
Wilkes, J.S.; Zaworotko, M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, 1992(13), 965-967.
[6]
Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater., 2009, 8(8), 621-629.
[7]
Fedorov, M.V.; Kornyshev, A.A. Ionic liquids at electrified interfaces. Chem. Rev., 2014, 114(5), 2978-3036.
[8]
Torriero, A.A.J. Electrochemistry in Ionic Liquids; Springer-Verlag: Berlin, Heidelberg, 2015.
[9]
Shinoda, W.; Hatanaka, Y.; Hirakawa, M.; Okazaki, S.; Tsuzuki, S.; Ueno, K.; Watanabe, M. Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids. J. Chem. Phys., 2018, 148(19), 193809-8.
[10]
Chen, F.; Kerr, R.; Forsyth, M. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt. J. Chem. Phys., 2018, 148(19), 193813-193819.
[11]
Salanne, M. Ionic liquids for supercapacitor applications.Ionic Liquids II; Springer: Cham, 2017.
[12]
Martins, V.L.; Rennie, A.J.R.; Ramirez, N.S.; Torresi, R.M.; Hall, P.J. Improved performance of ionic liquid supercapacitors by using tetracyanoborate anions. ChemElectroChem, 2018, 5(4), 598-604.
[13]
Yu, L.; Chen, G.Z. Ionic liquid-based electrolytes for supercapacitor and supercapattery. Front Chem., 2019, 7, 272.
[14]
Zakrzewska, M.E.; Łukasik, E.B.; Łukasik, R.B. Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block. Chem. Rev., 2011, 111(2), 397-417.
[15]
Wang, H.; Gurau, G.; Rogers, R.D. Ionic liquid processing of cellulose. Chem. Soc. Rev., 2012, 41(4), 1519-1537.
[16]
Passos, H.; Freire, M.G.; Coutinho, J.A. Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem., 2014, 16(12), 4786-4815.
[17]
Sun, X.; Luo, H.; Dai, S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem. Rev., 2012, 112(4), 2100-2128.
[18]
Zhang, Q.; Shreeve, J.M. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem. Rev., 2014, 114(20), 10527-10574.
[19]
Goossens, K.; Lava, K.; Bielawski, C.W.; Binnemans, K. Ionic liquid crystals: versatile materials. Chem. Rev., 2016, 116(8), 4643-4807.
[20]
de María, P.D. “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angew. Chem. Int. Ed. Engl., 2008, 47(37), 6960-6968.
[21]
Dominguez de Maria, P., Ed.; Ionic Liquids in Biotransformations and Organocatalysis: Solvents and Beyond; John Wiley & Sons: Hoboken, 2012.
[22]
Malhotra, S.V., Ed.; Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology; ACS: Washington, DC, 2010.
[23]
Attri, P.; Venkatesu, P.; Kumar, A. Activity and stability of α-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate. Phys. Chem. Chem. Phys., 2011, 13(7), 2788-2796.
[24]
Kumar, A.; Venkatesu, P. Overview of the stability of α-chymotrypsin in different solvent media. Chem. Rev., 2012, 112(7), 4283-4307.
[25]
Dupont, J.; Scholten, J.D. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem. Soc. Rev., 2010, 39(5), 1780-1804.
[26]
Giernoth, R. Task-specific ionic liquids. Angew. Chem. Int. Ed. Engl., 2010, 49(16), 2834-2839.
[27]
Petkovic, M.; Seddon, K.R.; Rebelo, L.P.; Pereira, C.S. Ionic liquids: a pathway to environmental acceptability. Chem. Soc. Rev., 2011, 40(3), 1383-1403.
[28]
Tang, S.; Baker, G.A.; Zhao, H. Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem. Soc. Rev., 2012, 41(10), 4030-4066.
[29]
Chatel, G.; MacFarlane, D.R. Ionic liquids and ultrasound in combination: synergies and challenges. Chem. Soc. Rev., 2014, 43(23), 8132-8149.
[30]
Lei, Z.; Dai, C.; Chen, B. Gas solubility in ionic liquids. Chem. Rev., 2014, 114(2), 1289-1326.
[31]
Lei, Z.; Dai, C.; Zhu, J.; Chen, B. Extractive distillation with ionic liquids: a review. AIChE J., 2014, 60, 3312-3329.
[32]
Smiglak, M.; Pringle, J.M.; Lu, X.; Han, L.; Zhang, S.; Gao, H.; MacFarlane, D.R.; Rogers, R.D. Ionic liquids for energy, materials, and medicine. Chem. Commun. (Camb.), 2014, 50(66), 9228-9250.
[33]
Kim, Y.; Heyne, B.; Abouserie, A.; Pries, C.; Ippen, C.; Günter, C.; Taubert, A.; Wedel, A. CuS nanoplates from ionic liquid precursors-application in organic photovoltaic cells. J. Chem. Phys., 2018, 148(19), 193818-10.
[34]
Hovestadt, M.; Schwegler, J.; Schulz, P.S.; Hartmann, M. Synthesis of the zeolitic imidazolate framework ZIF-4 from the ionic liquid 1-butyl-3-methylimidazolium imidazolate. J. Chem. Phys., 2018, 148(19), 193837-5.
[35]
Wu, B.; Kuroda, K.; Takahashi, K.; Castner, E.W., Jr Structural analysis of zwitterionic liquids vs. homologous ionic liquids. J. Chem. Phys., 2018, 148(19), 193807-193811.
[36]
Wijaya, E.C.; Separovic, F.; Drummond, C.J.; Greaves, T.L. Stability and activity of lysozyme in stoichiometric and non-stoichiometric Protic Ionic Liquid (PIL)-water systems. J. Chem. Phys., 2018, 148(19), 193838-193839.
[37]
Smith, C.J., II; Gehrke, S.; Hollóczki, O.; Wagle, D.V.; Heitz, M.P.; Baker, G.A. NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels. J. Chem. Phys., 2018, 148(19), 193845-13.
[38]
Andreani, L.; Rocha, J.D. Use of ionic liquids in biodiesel production: a review. Braz. J. Chem. Eng., 2012, 29, 1-13.
[39]
Larriba, M.; Navarro, P.; Mellado, N.D.; Stanisci, V.; Garcia, J.; Rodriguez, F. Extraction of aromatic hydrocarbons from pyrolysis gasoline using tetrathiocyanatocobaltate-based ionic liquids: Experimental study and simulation. Fuel Process. Technol., 2017, 159, 96-110.
[40]
Palou, R.M.; Luque, R. Applications of ionic liquids in the removal of contaminants from refinery feedstocks: an industrial perspective. Energy Environ. Sci., 2014, 7, 2414-2447.
[41]
Marrucho, I.M.; Branco, L.C.; Rebelo, L.P. Ionic liquids in pharmaceutical applications. Annu. Rev. Chem. Biomol. Eng., 2014, 5, 527-546.
[42]
Caparica, R.; Julio, A.; Mota, J.P.; Almeida, C.R.T.S. Applicability of ionic liquids in topical drug delivery systems: a mini review. J. Pharmacol. Clin. Res., 2018, 4, 555-649.
[43]
Turosung, U.N.; Ghosh, B. Application of ionic liquids in the upstream oil industry-a review. Int. J. Petrochem. Res., 2017, 1, 50-60.
[44]
Muginova, S.V.; Myasnikova, D.A.; Kazarian, S.G.; Shekhovtsova, T.N. Applications of ionic liquids for the development of optical chemical sensors and biosensors. Anal. Sci., 2017, 33(3), 261-274.
[45]
Zhang, Q.; Zhang, S.; Deng, Y. Recent advances in ionic liquid catalysis. Green Chem., 2011, 13, 2619-2637.
[46]
Zhou, H.C.; Li, X.L.; Liu, J.L.; Peng, C.; Zhang, B.; Chen, J.; Yuan, Y.Z. Preparation of Lewis acid ionic liquids for one-pot synthesis of benzofuranol from pyrocatechol and 3-chloro-2-methylpropene. Chem. Pap., 2015, 69, 1362-1366.
[47]
Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117(10), 7132-7189.
[48]
Hardacre, C.; Parvulescu, V., Eds.; Catalysis in Ionic Liquids: From Catalyst Synthesis to Application; RSC: Cambridge, 2014.
[49]
Lei, Z.; Chen, B.; Koo, Y-M.; MacFarlane, D.R. Introduction: ionic liquids. Chem. Rev., 2017, 117(10), 6633-6635.
[50]
Vekariya, R.L. A review of ionic liquids: applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[51]
Ratti, R. Ionic liquids: synthesis and applications in catalysis. Adv. Chem, 2014, 2014, 1-16.
[http://dx.doi.org/10.1155/2014/729842]
[52]
Ghandi, K. A review of ionic liquids, their limits and applications. Green Sustain. Chem, 2014, 4, 44-53.
[http://dx.doi.org/10.4236/gsc.2014.41008]
[53]
Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22, 533-556.
[54]
Irge, D.D. Ionic liquids: a review on greener chemistry applications, quality ionic liquid synthesis and economical viability in a chemical processes. Am. J. Phys. Chem., 2016, 5, 74-79.
[55]
Selva, M.; Perosa, A.; Guidi, S.; Cattelan, L. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates. Beilstein J. Org. Chem., 2016, 12, 1911-1924.
[56]
Cserjesi, P.; Bako, K.B.; Nemestothy, N.; Gubicza, L. Recent trends on application of ionic liquids in organic synthesis. Hung. J. Ind. Chem., 2008, 36, 27-34.
[57]
Shukla, M.; Srivastava, N.; Saha, S. Interactions and Transitions in Imidazolium Cation Based Ionic Liquids. Ionic Liquids - Classes and Properties; Handy, S.T., Ed.; IntechOpen: Rijeka, 2011.
[58]
Sharma, S.; Kashyap, H.K. Interfacial structure of pyrrolidinium cation based ionic liquids at charged carbon electrodes: the role of linear and nonlinear alkyl tails. J. Phys. Chem., 2017, 121, 13202-13210.
[http://dx.doi.org/10.1021/acs.jpcc.7b03225]
[59]
Fraser, K.J.; MacFarlane, D.R. Phosphonium-based ionic liquids: an overview. Aust. J. Chem., 2009, 62, 309-321.
[60]
Domańska, U. Physico-chemical properties and phase behaviour of pyrrolidinium-based ionic liquids. Int. J. Mol. Sci., 2010, 11(4), 1825-1841.
[61]
Zhou, Q.; Lu, X.; Zhang, S.; Guo, L. Physicochemical Properties of Ionic Liquids; Plechkova, N.V; Seddon, K.R., Ed.; John Wiley & Sons: Hoboken, 2014, pp. 275-307.
[62]
Triolo, A.; Mandanici, A.; Russina, O.; Mora, V.R.; Cutroni, M.; Hardacre, C.; Nieuwenhuyzen, M.; Bleif, H.J.; Keller, L.; Ramos, M.A. Thermodynamics, structure, and dynamics in room temperature ionic liquids: the case of 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF6]). J. Phys. Chem. B, 2006, 110(42), 21357-21364.
[63]
Margulis, C.J. Computational study of imidazolium-based ionic solvents with alkyl substituents of different lengths. Mol. Phys., 2004, 102, 829-838.
[64]
Thomas, M.; Sanz, I.S.; Holloczki, O.; Kirchner, B. Ab initio molecular dynamics simulations of ionic liquids. NIC Symposium, 2016, pp. 117-124.
[65]
Sarangi, S.S.; Raju, S.G.; Balasubramanian, S. Molecular dynamics simulations of ionic liquid-vapour interfaces: effect of cation symmetry on structure at the interface. Phys. Chem. Chem. Phys., 2011, 13(7), 2714-2722.
[66]
Ghumro, S.A.; Saleem, S.; Rashida, M.; Iqbal, N.; Alharthy, R.D.; Ahmed, S.; Moin, S.T.; Hameed, A.N. N-Dimethylpyridin-4-amine (DMAP) based ionic liquids: evaluation of physical properties via molecular dynamics simulations and application as a catalyst for Fisher indole and 1H-tetrazole synthesis. RSC Advances, 2017, 7, 34197-34207.
[67]
Vasiloiu, M.; Rainer, D.; Gaertner, P.; Reichel, C.; Schroder, C.; Bica, K. Basic chiral ionic liquids: a novel strategy for acid-free organocatalysis. Catal. Today, 2013, 200, 80-86.
[68]
Kunz, W.; Hackl, K. The hype with ionic liquids as solvents. Chem. Phys. Lett., 2016, 661, 6-12.
[69]
Zhang, C.; Zhu, L.; Wang, J.; Wang, J.; Zhou, T.; Xu, Y.; Cheng, C. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio). Ecotoxicol. Environ. Saf., 2017, 140, 235-240.
[70]
Pham, T.P.T.; Cho, C.W.; Yun, Y.S. Environmental fate and toxicity of ionic liquids: a review. Water Res., 2010, 44(2), 352-372.
[71]
Cho, C.W.; Pham, T.P.T.; Jeon, Y.C.; Yun, Y.S. Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chem., 2008, 10, 67-72.
[72]
Greaves, T.L.; Drummond, C.J. Protic ionic liquids: properties and applications. Chem. Rev., 2008, 108(1), 206-237.
[73]
Miran, M.S.; Kinoshita, H.; Yasuda, T.; Susan, M.A.B.H.; Watanabe, M. Hydrogen bonds in protic ionic liquids and their correlation with physicochemical properties. Chem. Commun. (Camb.), 2011, 47(47), 12676-12678.
[74]
Du, Z.; Li, Z.; Guo, S.; Zhang, J.; Zhu, L.; Deng, Y. Investigation of physicochemical properties of lactam-based Brønsted acidic ionic liquids. J. Phys. Chem. B, 2005, 109(41), 19542-19546.
[75]
Markusson, H.; Belières, J.P.; Johansson, P.; Angell, C.A.; Jacobsson, P. Prediction of macroscopic properties of protic ionic liquids by ab initio calculations. J. Phys. Chem. A, 2007, 111(35), 8717-8723.
[76]
Chrobok, A.; Baj, S.; Pudlo, W.; Jarzebski, A. Supported hydrogen sulphate ionic liquid catalysis in Baeyer-Villiger reaction. App. Catal. A-Gen., 2009, 366, 22-28.
[77]
Janus, E.; Goc-Maciejewska, I.; Lozynski, M.; Pernak, J. Diels-Alder reaction in protic ionic liquids. Tetrahedron Lett., 2006, 47, 4079-4083.
[78]
Zhu, A.; Jiang, T.; Wang, D.; Han, B.; Liu, L.; Huang, J.; Zhang, J.; Sun, D. Direct Aldol reactions catalysed by 1,1,3,3-tetramethylguanidine lactate without solvent. Green Chem., 2005, 7, 514-517.
[79]
Henderson, L.C.; Byrne, N. Rapid and efficient protic ionic liquid-mediated pinacol rearrangements under microwave irradiation. Green Chem., 2011, 13, 813-816.
[80]
Zhou, H.; Yang, J.; Ye, L.; Lin, H.; Yuan, Y. Effects of acidity and immiscibility of lactam-based bronsted-acidic ionic liquids on their catalytic performance for esterification. Green Chem., 2010, 12, 661-665.
[81]
Esperanca, S.S.M.J.; Lopes, C.N.J.; Tariq, M.; Santos, F.B.N.M.L.; Mangee, W.J.; Rebelo, N.P.L. Volatility of aprotic ionic liquids-a review. J. Chem. Eng. Data, 2010, 55, 3-12.
[82]
Wilkes, J.S. Properties of ionic liquid solvents for catalysis. J. Mol. Catal., 2004, 214, 11-17.
[83]
Meindersma, W.; Podt, A.J.G.; Klaren, M.B.; de Haan, A.B. Separation of aromatic and aliphatic hydrocarbons with ionic liquids. Chem. Eng. Commun., 2006, 193, 1384-1396.
[84]
Sowmiah, S.; Cheng, C.I.; Chu, Y.H. Ionic liquids for green organic synthesis. Curr. Org. Synth., 2012, 9, 74-95.
[85]
Hollóczki, O.; Macchiagodena, M.; Weber, H.; Thomas, M.; Brehm, M.; Stark, A.; Russina, O.; Triolo, A.; Kirchner, B. Triphilic ionic-liquid mixtures: fluorinated and non-fluorinated aprotic ionic-liquid mixtures. ChemPhysChem, 2015, 16(15), 3325-3333.
[86]
Sun, W.; Wang, M.; Zhang, Y.; Ding, W.; Huo, F.; Wei, L.; He, H. Protic vs aprotic ionic liquid for CO2 fixation: a simulation study. Green Energ. Env., 2020, 5, 183-194.
[http://dx.doi.org/10.1016/j.gee.2020.04.004]
[87]
Zhao, Y.; Wu, Y.; Yuan, G.; Hao, L.; Gao, X.; Yang, Z.; Yu, B.; Zhang, H.; Liu, Z. Azole-anion-based aprotic ionic liquids: functional solvents for atmospheric CO2 transformation into various heterocyclic compounds. Chem. Asian J., 2016, 11(19), 2735-2740.
[88]
Hajos, Z.G.; Parrish, D.R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem., 1974, 39, 1615-1621.
[89]
Wong, C.H.; Halcomb, R.L.; Ichikawa, Y.; Kajimoto, T. Enzymes in organic synthesis: application to the problems of carbohydrate recognition (Part 1). Angew. Chem. Int. Ed. Engl., 1995, 34, 412-432.
[90]
List, B.; Pojarliev, P.; Castello, C. Proline-catalyzed asymmetric aldol reactions between ketones and α-unsubstituted aldehydes. Org. Lett., 2001, 3(4), 573-575.
[91]
List, B.; Lerner, R.A.; Barbas, C.F. Proline catalysed direct asymmetric aldol condensation. J. Am. Chem. Soc., 2000, 122, 2395-2396.
[92]
List, B.; Castello, C. A novel proline-catalyzed three-component reaction of ketones, aldehydes, and Meldrum’s acid. Synlett, 2001, 11, 1687-1689.
[93]
Martinez, A.; Zumbansen, K.; Dohring, A.; van Gemmeren, M.; List, B. Improved conditions for the proline-catalyzed Aldol reaction of acetone with aliphatic aldehydes. Synlett, 2014, 25, 932-934.
[94]
Giacalone, F.; Gruttadauria, M.; Marculescu, A.M.; Noto, R. Polystyrene- supported proline and prolinamide, versatile heterogeneous organocatalysts both for asymmetric aldol reaction in water and α-selenylation of aldehydes. Tetrahedron Lett., 2007, 48, 255-259.
[95]
Lombardo, M.; Easwar, S.; Pasi, F.; Trombini, C. The Ion tag strategy as a route to highly efficient organocatalysts for the direct asymmetric aldol reaction. Adv. Synth. Catal., 2009, 351, 276-282.
[96]
Gruttadauria, M.; Riela, S.; Meo, P.L.; Anna, F.D.; Noto, R. Supported ionic liquid asymmetric catalysis. A new method for chiral catalysts recycling. The case of proline-catalyzed aldol reaction. Tetrahedron Lett., 2004, 45, 6113-6116.
[97]
Miao, W.; Chan, T.H. Ionic-liquid-supported organocatalyst: Efficient and recyclable ionic-liquid-anchored proline for asymmetric aldol reaction. Adv. Synth. Catal., 2006, 348, 1711-1718.
[98]
Qian, Y.; Zheng, X.; Wang, Y. A green and efficient asymmetric Aldol reaction catalysed by a chiral anion modified ionic liquid. Eur. J. Org. Chem., 2010, 19, 3672-3677.
[99]
Gauchot, V.; Schmitzer, A.R. Asymmetric aldol reaction catalyzed by the anion of an ionic liquid. J. Org. Chem., 2012, 77(11), 4917-4923.
[100]
Gonzalez, L.; Escorihuela, J.; Altava, B.; Burguete, M.I.; Luis, S.V. Chiral room temperature ionic liquid as enantioselective promoter for the asymmetric reaction. Eur. J. Org. Chem., 2014, 24, 5356-5363.
[101]
Obregón-Zúñiga, A.; Milán, M.; Juaristi, E. Improving the catalytic performance of (S)-Proline as an organocatalyst in asymmetric aldol reaction in the presence of solvate ionic liquid: involvement of a supramolecular aggregate. Org. Lett., 2017, 19(5), 1108-1111.
[102]
Siyutkin, D.E.; Kucherenko, A.S.; Zlotin, S.G. A new (S)-prolinamide modified by an ionic liquid moiety-a high performance recoverable catalyst for asymmetric aldol reactions in aqueous media. Tetrahedron, 2010, 66, 513-518.
[103]
Hu, S.; Jiang, T.; Zhang, Z.; Zhu, A.; Han, B.; Song, J.; Xie, Y.; Li, W. Functional ionic liquid from bio renewable materials: synthesis and application as a catalyst in direct Aldol reactions. Tetrahedron Lett., 2007, 48, 5613-5617.
[104]
Kong, Y.; Tan, R.; Zhao, L.; Yin, D. L-Proline supported on ionic liquid-modified magnetic nanoparticles as a highly efficient and reusable organocatalyst for direct asymmetric aldol reaction in water. Green Chem., 2013, 15, 2422-2433.
[105]
Zhang, L.; Zhang, H.; Luo, H.; Zhou, X.; Cheng, G. Novel Chiral Ionic Liquid (CIL) assisted selectivity enhancement to (L)-Proline catalysed asymmetric Aldol reactions. J. Braz. Chem. Soc., 2011, 22, 1736-1741.
[106]
Srivastava, V. Ionic-liquid mediated recyclable sulphonimide-based organocatalyst for Aldol reaction. Cent. Eur. J. Chem., 2010, 8, 269-272.
[http://dx.doi.org/10.2478/s11532-009-0140-x]
[107]
Wang, G.; Li, Z.; Li, C.; Zhang, S. In-situ generated ionic liquid catalyzed aldol condensation of trioxane with ester in mild homogeneous system. Green Energy Environ., 2019, 4, 293-299.
[108]
Rupainwar, R.; Pandey, J. Smrirti; Ruchi. The importance and applications of Knoevenagel reaction (brief review). Orient. J. Chem., 2019, 35, 423-429.
[109]
Tzani, A.; Douka, A.; Papadopoulos, A.; Pavlatou, E.A.; Voutsas, E.; Detsi, A. Synthesis of biscoumarins using recyclable and biodegradable task-specific ionic liquids. ACS Sustain. Chem.& Eng., 2013, 1, 1180-1185.
[110]
Hu, X.; Ngwa, C.; Zheng, Q. A simple and efficient procedure for Knoevenagel reaction promoted by imidazolium-based ionic liquids. Curr. Org. Synth., 2015, 13, 101-110.
[111]
Priede, E.; Brica, S.; Bakis, E.; Udrisa, N.; Zicmanis, A. Ionic liquids as solvents for the Knoevenagel condensation: understanding the role of solvent-solute interactions. New J. Chem., 2015, 39, 9132-9142.
[112]
Wu, K.; Li, C.X. Synthesis of quinolinium ionic compounds and their promotion in Knoevenagel reaction at room temperature. Youji Huaxue, 2011, 31, 119-122.
[113]
Ossowicz, P.; Rozwadowski, Z.; Gano, M.; Janus, E. Efficient method for Knoevenagel condensation in aqueous solution of Amino Acid Ionic Liquids (AAILs). Pol. J. Chem. Technol., 2016, 18, 90-95.
[114]
Ying, A.; Ni, Y.; Xu, S.; Liu, S.; Yang, J.; Li, R. Novel DABCO based ionic liquid: green and efficient catalyst with dual catalytic roles for aqueous Knoevenagel condensation. Ind. Eng. Chem. Res., 2014, 53, 5678-5682.
[115]
Ouyang, F.; Zhou, Y.; Li, Z.; Hu, N.; Tao, D. Tetrabutylphosphonium amino acid ionic liquids as efficient catalysts for solvent-free Knoevenagel condensation reactions. Korean J. Chem. Eng., 2014, 31, 1377-1383.
[116]
Sobrinho, R.C.M.A.; de Oliveira, P.M.; D’Oca, C.R.M.; Russowsky, D.; D’Oca, M.G.M. Solvent-free Knoevenagel reaction catalysed by reusable pyrrolidinium base protic ionic liquids (PyrrILs): synthesis of long-chain alkylidenes. RSC Advances, 2017, 7, 3214-3221.
[117]
Luo, J.; Xin, T.; Wang, Y. A PEG bridged tertiary amine functionalized ionic liquid exhibiting thermoregulated reversible biphasic behaviour with cyclohexane/isopropanol: synthesis and application in Knoevenagel condensation. New J. Chem., 2013, 37, 269-273.
[118]
Doebner, O. Ueber α-Alkylcinchoninsauren und α-Alkylchinoline. Ann., 1887, 242, 265-388.
[119]
Jiang, D.; Wang, Y.Y.; Xu, N.Y.; Dai, Y.L. Doebner condensation in ionic liquids [Bmim]BF4 and [Bpy]BF4 to synthesize α, β-unsaturated carboxylic acid. Chin. Chem. Lett., 2009, 20, 279-282.
[120]
Akbari, J.; Heydari, A.; Reza Kalhor, H.; Kohan, S.A. Sulfonic acid functionalized ionic liquid in combinatorial approach, a recyclable and water tolerant-acidic catalyst for one-pot Friedlander quinoline synthesis. J. Comb. Chem., 2010, 12(1), 137-140.
[121]
Bharate, J.B.; Bharate, S.B.; Vishwakarma, R.A. Metal-free, ionic liquid-mediated synthesis of functionalized quinolines. ACS Comb. Sci., 2014, 16(11), 624-630.
[122]
Reformatsky, S. Neue Synthese zweiatomiger einbasischer Sauren aus den Ketonen. Ber. Dtsch. Chem. Ges., 1887, 20, 1210-1211.
[123]
Kitazume, T.; Kasai, K. The Synthesis and reaction of Zn reagents in ionic liquids. Green Chem., 2001, 3, 30-32.
[124]
Bar, G.; Parsons, A.F.; Thomas, C.B. Manganese (III) acetate mediated radical reactions in the presence of an ionic liquid. Chem. Commun., 2001, 15(15), 1350-1351.
[125]
Liu, C.; Yuan, J.; Tan, P.; Jin, D. Reformatsky reaction promoted by [bmim]Cl-CrCl2 ionic liquid. Youji Huaxue, 2009, 29, 1650-1653.
[126]
Zhao, B.; Fan, M-J.; Liu, Z.; Hu, L-F.; Song, B.; Wang, L-Y.; Deng, Q-G. Reformatsky reaction promoted by an ionic liquid ([Bmim]Cl) in the synthesis of β-hydroxyl ketone derivatives bearing a coumarin unit. J. Chem. Res., 2012, 36, 393-395.
[127]
Fischer, E.; Jourdan, F. Ueber die Hydrazine der Brenztraubensaure. Ber. Dtsch. Chem. Ges., 1883, 16, 2241-2245.
[128]
Robeiro, G.L.; Khadilkar, B.M. Chloroaluminate ionic liquid for Fischer indole synthesis. Synthesis, 2000, 3, 370-372.
[129]
Xu, D.Q.; Wu, J.; Luo, S.P.; Zhang, J.X.; Wu, J.Y.; Du, X.H.; Xu, Z.Y. Fischer indole synthesis catalyzed by novel SO3H-functionalized ionic liquids in water. Green Chem., 2009, 11, 1239-1246.
[130]
Sefat, M.N.; Saberi, D.; Niknam, K. Preparation of silica-based ionic liquid an efficient and recyclable catalyst for one-pot synthesis of α-aminonitriles. Catal. Lett., 2011, 141, 1713-1720.
[131]
Baghernejad, M.; Niknam, K. Synthesis of 4,4′-(Ary- lmethylene) bis(1H-pyrazol-5-ols) using silica-bonded ionic liquid as recyclable catalyst. Int. J. Chem., 2012, 4, 52-60.
[132]
Gore, S.; Baskaran, S.; König, B. Fischer indole synthesis in low melting mixtures. Org. Lett., 2012, 14(17), 4568-4571.
[133]
Yu, J.; Xu, J.; Zhiqun, Y.; Zin, Y.; Li, J.; Lv, Y. A continuous-flow Fischer indole synthesis of 3-methylindole in an ionic liquid. J. Flow Chem., 2017, 7, 33-36.
[134]
Mannich, C.; Krosche, W. Ueber ein Kondensations produkt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. (Weinheim), 1912, 250, 647-667.
[135]
Córdova, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Barbas, C.F. III A highly enantioselective route to either enantiomer of both α- and β-amino acid derivatives. J. Am. Chem. Soc., 2002, 124(9), 1866-1867.
[136]
Fang, D.; Gong, K.; Zhang, D-Z.; Liu, Z-L. One-pot three-component Mannich-type reaction catalysed by functionalized ionic liquid. Monatsh. Chem., 2009, 140, 1325-1329.
[137]
Vale, J.A.; Zanchetta, D.F.; Moran, P.J.S.; Augusto, J.; Rodrigues, R. Efficient α-methylenation of carbonyl compounds in ionic liquids at room temperature. Synlett, 2009, 2009(1), 75-78.
[138]
Zheng, X.; Qian, Y.B.; Wang, Y. 2-Pyrrolidinecarboxylic acid ionic liquid as a highly efficient organocatalyst for the asymmetric one-pot Mannich reaction. Eur. J. Org. Chem., 2010, 2010(3), 515-522.
[139]
Jagadale, M.; Naikwade, A.; Salunkhe, R.; Rajmane, M.; Rashinkar, G. Ionic liquid gel: a heterogeneous catalyst for Erlenmeyer-Plochl and Henry reaction. New J. Chem., 2018, 42, 10993-11005.
[140]
Keithellakpam, S.; Laitonjam, W.S. Henry reaction catalyzed by recyclable [C4dabco]OH ionic liquid. Indian J. Chem., 2016, 55B, 110-113.
[141]
Lambat, T.L.; Deo, S.S. Basic ionic liquid [BMIM][OH] as heterogeneous catalyst mediated solvent-free Stobbe condensation applying grindstone technique for the synthesis of novel β-arylidene-β-benzoylpropionic acid derivatives. J. Chinese Adv. Mat. Soc., 2017, 5, 65-78.
[142]
Mofrad, R.T.; Ahadzadeh, I.; Nazari, M.G.; Esmati, S.; Shahrisa, A. Synthesis of Betti base derivatives catalyzed by nano CuO ionic liquid and experimental and quantum chemical studies on corrosion inhibition performance of them. Res. Chem. Intermed., 2018, 44, 2913-2917.
[143]
Zhang, Y.; Zhen, B.; Li, H.; Feng, Y. Basic ionic liquid as catalyst and surfactant: green synthesis of quinazolinone in aqueous media. RSC Advances, 2018, 8, 36769-36774.
[144]
Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J-P. Functionalized chiral ionic liquids as highly efficient asymmetric organocatalysts for Michael addition to nitroolefins. Angew. Chem. Int. Ed. Engl., 2006, 45(19), 3093-3097.
[145]
Luo, S.; Zhang, L.; Mi, X.; Qiao, Y.; Cheng, J-P. Functionalized chiral ionic liquid catalyzed enantioselective desymmetrizations of prochiral ketones via asymmetric Michael addition reaction. J. Org. Chem., 2007, 72(24), 9350-9352.
[146]
Luo, S.; Mi, X.; Liu, S.; Xu, H.; Cheng, J-P. Surfactant-type asymmetric organocatalyst: organocatalytic asymmetric Michael addition to nitrostyrenes in water. Chem. Commun. (Camb.), 2006, 2006(35), 3687-3689.
[147]
Ni, B.; Zhang, Q.; Headley, A.D. Functionalized chiral ionic liquid as recyclable organocatalyst for asymmetric Michael addition to nitrostyrenes. Green Chem., 2007, 9, 737-739.
[148]
Zhang, Q.; Ni, B.; Headley, A.D. Asymmetric Michael addition reactions of aldehydes and nitrostyrenes catalyzed by functionalized chiral ionic liquids. Tetrahedron, 2008, 64, 5091-5097.
[149]
Ni, B.; Zhang, Q.; Dhungana, K.; Headley, A.D. Ionic Liquid-Supported (ILS) (S)-pyrrolidine sulfonamide, a recyclable organocatalyst for the highly enantioselective Michael addition to nitroolefins. Org. Lett., 2009, 11(4), 1037-1040.
[150]
Li, P.; Wang, L.; Zhang, Y.; Wang, G. Silica gel supported pyrrolidine-based chiral ionic liquid as recyclable organocatalyst for asymmetric Michael addition to nitrostyrenes. Tetrahedron, 2008, 64, 7633-7638.
[151]
Li, P.; Wang, L.; Wang, M.; Zhang, Y. Polymer-immobilized pyrrolidine-based chiral ionic liquids as recyclable organocatalysts for asymmetric Michael additions to nitrostyrenes under solvent-free reaction conditions. Eur. J. Org. Chem., 2008, 2008(7), 1157-1160.
[152]
Wang, Z.; Wang, Q.; Zhang, Y.; Bao, W. Synthesis of new chiral ionic liquids from natural acids and their applications in enantioselective Michael addition. Tetrahedron Lett., 2005, 46, 4657-4660.
[153]
Ni, B.; Zhang, Q.; Headly, A.D. Pyrrolidine-based chiral pyridinium Ionic Liquids (ILs) as recyclable and highly efficient organocatalysts for the asymmetric Michael addition reactions. Tetrahedron Lett., 2008, 49, 1249-1252.
[154]
Wang, G.; Sun, H.; Cao, X.; Chen, L. Pyrrolidine-based chiral quaternary alkylammonium ionic liquids as organocatalysts for asymmetric Michael additions. Catal. Lett., 2011, 141, 1324-1331.
[155]
Xu, D.Z.; Liu, Y.; Shi, S.; Wang, Y. Chiral quaternary alkylammonium ionic liquid [Pro-dabco][BF4]: as a recyclable and highly efficient organocatalyst for asymmetric Michael addition reactions. Tetrahedron Asymmetry, 2010, 21, 2530-2534.
[156]
Zlotin, S.G.; Kuherenko, A.S.; Malstev, O.V.; Chizhov, A.O. Chiral ionic liquid/ESI-MS methodology as an efficient tool for the study of transformations of supported organocatalysts. Top. Catal., 2013, 56, 923-932.
[157]
Tukhvatshin, R.S.; Kucherenko, A.S.; Nelyubina, Y.V.; Zlotin, S.G. Tertiary amine-derived ionic liquid-supported squaramide as a recyclable organocatalyst for noncovalent “on water” Catalysis. ACS Catal., 2017, 7, 2981-2989.
[158]
Truong, T.K.T.; Thanh, G.V. Synthesis of functionalized chiral ammonium, imidazolium, and pyridinium-based ionic liquids derived from (-)-ephedrine using solvent-free microwave activation. Applications for the asymmetric Michael addition. Tetrahedron, 2013, 66, 5277-5282.
[159]
Nobuoka, K.; Kitaoka, S.; Kojima, T.; Kawano, Y.; Hirano, K.; Tange, M.; Obata, S.; Yamamoto, Y.; Harran, T.; Ishikawa, Y. Proline based chiral ionic liquids for enantioselective Michael reaction. Org. Chem. Int., 2014, 2014, 1-9.
[160]
Jaeger, D.A.; Tucker, C.E. Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Lett., 1989, 30, 1785-1788.
[161]
Fischer, T.; Sethi, A.; Welton, T.; Woolf, J. Diels-Alder reactions in room-temperature ionic liquids. Tetrahedron Lett., 1999, 40, 793-796.
[162]
Tiwari, S.; Khupse, N.; Kumar, A. Intramolecular Diels-Alder reaction in ionic liquids: effect of ion-specific solvent friction. J. Org. Chem., 2008, 73(22), 9075-9083.
[163]
Bini, R.; Chiappe, C.; Mestre, V.L.; Pomelli, C.S.; Welton, T. A rationalization of the solvent effect on the Diels-Alder reaction in ionic liquids using multiparameter linear solvation energy relationships. Org. Biomol. Chem., 2008, 6(14), 2522-2529.
[164]
Buu, O.N.V.; Aupoix, A.; Vo-Thanh, G. Synthesis of novel chiral imidazolium-based ionic liquids derived from isosorbide and their applications in an asymmetric aza Diels-Alder reaction. Tetrahedron, 2009, 65, 2260-2265.
[165]
Lu, H.; An, X.; Yu, J.; Song, X. Diels-Alder reaction in microemulsions with ionic liquid. J. Phys. Org. Chem., 2012, 25, 1210-1216.
[166]
Zheng, X.; Qian, Y.; Wang, Y. Direct asymmetric aza Diels-Alder reaction catalyzed by chiral 2-pyrrolidinecarboxylic acid ionic liquid. Catal. Commun., 2010, 11, 567-570.
[167]
Shen, Z.L.; Cheong, H.L.; Lai, Y.C.; Loo, W.Y.; Loh, T.P. Application of recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective Diels-Alder reactions. Green Chem., 2012, 14, 2626-2630.
[168]
Matuszek, K.; Chrobok, A.; Latos, P.; Markiton, M.; Szymanska, K.; Jarzebski, A.; Kwasny, M.S. Silica-supported chlorometallate(III) ionic liquids as recyclable catalysts for Diels-Alder reaction under solvent less conditions. Catal. Sci. Technol., 2016, 6, 8129-8137.
[169]
Matuszek, K.; Coffie, S.; Chrobok, A.; Kwasny, M.S. Borenium ionic liquids as catalysts for Diels-Alder reaction: tuneable Lewis superacids for catalytic applications. Catal. Sci. Technol., 2017, 7, 1045-1049.
[170]
Goodrich, P.; Nimal Gunaratne, H.Q.; Hall, L.; Wang, Y.; Jin, L.; Muldoon, M.J.; Ribeiro, A.P.C.; Pombeiro, A.J.L.; Pârvulescu, V.I.; Davey, P.; Hardacre, C. Using chiral ionic liquid additives to enhance asymmetric induction in a Diels-Alder reaction. Dalton Trans., 2017, 46(5), 1704-1713.
[171]
Boon, J.A.; Levisky, J.A.; Pflug, J.L.; Wilkes, J.S. Friedel-Crafts reactions in ambient-temperature molten salts. J. Org. Chem., 1986, 51, 480-483.
[172]
Adams, C.J.; Earle, M.J.; Roberts, G.; Seddon, K.R. Friedel-Crafts reactions in room temperature ionic liquids. Chem. Commun. (Camb.), 1998, 1998(19), 2097-2098.
[173]
Earle, M.J.; Hakala, U.; McAuley, B.J.; Nieuwenhuyzen, M.; Ramani, A.; Seddon, K.R. Metal bis[trifluoromethyl)sulfonyl]amide complexes: highly efficient Friedel-Crafts acylation catalysts. Chem. Commun. (Camb.), 2004, 2004(12), 1368-1369.
[174]
Csihony, S.; Mehdi, H.; Horvath, I.T. In-situ infrared spectroscopic studies of the Friedel-Crafts acetylation of benzene in ionic liquids using AlCl3 and FeCl3. Green Chem., 2001, 3, 307-309.
[175]
Wasserscheid, P.; Sesing, M.; Korth, W. Hydrogensulfate and tetrakis(hydrogensulfato)borate ionic liquids: synthesis and catalytic application in highly Bronsted-acidic systems for Friedel-Crafts alkylation. Green Chem., 2002, 4, 134-138.
[176]
Baleizao, C.; Pires, N.; Gigante, B.; Curto, M.J.M. Friedel-Crafts reactions in ionic liquids: the counter-ion effect on the dealkylation and acylation of methyl dehydroabietate. Tetrahedron Lett., 2004, 45, 4375-4377.
[177]
Xiao, Y.; Malhotra, S.V. Friedel-Crafts acylation reactions in pyridinium based ionic liquids. J. Organomet. Chem., 2005, 690, 3609-3613.
[178]
Xin-hua, Y.; Min, C.; Qi-xun, D.; Xiao-nong, C. Friedel-Crafts acylation of anthracene with oxalyl chloride catalyzed by ionic liquid of [bmim]Cl/AlCl3. Chem. Eng. J., 2009, 146, 266-269.
[179]
Yibo, H.; Chao, W.; Qinghua, Z.; Xiaoli, Z.; Dang-guo, C.; Fengqiu, C. Durability enhanced ionic liquid catalyst for Friedel-Crafts reaction between benzene and 1-dodecene: insight into catalyst deactivation. RSC Advances, 2016, 5, 62241-62247.
[180]
Trost, B.M.; Strege, P.E. Asymmetric induction in catalytic allylic alkylation. J. Am. Chem. Soc., 1977, 96, 1649-1651.
[181]
Busacca, C.A.; Fandrick, D.R.; Song, J.J.; Senanayake, C.H. The growing impact of catalysis in the pharmaceutical industry. Adv. Synth. Catal., 2011, 353, 1825-1864.
[182]
Favier, I.; Castillo, A.B.; Godard, C.; Castillón, S.; Claver, C.; Gómez, M.; Teuma, E. Efficient recycling of a chiral palladium catalytic system for asymmetric allylic substitutions in ionic liquid. Chem. Commun. (Camb.), 2011, 47(27), 7869-7871.
[183]
Guerrero-Ríos, I.; Ortiz-Ramírez, A.H.; van Leeuwen, P.W.N.M.; Martin, E. A protic ionic liquid as an atom economical solution for palladium catalyzed asymmetric allylic alkylation. Dalton Trans., 2018, 47(11), 3739-3744.
[184]
Qureshi, Z.S.; Deshmukh, K.M.; Dhake, K.P.; Bhanage, B.M. Bronsted acidic ionic liquid: a simple, efficient and recyclable catalyst for regioselective alkylation of phenols and anti-Markovnikov addition of thiols to alkenes. RSC Advances, 2011, 2011(6), 1106-1112.
[185]
Chen, G.; Ye, M.; Qiao, H.; Qiu, X. The synthesis of an aryl alkyl ionic liquid and its application in catalyzing Suzuki-Miyaura coupling reaction. Russ. J. Phys. Chem. A, 2014, 88, 1317-1322.
[186]
Hejazifar, M.; Earle, M.; Seddon, K.R.; Weber, S.; Zirbs, R.; Bica, K. Ionic liquid-based microemulsions in catalysis. J. Org. Chem., 2016, 81(24), 12332-12339.
[187]
Meric, N.; Aydemir, M.; Isik, U.; Ocak, Y.S.; Rafikova, K.; Pasa, S.; Kayan, C.; Durap, F.; Zazybin, A.; Temel, H. Cross‐coupling reactions in water using ionic liquid‐based palladium (II)-phosphinite complexes as outstanding catalysts. Appl. Organomet. Chem., 2014, 28, 818-825.
[188]
Pham, P.D.; Vitz, J.; Chamignon, C.; Martel, A.; Legoupy, S. Stille cross‐coupling reactions with tin reagents supported on ionic liquids. Eur. J. Org. Chem., 2009, 19, 3249-3257.
[189]
Kude, K.; Hayase, S.; Kawatsura, M.; Itoh, T. Iron‐catalyzed quick homocoupling reaction of aryl or alkynyl Grignard reagents using a phosphonium ionic liquid solvent system. Heteroatom Chem., 2011, 22, 397-404.
[190]
Nagano, T.; Hayashi, T. Iron-catalyzed oxidative homo-coupling of aryl Grignard reagents. Org. Lett., 2005, 7(3), 491-493.
[191]
Strecker, A. On the artificial formation of lactic acid and a new substance homologous to glycine. Annalen der Chemie und Pharmacie, 1850, 75, 27-45.
[192]
Hauser, C.R.; Taylor, H.M.; Ledford, T.G. Benzylation and related alkylations of α-dimethylaminophenylacetonitrile by means of alkyl amides. dehydrocyanation of products to form enamines. J. Am. Chem. Soc., 1960, 82, 1786-1789.
[193]
Akbari, J. Synthesis of α-amino nitriles through Strecker-type reaction using SO3H-functionalized ionic liquid as a homogeneous and water tolerant-acidic catalyst. C. R. Chim., 2012, 15, 471-473.
[194]
Mojtahedi, M.M.; Abaee, M.S.; Abbasi, H. Environmentally friendly room temperature Strecker reaction: one pot synthesis of α-Aminonitriles in ionic liquids. J. Iran. Chem. Soc., 2006, 3, 93-97.
[195]
Fang, D.; Cao, Y.; Yang, J. Clean procedure for the synthesis of α-aminophosphonates catalyzed by biodegradable ionic liquid. Phosphorus Sulfur Silicon Relat. Elem., 2013, 188, 826-832.
[196]
Peng, H.; Sun, S.; Hu, Y.; Xing, R.; Fang, D. Clean procedure for the synthesis of α-aminophosphonates catalyzed by choline-based ionic liquid. Heteroatom Chem., 2014, 26, 215-223.
[197]
Fu, R.; Yang, Y.; Ma, X.; Sun, Y.; Li, J.; Gao, H.; Hu, H.; Zeng, X.; Yi, J. An efficient, eco-friendly and sustainable one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones directly from alcohols catalysed by heteropolyanion-based ionic liquids. Molecules, 2017, 22, 1531.
[198]
Freitas, E.F.; Souza, R.Y.; Passos, S.T.A.; Dias, J.A.; Dias, S.C.L.; Neto, B.A.D. Tuning the Biginelli reaction mechanism by the ionic liquid effect: the combined role of supported heteropolyacid derivatives and acidic strength. RSC Advances, 2019, 9, 27125-27135.
[199]
Ramos, L.M.; Tobio, A.Y.P.L.; Santos, M.R.; Oliveira, H.C.B.; Gomes, A.F.; Gozzo, F.C.; Oliveira, A.L.; Neto, B.A.D. Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents. J. Org. Chem., 2012, 77(22), 10184-10193.
[200]
Suarez, E.J.G.; Khokarale, S.G.; Bu, O.N.V.; Fehrmann, R.; Riisager, A. Pd-catalysed ethylene methoxycarbonylation with Bronsted acid ionic liquids as promoter and phase-separable reaction media. Green Chem., 2014, 16, 161-166.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy