Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Importance of Iron Absorption in Human Health: An Overview

Author(s): Satya P. Dixit, Logesh Rajan, Dhanabal Palaniswamy and Suresh K. Mohankumar*

Volume 17, Issue 3, 2021

Published on: 31 July, 2020

Page: [293 - 301] Pages: 9

DOI: 10.2174/1573401316999200801021752

Price: $65

Abstract

Iron is one of the essential elements required for human health, as it plays a vital role in a number of metabolic, growth, and developmental processes, including erythropoiesis, DNA synthesis, electron transport, and others. Iron deficiency is a concern in both developing and developed (industrialized) countries, and, in particular, young women are highly vulnerable. This review investigates the dietary and genetic determinants of iron metabolism in the human body and a possible solution to combat iron deficiency by exploring various targets. Hence, this review mainly focuses on the assessment of dietary and genetic factors affecting the iron bioavailability and homeostasis and collates the available information from 2000 to till date from the Pubmed database. The dietary factors, including ascorbic acid, an important factor in animal protein foods (meat, fish, and poultry), enhance iron absorption whereas the phytic acid, soy protein, calcium, and polyphenols have been reported to inhibit iron absorption. However, the effects of these dietary factors on iron absorption do not necessarily translate into an association with iron status and iron stores (serum ferritin concentration). Moreover, the genetic factors influence the absorption of iron involving HFE, TFR2, FPN1, and HAMP in humans. Further research is needed to determine optimal dietary recommendations for both the prevention and treatment of iron deficiency.

Keywords: Iron, hepcidin, homeostasis, phytic acid, bioavailability, therapeutic targets.

Graphical Abstract
[1]
Arora S, Kapoor RK. Iron Metabolism in Humans: An Overview, Iron Metabolism. USA: Intech Open In: 2012.
[2]
Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J 2011; 434(3): 365-81.
[http://dx.doi.org/10.1042/BJ20101825] [PMID: 21348856]
[3]
Pietrangelo A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 2010; 139(2): 393-408, 408.e1-408.e2.
[http://dx.doi.org/10.1053/j.gastro.2010.06.013] [PMID: 20542038]
[4]
Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr 2017; 106(6)(Suppl. 6): 1559S-66S.
[http://dx.doi.org/10.3945/ajcn.117.155804] [PMID: 29070551]
[5]
Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta 2015; 1852(7): 1347-59.
[http://dx.doi.org/10.1016/j.bbadis.2015.03.011] [PMID: 25843914]
[6]
Geisser P, Burckhardt S. The pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics 2011; 3(1): 12-33.
[http://dx.doi.org/10.3390/pharmaceutics3010012] [PMID: 24310424]
[7]
Hunt JR. Dietary and physiological factors that affect the absorption and bioavailability of iron. Int J Vitam Nutr Res 2005; 75(6): 375-84.
[http://dx.doi.org/10.1024/0300-9831.75.6.375] [PMID: 16711471]
[8]
Dasa F, Abera T. Factors affecting iron absorption and mitigation mechanisms: a review. Factors Affecting Iron Absorption and Mitigation Mechanisms. 2018; Available at: https://www.peertechz.com/articles/IJASFT-4-133.php
[9]
WHO. Nutritional anaemias: tools for effective prevention and control anaemia as a public health problem. World Health Organization 2017.
[10]
Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci 2014; 19(2): 164-74.
[11]
Ems T, Huecker MR. Biochemistry, iron absorption. Treasure Island (FL): StatPearls Publishing 2019.
[12]
Follett JR, Suzuki YA, Lönnerdal B. High specific activity heme-Fe and its application for studying heme-Fe metabolism in Caco-2 cell monolayers. Am J Physiol Gastrointest Liver Physiol 2002; 283(5): G1125-31.
[http://dx.doi.org/10.1152/ajpgi.00443.2001] [PMID: 12381526]
[13]
Leonard AJ, Chalmers KA, Collins CE, Patterson AJ. The effect of nutrition knowledge and dietary iron intake on iron status in young women. Appetite 2014; 81: 225-31.
[http://dx.doi.org/10.1016/j.appet.2014.06.021] [PMID: 24972132]
[14]
Ball MJ, Bartlett MA. Dietary intake and iron status of Australian vegetarian women. Am J Clin Nutr 1999; 70(3): 353-8.
[http://dx.doi.org/10.1093/ajcn/70.3.353] [PMID: 10479197]
[15]
Beck KL, Conlon CA, Kruger R, Coad J. Dietary determinants of and possible solutions to iron deficiency for young women living in industrialized countries: a review. Nutrients 2014; 6(9): 3747-76.
[http://dx.doi.org/10.3390/nu6093747] [PMID: 25244367]
[16]
Worthington-Roberts BS, Breskin MW, Monsen ER. Iron status of premenopausal women in a university community and its relationship to habitual dietary sources of protein. Am J Clin Nutr 1988; 47(2): 275-9.
[http://dx.doi.org/10.1093/ajcn/47.2.275] [PMID: 3341260]
[17]
Kalgaonkar S, Lönnerdal B. Effects of dietary factors on iron uptake from ferritin by Caco-2 cells. J Nutr Biochem 2008; 19(1): 33-9.
[http://dx.doi.org/10.1016/j.jnutbio.2007.02.001] [PMID: 17509858]
[18]
Christides T, Sharp P. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells. PLoS One 2013; 8(12): e83031.
[http://dx.doi.org/10.1371/journal.pone.0083031] [PMID: 24340076]
[19]
García-Casal MN, Layrisse M, Solano L, et al. Vitamin A and β- carotene can improve nonheme iron absorption from rice, wheat and corn by humans. J Nutr 1998; 128(3): 646-50.
[http://dx.doi.org/10.1093/jn/128.3.646] [PMID: 9482776]
[20]
Moustarah F, Mohiuddin SS. Dietary Iron Treasure Island (FL): StatPearls Publishing 2019.
[21]
Nissar J, Ahad T, Naik H, Hussain S. A review phytic acid: as antinutrient or nutraceutical. J Pharmacogn Phytochem 2017; 6(6): 1554-60.
[22]
Schlemmer U, Frølich W, Prieto RM, Grases F. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 2009; 53(S2)(Suppl. 2): S330-75.
[http://dx.doi.org/10.1002/mnfr.200900099] [PMID: 19774556]
[23]
Hurrell RF. Phytic acid degradation as a means of improving iron absorption. Int J Vitam Nutr Res 2004; 74(6): 445-52.
[http://dx.doi.org/10.1024/0300-9831.74.6.445] [PMID: 15743020]
[24]
Ma Q, Kim EY, Lindsay EA, Han O. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells. J Food Sci 2011; 76(5): H143-50.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02184.x] [PMID: 22417433]
[25]
WHO Technical Report (Control of nutritional anaemia with special reference to iron deficiency: report of an IAEA/USAID/WHO Joint Meeting) 1975.
[26]
Lyle RM, Weaver CM, Sedlock DA, Rajaram S, Martin B, Melby CL. Iron status in exercising women: the effect of oral iron therapy vs increased consumption of muscle foods. Am J Clin Nutr 1992; 56(6): 1049-55.
[http://dx.doi.org/10.1093/ajcn/56.6.1049] [PMID: 1442656]
[27]
Tetens I, Bendtsen KM, Henriksen M, Ersbøll AK, Milman N. The impact of a meat- versus a vegetable-based diet on iron status in women of childbearing age with small iron stores. Eur J Nutr 2007; 46(8): 439-45.
[http://dx.doi.org/10.1007/s00394-007-0683-6] [PMID: 17982706]
[28]
Hunt JR, Roughead ZK. Nonheme-iron absorption, fecal ferritin excretion, and blood indexes of iron status in women consuming controlled lactoovovegetarian diets for 8 wk. Am J Clin Nutr 1999; 69(5): 944-52.
[PMID: 10232635]
[29]
Navas-Carretero S, Pérez-Granados AM, Schoppen S, Sarria B, Carbajal A, Vaquero MP. Iron status biomarkers in iron deficient women consuming oily fish versus red meat diet. J Physiol Biochem 2009; 65(2): 165-74.
[http://dx.doi.org/10.1007/BF03179067] [PMID: 19886395]
[30]
Krisher JA. Characterization of Shear-induced Hemolysis in Rotational Medical Devices 2018; Available at: https://scholarworks.rit.edu/theses/9907/
[31]
Danielson BG. Structure, chemistry, and pharmacokinetics of intravenous iron agents. J Am Soc Nephrol 2004; 15(2)(Suppl. 2): S93-8.
[PMID: 15585603]
[32]
Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003; 102(3): 783-8.
[http://dx.doi.org/10.1182/blood-2003-03-0672] [PMID: 12663437]
[33]
Nicolas G, Viatte L, Bennoun M, Beaumont C, Kahn A, Vaulont S. Hepcidin, a new iron regulatory peptide. Blood Cells Mol Dis 2002; 29(3): 327-35.
[http://dx.doi.org/10.1006/bcmd.2002.0573] [PMID: 12547223]
[34]
Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306(5704): 2090-3.
[http://dx.doi.org/10.1126/science.1104742] [PMID: 15514116]
[35]
Ramey G, Deschemin JC, Durel B, Canonne-Hergaux F, Nicolas G, Vaulont S. Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 2010; 95(3): 501-4.
[http://dx.doi.org/10.3324/haematol.2009.014399] [PMID: 19773263]
[36]
Meynard D, Babitt JL, Lin HY. The liver: conductor of systemic iron balance. Blood 2014; 123(2): 168-76.
[http://dx.doi.org/10.1182/blood-2013-06-427757] [PMID: 24200681]
[37]
Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 2017; 8(1): 126-36.
[http://dx.doi.org/10.3945/an.116.013961] [PMID: 28096133]
[38]
Benyamin B, McRae AF, Zhu G, et al. Variants in TF and HFE explain approximately 40% of genetic variation in serum-transferrin levels. Am J Hum Genet 2009; 84(1): 60-5.
[http://dx.doi.org/10.1016/j.ajhg.2008.11.011] [PMID: 19084217]
[39]
Hunt JR, Zito CA, Johnson LK. Body iron excretion by healthy men and women. Am J Clin Nutr 2009; 89(6): 1792-8.
[http://dx.doi.org/10.3945/ajcn.2009.27439] [PMID: 19386738]
[40]
McDowell LR II, Ed. Minerals in animal and human nutrition. 2nd ed. Amsterdam: Elsevier Science 2003.
[41]
Fairbanks VF. Iron in medicine and nutrition. Modern nutrition in health and disease. 10th ed. Baltimore: Lippincott Williams & Wilkins 1999; pp. 193-221.
[42]
Njajou OT, Vaessen N, Joosse M, et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat Genet 2001; 28(3): 213-4.
[http://dx.doi.org/10.1038/90038] [PMID: 11431687]
[43]
Rivard SR, Lanzara C, Grimard D, et al. Juvenile hemochromatosis locus maps to chromosome 1q in a French Canadian population. Eur J Hum Genet 2003; 11(8): 585-9.
[http://dx.doi.org/10.1038/sj.ejhg.5201009] [PMID: 12891378]
[44]
Gao J, Chen J, Kramer M, Tsukamoto H, Zhang AS, Enns CA. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metab 2009; 9(3): 217-27.
[http://dx.doi.org/10.1016/j.cmet.2009.01.010] [PMID: 19254567]
[45]
Beutler E, Felitti V, Gelbart T, Waalen J. Haematological effects of the C282Y HFE mutation in homozygous and heterozygous states among subjects of northern and southern European ancestry. Br J Haematol 2003; 120(5): 887-93.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04215.x] [PMID: 12614226]
[46]
Bennett MJ, Lebrón JA, Bjorkman PJ. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 2000; 403(6765): 46-53.
[http://dx.doi.org/10.1038/47417] [PMID: 10638746]
[47]
Drakesmith H, Sweetland E, Schimanski L, et al. The hemochromatosis protein HFE inhibits iron export from macrophages. Proc Natl Acad Sci USA 2002; 99(24): 15602-7.
[http://dx.doi.org/10.1073/pnas.242614699] [PMID: 12429850]
[48]
Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996; 13(4): 399-408.
[http://dx.doi.org/10.1038/ng0896-399] [PMID: 8696333]
[49]
Tomatsu S, Orii KO, Fleming RE, et al. Contribution of the H63D mutation in HFE to murine hereditary hemochromatosis. Proc Natl Acad Sci USA 2003; 100(26): 15788-93.
[http://dx.doi.org/10.1073/pnas.2237037100] [PMID: 14673107]
[50]
Kawabata H, Yang R, Hirama T, et al. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem 1999; 274(30): 20826-32.
[http://dx.doi.org/10.1074/jbc.274.30.20826] [PMID: 10409623]
[51]
Zhang AS, Xiong S, Tsukamoto H, Enns CA. Localization of iron metabolism-related mRNAs in rat liver indicate that HFE is expressed predominantly in hepatocytes. Blood 2004; 103(4): 1509-14.
[http://dx.doi.org/10.1182/blood-2003-07-2378] [PMID: 14563638]
[52]
Goswami T, Andrews NC. Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem 2006; 281(39): 28494-8.
[http://dx.doi.org/10.1074/jbc.C600197200] [PMID: 16893896]
[53]
Robb AD, Ericsson M, Wessling-Resnick M. Transferrin receptor 2 mediates a biphasic pattern of transferrin uptake associated with ligand delivery to multivesicular bodies. Am J Physiol Cell Physiol 2004; 287(6): C1769-75.
[http://dx.doi.org/10.1152/ajpcell.00337.2004] [PMID: 15317665]
[54]
Weiss G. Genetic mechanisms and modifying factors in hereditary hemochromatosis. Nat Rev Gastroenterol Hepatol 2010; 7(1): 50-8.
[http://dx.doi.org/10.1038/nrgastro.2009.201] [PMID: 19918260]
[55]
Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol 2014; 307(4): G397-409.
[http://dx.doi.org/10.1152/ajpgi.00348.2013] [PMID: 24994858]
[56]
Gene HAMP. Genetics Home Reference
[57]
Camaschella C. Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders. Blood 2005; 106(12): 3710-7.
[http://dx.doi.org/10.1182/blood-2005-05-1857] [PMID: 16030190]
[58]
Roetto A, Papanikolaou G, Politou M, et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 2003; 33(1): 21-2.
[http://dx.doi.org/10.1038/ng1053] [PMID: 12469120]
[59]
Delatycki MB, Allen KJ, Gow P, et al. A homozygous HAMP mutation in a multiply consanguineous family with pseudo-dominant juvenile hemochromatosis. Clin Genet 2004; 65(5): 378-83.
[http://dx.doi.org/10.1111/j.0009-9163.2004.00254.x] [PMID: 15099344]
[60]
Roetto A, Daraio F, Porporato P, et al. Screening hepcidin for mutations in juvenile hemochromatosis: identification of a new mutation (C70R). Blood 2004; 103(6): 2407-9.
[http://dx.doi.org/10.1182/blood-2003-10-3390] [PMID: 14630809]
[61]
Folgueras AR, de Lara FM, Pendás AM, et al. Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood 2008; 112(6): 2539-45.
[http://dx.doi.org/10.1182/blood-2008-04-149773] [PMID: 18523150]
[62]
Cazzola M, Cremonesi L, Papaioannou M, et al. Genetic hyperferritinaemia and reticuloendothelial iron overload associated with a three base pair deletion in the coding region of the ferroportin gene (SLC11A3). Br J Haematol 2002; 119(2): 539-46.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03946.x] [PMID: 12406098]
[63]
Papanikolaou G, Tzilianos M, Christakis JI, et al. Hepcidin in iron overload disorders. Blood 2005; 105(10): 4103-5.
[http://dx.doi.org/10.1182/blood-2004-12-4844] [PMID: 15671438]
[64]
Pietrangelo A. Ferroportin disease: pathogenesis, diagnosis and treatment. Haematologica 2017; 102(12): 1972-84.
[http://dx.doi.org/10.3324/haematol.2017.170720] [PMID: 29101207]
[65]
Drakesmith H, Schimanski LM, Ormerod E, et al. Resistance to hepcidin is conferred by hemochromatosis-associated mutations of ferroportin. Blood 2005; 106(3): 1092-7.
[http://dx.doi.org/10.1182/blood-2005-02-0561] [PMID: 15831700]
[66]
Caetano-Silva ME, Cilla A, Bertoldo-Pacheco MT, Netto FM, Alegría A. Evaluation of in vitro iron bioavailability in free form and as whey peptide-iron complexes. J Food Compos Anal 2018; 68: 95-100.
[http://dx.doi.org/10.1016/j.jfca.2017.03.010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy