Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

MALAT1 as a Versatile Regulator of Cancer: Overview of the Updates from Predatory Role as Competitive Endogenous RNA to Mechanistic Insights

Author(s): Ammad Ahmad Farooqi*, Evangelia Legaki, Maria Gazouli, Silvia Rinaldi and Rossana Berardi

Volume 21, Issue 3, 2021

Published on: 30 July, 2020

Page: [192 - 202] Pages: 11

DOI: 10.2174/1568009620999200730183110

Price: $65

Abstract

The central dogma of molecular biology, has remained a cornerstone of classical molecular biology. However, serendipitously discovered microRNAs (miRNAs) in nematodes paradigmatically shifted our current knowledge of the intricate mechanisms during transitions from transcription to translation. Thediscovery of miRNA captured considerable attention and appreciation, and we had witnessed an explosion in the field of non-coding RNAs. Ground-breaking discoveries in the field of non-coding RNAs have helped in better characterization of microRNAs and long noncoding RNAs (LncRNAs). There is an ever-increasing list of miRNA targets that are regulated by MALAT1 to stimulate or repress the expression of target genes. However, in this review, our main focus is to summarize mechanistic insights on MALAT1-mediated regulation of oncogenic signaling pathways. We have discussed how MALAT1 modulated TGF/SMAD and Hippo pathways in various cancers. We have also comprehensively summarized how JAK/STAT and Wnt/β-catenin pathways stimulated MALAT1 expression and consequentially how MALAT1 potentiated these signaling cascades to promote cancer. MALAT1 research has undergone substantial broadening. However, there is still a need to identify additional mechanisms. MALAT1 is involved in the multi- -layered regulation of multiple transduction cascades, and detailed analysis of different pathways will be advantageous in getting a step closer to individualized medicine.

Keywords: LncRNA, cancer, apoptosis, signaling, cascades, miRNAs.

Graphical Abstract
[1]
Li, X; Chen, N; Zhou, L; Wang, C; Wen, X; Jia, L; Cui, J; Hoffman, AR; Hu, JF; Li, W Genome-wide target interactome profiling reveals a novel EEF1A1 epigenetic pathway for oncogenic lncRNA MALAT1 in breast cancer. Am. J. Cancer Res., 2019, 9(4), 714-729.
[2]
Chen, J.; Liu, X.; Xu, Y.; Zhang, K.; Huang, J.; Pan, B.; Chen, D.; Cui, S.; Song, H.; Wang, R.; Chu, X.; Zhu, X.; Chen, L. TFAP2c-activated MALAT1 modulates the chemoresistance of docetaxel-resistant lung adenocarcinoma cells. Mol. Ther. Nucleic Acids, 2019, 14, 567-582.
[http://dx.doi.org/10.1016/j.omtn.2019.01.005] [PMID: 30771618]
[3]
Gordon, M.A.; Babbs, B.; Cochrane, D.R.; Bitler, B.G.; Richer, J.K. The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2-mediated alternative splicing. Mol. Carcinog., 2019, 58(2), 196-205.
[http://dx.doi.org/10.1002/mc.22919] [PMID: 30294913]
[4]
Herrero, A.B.; Quwaider, D.; Corchete, L.A.; Mateos, M.V.; García-Sanz, R.; Gutiérrez, N.C. FAM46C controls antibody production by the polyadenylation of immunoglobulin mRNAs and inhibits cell migration in multiple myeloma. J. Cell. Mol. Med., 2020, 24(7), 4171-4182.
[http://dx.doi.org/10.1111/jcmm.15078] [PMID: 32141701]
[5]
Yu, W.; Ding, J.; He, M.; Chen, Y.; Wang, R.; Han, Z.; Xing, E.Z.; Zhang, C.; Yeh, S. Estrogen receptor β promotes the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA- MALAT1/miR-145-5p/NEDD9 signals in lung cancer. Oncogene, 2019, 38(8), 1225-1238.
[http://dx.doi.org/10.1038/s41388-018-0463-1] [PMID: 30250297]
[6]
Hu, J.; Zhang, L.; Mei, Z.; Jiang, Y.; Yi, Y.; Liu, L.; Meng, Y.; Zhou, L.; Zeng, J.; Wu, H.; Jiang, X. Interaction of E3 ubiquitin ligase MARCH7 with long noncoding RNA MALAT1 and autophagy-related protein ATG7 promotes autophagy and invasion in ovarian cancer. Cell. Physiol. Biochem., 2018, 47(2), 654-666.
[http://dx.doi.org/10.1159/000490020] [PMID: 29794480]
[7]
Wrana, J.L.; Attisano, L.; Cárcamo, J.; Zentella, A.; Doody, J.; Laiho, M.; Wang, X.F.; Massagué, J. TGF beta signals through a heteromeric protein kinase receptor complex. Cell, 1992, 71(6), 1003-1014.
[http://dx.doi.org/10.1016/0092-8674(92)90395-S] [PMID: 1333888]
[8]
Souchelnytskyi, S.; Rönnstrand, L.; Heldin, C.H.; ten Dijke, P. Phosphorylation of Smad signaling proteins by receptor serine/threonine kinases. Methods Mol. Biol., 2001, 124, 107-120.
[http://dx.doi.org/10.1385/1-59259-059-4:107] [PMID: 11100470]
[9]
Derynck, R.; Akhurst, R.J.; Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet., 2001, 29(2), 117-129.
[http://dx.doi.org/10.1038/ng1001-117] [PMID: 11586292]
[10]
Schmierer, B.; Hill, C.S. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol., 2007, 8(12), 970-982.
[http://dx.doi.org/10.1038/nrm2297] [PMID: 18000526]
[11]
Gutschner, T.; Hämmerle, M.; Diederichs, S. MALAT1- a paradigm for long noncoding RNA function in cancer. J. Mol. Med. (Berl.), 2013, 91(7), 791-801.
[http://dx.doi.org/10.1007/s00109-013-1028-y] [PMID: 23529762]
[12]
Huo, Y.; Li, Q.; Wang, X.; Jiao, X.; Zheng, J.; Li, Z.; Pan, X. MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2. Oncotarget, 2017, 8(29), 46993-47006.
[http://dx.doi.org/10.18632/oncotarget.16551] [PMID: 28388584]
[13]
Wang, Y.; Wu, C.; Zhang, C.; Li, Z.; Zhu, T.; Chen, J.; Ren, Y.; Wang, X.; Zhang, L.; Zhou, X. TGF-β-induced STAT3 overexpression promotes human head and neck squamous cell carcinoma invasion and metastasis through malat1/miR-30a interactions. Cancer Lett., 2018, 436, 52-62.
[http://dx.doi.org/10.1016/j.canlet.2018.08.009] [PMID: 30118844]
[14]
Park, Y.R.; Kim, S.L.; Lee, M.R.; Seo, S.Y.; Lee, J.H.; Kim, S.H.; Kim, I.H.; Lee, S.O.; Lee, S.T.; Kim, S.W. MicroRNA-30a-5p (miR-30a) regulates cell motility and EMT by directly targeting oncogenic TM4SF1 in colorectal cancer. J. Cancer Res. Clin. Oncol., 2017, 143(10), 1915-1927.
[http://dx.doi.org/10.1007/s00432-017-2440-4] [PMID: 28528497]
[15]
Li, Q.; Pan, X.; Wang, X.; Jiao, X.; Zheng, J.; Li, Z.; Huo, Y. Long noncoding RNA MALAT1 promotes cell proliferation through suppressing miR-205 and promoting SMAD4 expression in osteosarcoma. Oncotarget, 2017, 8(63), 106648-106660.
[http://dx.doi.org/10.18632/oncotarget.20678] [PMID: 29290978]
[16]
Yu, Q.; Xiang, L.; Chen, Z.; Liu, X.; Ou, H.; Zhou, J.; Yang, D. MALAT1 functions as a competing endogenous RNA to regulate SMAD5 expression by acting as a sponge for miR-142-3p in hepatocellular carcinoma. Cell Biosci., 2019, 9, 39.
[http://dx.doi.org/10.1186/s13578-019-0299-6] [PMID: 31168355]
[17]
Fang, Z.; Chen, W.; Yuan, Z.; Liu, X.; Jiang, H. LncRNA- MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed. Pharmacother., 2018, 101, 536-542.
[http://dx.doi.org/10.1016/j.biopha.2018.02.130] [PMID: 29505924]
[18]
Chang, S.M.; Hu, W.W. Long non-coding RNA MALAT1 promotes oral squamous cell carcinoma development via microRNA-125b/STAT3 axis. J. Cell. Physiol., 2018, 233(4), 3384-3396.
[http://dx.doi.org/10.1002/jcp.26185] [PMID: 28926115]
[19]
Li, S.; Mei, Z.; Hu, H.B.; Zhang, X. The lncRNA MALAT1 contributes to non-small cell lung cancer development via modulating miR-124/STAT3 axis. J. Cell. Physiol., 2018, 233(9), 6679-6688.
[http://dx.doi.org/10.1002/jcp.26325] [PMID: 29215698]
[20]
Yang, Q.; Chen, W.; Xu, Y.; Lv, X.; Zhang, M.; Jiang, H. Polyphyllin I modulates MALAT1/STAT3 signaling to induce apoptosis in gefitinib-resistant non-small cell lung cancer. Toxicol. Appl. Pharmacol., 2018, 356, 1-7.
[http://dx.doi.org/10.1016/j.taap.2018.07.031] [PMID: 30076870]
[21]
Hao, Y.; Yan, Z.; Zhang, A.; Hu, S.; Wang, N.; Luo, X.G.; Ma, W.; Zhang, T.C.; He, H. IL-6/STAT3 mediates the HPV18 E6/E7 stimulated upregulation of MALAT1 gene in cervical cancer HeLa cells. Virus Res., 2020, 281, 197907.
[http://dx.doi.org/10.1016/j.virusres.2020.197907] [PMID: 32113834]
[22]
Harvey, K.F.; Zhang, X.; Thomas, D.M. The Hippo pathway and human cancer. Nat. Rev. Cancer, 2013, 13(4), 246-257.
[http://dx.doi.org/10.1038/nrc3458] [PMID: 23467301]
[23]
White, S.M.; Murakami, S.; Yi, C. The complex entanglement of Hippo-Yap/Taz signaling in tumor immunity. Oncogene, 2019, 38(16), 2899-2909.
[http://dx.doi.org/10.1038/s41388-018-0649-6] [PMID: 30617303]
[24]
Sun, Y.; Jiang, T.; Jia, Y.; Zou, J.; Wang, X.; Gu, W. LncRNA MALAT1/miR-181a-5p affects the proliferation and adhesion of myeloma cells via regulation of Hippo-YAP signaling pathway. Cell Cycle, 2019, 18(19), 2509-2523.
[http://dx.doi.org/10.1080/15384101.2019.1652034] [PMID: 31397203]
[25]
Yao, Q.; Yang, J.; Liu, T.; Zhang, J.; Zheng, Y. Long noncoding RNA MALAT1 promotes the stemness of esophageal squamous cell carcinoma by enhancing YAP transcriptional activity. FEBS Open Bio, 2019, 9(8), 1392-1402.
[http://dx.doi.org/10.1002/2211-5463.12676] [PMID: 31116509]
[26]
He, S.; Huang, Q.; Hu, J.; Li, L.; Xiao, Y.; Yu, H.; Han, Z.; Wang, T.; Zhou, W.; Wei, H.; Xiao, J. EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation in Ewing sarcoma. Br. J. Cancer, 2019, 121(11), 922-933.
[http://dx.doi.org/10.1038/s41416-019-0608-1] [PMID: 31649319]
[27]
Jin, D.; Guo, J.; Wu, Y.; Du, J.; Yang, L.; Wang, X.; Di, W.; Hu, B.; An, J.; Kong, L.; Pan, L.; Su, G. m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J. Hematol. Oncol., 2019, 12(1), 135.
[http://dx.doi.org/10.1186/s13045-019-0830-6] [PMID: 31818312]
[28]
Sun, Z.; Ou, C.; Liu, J.; Chen, C.; Zhou, Q.; Yang, S.; Li, G.; Wang, G.; Song, J.; Li, Z.; Zhang, Z.; Yuan, W.; Li, X. YAP1-induced MALAT1 promotes epithelial-mesenchymal transition and angiogenesis by sponging miR-126-5p in colorectal cancer. Oncogene, 2019, 38(14), 2627-2644.
[http://dx.doi.org/10.1038/s41388-018-0628-y] [PMID: 30531836]
[29]
Li, Y.; Zhang, X.; Zheng, Q.; Zhang, Y.; Ma, Y.; Zhu, C.; Yang, L.; Peng, X.; Wang, Q.; Wang, B.; Meng, X.; Li, H.; Liu, J. YAP1 inhibition in HUVECs is associated with released exosomes and increased hepatocarcinoma invasion and metastasis. Mol. Ther. Nucleic Acids, 2020, 21, 86-97.
[http://dx.doi.org/10.1016/j.omtn.2020.05.021] [PMID: 32516736]
[30]
Zheng, X.; Ren, J.; Peng, B.; Ye, J.; Wu, X.; Zhao, W.; Li, Y.; Chen, R.; Gong, X.; Bai, C.; Wang, Y.; Zhao, H.; Zhang, Y. MALAT1 overexpression promotes the growth of colon cancer by repressing β-catenin degradation. Cell. Signal., 2020, 73, 109676.
[http://dx.doi.org/10.1016/j.cellsig.2020.109676] [PMID: 32485228]
[31]
Ying, L.; Chen, Q.; Wang, Y.; Zhou, Z.; Huang, Y.; Qiu, F. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol. Biosyst., 2012, 8(9), 2289-2294.
[http://dx.doi.org/10.1039/c2mb25070e] [PMID: 22722759]
[32]
Ji, Q.; Cai, G.; Liu, X.; Zhang, Y.; Wang, Y.; Zhou, L.; Sui, H.; Li, Q. MALAT1 regulates the transcriptional and translational levels of proto-oncogene RUNX2 in colorectal cancer metastasis. Cell Death Dis., 2019, 10(6), 378.
[http://dx.doi.org/10.1038/s41419-019-1598-x] [PMID: 31097689]
[33]
Wu, X.; Li, R.; Song, Q.; Zhang, C.; Jia, R.; Han, Z.; Zhou, L.; Sui, H.; Liu, X.; Zhu, H.; Yang, L.; Wang, Y.; Ji, Q.; Li, Q. JMJD2C promotes colorectal cancer metastasis via regulating histone methylation of MALAT1 promoter and enhancing β-catenin signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 435.
[http://dx.doi.org/10.1186/s13046-019-1439-x] [PMID: 31665047]
[34]
Lennox, K.A.; Behlke, M.A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res., 2016, 44(2), 863-877.
[http://dx.doi.org/10.1093/nar/gkv1206] [PMID: 26578588]
[35]
Lu, X.; Chen, D.; Yang, F.; Xing, N. Quercetin inhibits epithelial-to-mesenchymal transition (EMT) process and promotes apoptosis in prostate cancer via downregulating lncRNA MALAT1. Cancer Manag. Res., 2020, 12, 1741-1750.
[http://dx.doi.org/10.2147/CMAR.S241093] [PMID: 32210615]
[36]
Wang, J.; Su, L.; Chen, X.; Li, P.; Cai, Q.; Yu, B.; Liu, B.; Wu, W.; Zhu, Z. MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF. Biomed. Pharmacother., 2014, 68(5), 557-564.
[http://dx.doi.org/10.1016/j.biopha.2014.04.007] [PMID: 24857172]
[37]
Huang, J.K.; Ma, L.; Song, W.H.; Lu, B.Y.; Huang, Y.B.; Dong, H.M.; Ma, X.K.; Zhu, Z.Z.; Zhou, R. MALAT1 promotes the proliferation and invasion of thyroid cancer cells via regulating the expression of IQGAP1. Biomed. Pharmacother., 2016, 83, 1-7.
[http://dx.doi.org/10.1016/j.biopha.2016.05.039] [PMID: 27470543]
[38]
Deng, Q.J.; Xie, L.Q.; Li, H. Overexpressed MALAT1 promotes invasion and metastasis of gastric cancer cells via increasing EGFL7 expression. Life Sci., 2016, 157, 38-44.
[http://dx.doi.org/10.1016/j.lfs.2016.05.041] [PMID: 27259812]
[39]
Cai, X.; Liu, Y.; Yang, W.; Xia, Y.; Yang, C.; Yang, S.; Liu, X. Long noncoding RNA MALAT1 as a potential therapeutic target in osteosarcoma. J. Orthop. Res., 2016, 34(6), 932-941.
[http://dx.doi.org/10.1002/jor.23105] [PMID: 26575981]
[40]
Hu, Y.; Lin, J.; Fang, H.; Fang, J.; Li, C.; Chen, W.; Liu, S.; Ondrejka, S.; Gong, Z.; Reu, F.; Maciejewski, J.; Yi, Q.; Zhao, J.J. Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia, 2018, 32(10), 2250-2262.
[http://dx.doi.org/10.1038/s41375-018-0104-2] [PMID: 29632340]
[41]
Nguyen, T.M.; Kabotyanski, E.B.; Reineke, L.C.; Shao, J.; Xiong, F.; Lee, J.H.; Dubrulle, J.; Johnson, H.; Stossi, F.; Tsoi, P.S.; Choi, K.J.; Ellis, A.G.; Zhao, N.; Cao, J.; Adewunmi, O.; Ferreon, J.C.; Ferreon, A.C.M.; Neilson, J.R.; Mancini, M.A.; Chen, X.; Kim, J.; Ma, L.; Li, W.; Rosen, J.M. The SINEB1 element in the long non-coding RNA Malat1 is necessary for TDP-43 proteostasis. Nucleic Acids Res., 2020, 48(5), 2621-2642.
[http://dx.doi.org/10.1093/nar/gkz1176] [PMID: 31863590]
[42]
Yin, Y.; Lu, J.Y.; Zhang, X.; Shao, W.; Xu, Y.; Li, P.; Hong, Y.; Cui, L.; Shan, G.; Tian, B.; Zhang, Q.C.; Shen, X. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature, 2020, 580(7801), 147-150.
[http://dx.doi.org/10.1038/s41586-020-2105-3] [PMID: 32238924]
[43]
Xu, J.; Xiao, Y.; Liu, B.; Pan, S.; Liu, Q.; Shan, Y.; Li, S.; Qi, Y.; Huang, Y.; Jia, L. Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway. J. Exp. Clin. Cancer Res., 2020, 39(1), 54.
[http://dx.doi.org/10.1186/s13046-020-01562-6] [PMID: 32209115]
[44]
Amodio, N.; Stamato, M.A.; Juli, G.; Morelli, E.; Fulciniti, M.; Manzoni, M.; Taiana, E.; Agnelli, L.; Cantafio, M.E.G.; Romeo, E.; Raimondi, L.; Caracciolo, D.; Zuccalà, V.; Rossi, M.; Neri, A.; Munshi, N.C.; Tagliaferri, P.; Tassone, P. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia, 2018, 32(9), 1948-1957.
[http://dx.doi.org/10.1038/s41375-018-0067-3] [PMID: 29487387]
[45]
Kim, S.S.; Harford, J.B.; Moghe, M.; Rait, A.; Pirollo, K.F.; Chang, E.H. Targeted nanocomplex carrying siRNA against MALAT1 sensitizes glioblastoma to temozolomide. Nucleic Acids Res., 2018, 46(3), 1424-1440.
[http://dx.doi.org/10.1093/nar/gkx1221] [PMID: 29202181]
[46]
Abulwerdi, F.A.; Xu, W.; Ageeli, A.A.; Yonkunas, M.J.; Arun, G.; Nam, H.; Schneekloth, J.S., Jr; Dayie, T.K.; Spector, D.; Baird, N.; Le Grice, S.F.J. Selective Small-Molecule Targeting of a Triple Helix Encoded by the Long Noncoding RNA, MALAT1. ACS Chem. Biol., 2019, 14(2), 223-235.
[http://dx.doi.org/10.1021/acschembio.8b00807] [PMID: 30620551]
[47]
Gong, N.; Teng, X.; Li, J.; Liang, X.J. Antisense Oligonucleotide- Conjugated Nanostructure-Targeting lncRNA MALAT1 Inhibits Cancer Metastasis. ACS Appl. Mater. Interfaces, 2019, 11(1), 37-42.
[http://dx.doi.org/10.1021/acsami.8b18288] [PMID: 30548064]
[48]
Chen, S.; Wang, G.; Tao, K.; Cai, K.; Wu, K.; Ye, L.; Bai, J.; Yin, Y.; Wang, J.; Shuai, X.; Gao, J.; Pu, J.; Li, H. Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 cooperates with enhancer of zeste homolog 2 to promote hepatocellular carcinoma development by modulating the microRNA-22/Snail family transcriptional repressor 1 axis. Cancer Sci., 2020, 111(5), 1582-1595.
[http://dx.doi.org/10.1111/cas.14372] [PMID: 32129914]
[49]
Wang, Y.; Zhang, Y.; Yang, T.; Zhao, W.; Wang, N.; Li, P.; Zeng, X.; Zhang, W. Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells. Oncotarget, 2017, 8(35), 59417-59434.
[http://dx.doi.org/10.18632/oncotarget.19727] [PMID: 28938647]
[50]
Chang, J.; Xu, W.; Du, X.; Hou, J. MALAT1 silencing suppresses prostate cancer progression by upregulating miR-1 and downregulating KRAS. OncoTargets Ther., 2018, 11, 3461-3473.
[http://dx.doi.org/10.2147/OTT.S164131] [PMID: 29942138]
[51]
Chou, J.; Wang, B.; Zheng, T.; Li, X.; Zheng, L.; Hu, J.; Zhang, Y.; Xing, Y.; Xi, T. MALAT1 induced migration and invasion of human breast cancer cells by competitively binding miR-1 with cdc42. Biochem. Biophys. Res. Commun., 2016, 472(1), 262-269.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.102] [PMID: 26926567]
[52]
Jin, C.; Yan, B.; Lu, Q.; Lin, Y.; Ma, L. Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumour Biol., 2016, 37(6), 7383-7394.
[http://dx.doi.org/10.1007/s13277-015-4605-6] [PMID: 26676637]
[53]
Zhang, X.; He, X.; Liu, Y.; Zhang, H.; Chen, H.; Guo, S.; Liang, Y. MiR-101-3p inhibits the growth and metastasis of non-small cell lung cancer through blocking PI3K/AKT signal pathway by targeting MALAT-1. Biomed. Pharmacother., 2017, 93, 1065-1073.
[http://dx.doi.org/10.1016/j.biopha.2017.07.005] [PMID: 28738500]
[54]
Li, Q.; Dai, Z.; Xia, C.; Jin, L.; Chen, X. Suppression of long non- coding RNA MALAT1 inhibits survival and metastasis of esophagus cancer cells by sponging miR-1-3p/CORO1C/TPM3 axis. Mol. Cell. Biochem., 2020, 470(1-2), 165-174.
[http://dx.doi.org/10.1007/s11010-020-03759-x] [PMID: 32468237]
[55]
Fan, L.; Huang, X.; Chen, J.; Zhang, K.; Gu, Y.H.; Sun, J.; Cui, S.Y. Long Noncoding RNA MALAT1 Contributes to Sorafenib Resistance by Targeting miR-140-5p/Aurora-A Signaling in Hepatocellular Carcinoma. Mol. Cancer Ther., 2020, 19(5), 1197-1209.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0203] [PMID: 32220970]
[56]
Li, X.; Zhao, J.; Zhang, H.; Cai, J. Silencing of LncRNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 Inhibits the Proliferation and Promotes the Apoptosis of Gastric Cancer Cells Through Regulating microRNA-22-3p-Mediated ErbB3. OncoTargets Ther., 2020, 13, 559-571.
[http://dx.doi.org/10.2147/OTT.S222375] [PMID: 32021298]
[57]
YiRen, H.; YingCong, Y.; Sunwu, Y.; Keqin, L.; Xiaochun, T.; Senrui, C.; Ende, C.; XiZhou, L.; Yanfan, C. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol. Cancer, 2017, 16(1), 174.
[http://dx.doi.org/10.1186/s12943-017-0743-3] [PMID: 29162158]
[58]
Li, P.; Zhang, X.; Wang, H.; Wang, L.; Liu, T.; Du, L.; Yang, Y.; Wang, C. MALAT1 Is Associated with Poor Response to Oxaliplatin-Based Chemotherapy in Colorectal Cancer Patients and Promotes Chemoresistance through EZH2. Mol. Cancer Ther., 2017, 16(4), 739-751.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0591] [PMID: 28069878]
[59]
Chen, W.; Xu, X.K.; Li, J.L.; Kong, K.K.; Li, H.; Chen, C.; He, J.; Wang, F.; Li, P.; Ge, X.S.; Li, F.C. MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression. Oncotarget, 2017, 8(14), 22783-22799.
[http://dx.doi.org/10.18632/oncotarget.15199] [PMID: 28187000]
[60]
Wang, R.; Sun, Y.; Li, L.; Niu, Y.; Lin, W.; Lin, C.; Antonarakis, E.S.; Luo, J.; Yeh, S.; Chang, C. Preclinical Study using Malat1 Small Interfering RNA or Androgen Receptor Splicing Variant 7 Degradation Enhancer ASC-J9® to Suppress Enzalutamide-resistant Prostate Cancer Progression. Eur. Urol., 2017, 72(5), 835-844.
[http://dx.doi.org/10.1016/j.eururo.2017.04.005] [PMID: 28528814]
[61]
Yuan, P.; Cao, W.; Zang, Q.; Li, G.; Guo, X.; Fan, J. The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy. Biochem. Biophys. Res. Commun., 2016, 478(3), 1067-1073.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.065] [PMID: 27524242]
[62]
Xiong, Y.; Wang, J.; Zhu, H.; Liu, L.; Jiang, Y. Chronic oxymatrine treatment induces resistance and epithelial‑mesenchymal transition through targeting the long non-coding RNA MALAT1 in colorectal cancer cells. Oncol. Rep., 2018, 39(3), 967-976.
[http://dx.doi.org/10.3892/or.2018.6204] [PMID: 29328404]
[63]
Li, Z.; Zhou, Y.; Tu, B.; Bu, Y.; Liu, A.; Kong, J. Long noncoding RNA MALAT1 affects the efficacy of radiotherapy for esophageal squamous cell carcinoma by regulating Cks1 expression. J. Oral Pathol. Med., 2017, 46(8), 583-590.
[http://dx.doi.org/10.1111/jop.12538] [PMID: 27935117]
[64]
Zhao, Z.; Chen, C.; Liu, Y.; Wu, C. 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level. Biochem. Biophys. Res. Commun., 2014, 445(2), 388-393.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.006] [PMID: 24525122]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy