Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Quinazoline-Chalcone and Quinazolinone-Chalcone Hybrids: A Promising Combination for Biological Activity

Author(s): Eduardo Bustos Mass, Gilmar Vieira Duarte and Dennis Russowsky*

Volume 21, Issue 2, 2021

Published on: 30 July, 2020

Page: [186 - 203] Pages: 18

DOI: 10.2174/1389557520666200730160325

Price: $65

Abstract

Quinazoline and/or chalcones derivatives are important targets in several areas of chemical sciences, mainly, in the medicinal chemistry and pharmaceutical research. The purpose of this review was to systematize the information available in the literature, including patents, regarding the benefits, exerted by the combination of these two pharmacophores into single molecules. These hybrid compounds can exhibit different biological activities, causing a synergistic or a new effect, compared to the individuals. The variability of biological activities includes anticancer, anti-Alzheimer, antiviral and antimicrobial activities, among others. Additionally, synthetic methodologies to prepare the different molecular architectures were discussed based on their similarities. The increasing number of publications indicates the importance of molecular hybridization in the field of drug discovery.

Keywords: Quinazoline, quinazolinone, chalcone, hybrids, biological activity, anticancer, antimicrobial, anti-inflammatory.

Graphical Abstract
[1]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305.
[http://dx.doi.org/10.1517/17460441.2016.1135125] [PMID: 26727036]
[2]
Bansal, Y.; Silakari, O. Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.060] [PMID: 24565571]
[3]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[4]
Morphy, R.; Kay, C.; Rankovic, Z.; Morphy, R. From magic bullets to designed multiple ligands. Drug Discov. Today, 2004, 9(15), 641-651.
[http://dx.doi.org/10.1016/S1359-6446(04)03163-0] [PMID: 15279847]
[5]
Shagufta; Ahmad, I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. MedChemComm, 2017, 8(5), 871-885.
[http://dx.doi.org/10.1039/C7MD00097A] [PMID: 30108803]
[6]
Ajani, O.O.; Aderohunmu, D.V.; Umeokoro, E.N.; Olomieja, A.O. Quinazoline pharmacophore in therapeutic medicine. Bangladesh J. Pharmacol., 2016, 11(3), 716-733.
[http://dx.doi.org/10.3329/bjp.v11i3.25731]
[7]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A. Quinazoline and quinazolinone as important medicinal scaffolds: A comparative patent review (2011-2016). Expert Opin. Ther. Pat., 2018, 28(4), 281-297.
[8]
Chand, M.; Gupta, A.; Jain, S.C. Antimicrobial activities of quinazolinone and their derivatives: A review. Heterocycl. Lett., 2017, 7(1), 201-214.
[9]
Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci., 2016, 11(1), 1-14.
[PMID: 27051427]
[10]
Ugale, V.G.; Bari, S.B. Quinazolines: New horizons in anticonvulsant therapy. Eur. J. Med. Chem., 2014, 80, 447-501.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.072] [PMID: 24813877]
[11]
Rahman, M.U.; Jeyabalan, G.; Saraswat, P.; Parveen, G.; Khan, S.; Yar, M.S. Quinazolines and anticancer activity: A current perspectives. Synth. Commun., 2017, 47(5), 379-408.
[http://dx.doi.org/10.1080/00397911.2016.1269926]
[12]
Ismail, R.S.M.; Ismail, N.S.M.; Abuserii, S.; Abou El Ella, D.A. recent advances in 4-aminoquinazoline based scaffold derivatives targeting egfr kinases as anticancer agents. Futur. J. Pharm. Sci., 2016, 2(1), 9-19.
[http://dx.doi.org/10.1016/j.fjps.2016.02.001]
[13]
Ravez, S.; Castillo-Aguilera, O.; Depreux, P.; Goossens, L. Quinazoline derivatives as anticancer drugs: A patent review (2011 – present). Expert Opin. Ther. Pat., 2015, 25(7), 789-804.
[14]
Bilbro, J.; Mart, M.; Kyprianou, N. Therapeutic value of quinazoline-based compounds in prostate cancer. Anticancer Res., 2013, 33(11), 4695-4700.
[PMID: 24222103]
[15]
Amin, K.M.; Kamel, M.M.; Anwar, M.M.; Khedr, M.; Syam, Y.M. Synthesis, biological evaluation and molecular docking of novel series of spiro [(2H,3H) quinazoline-2,1′- cyclohexan]-4(1H)- one derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(6), 2117-2131.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.078] [PMID: 20137837]
[16]
Winter, E.; Locatelli, C.; Di Pietro, A.; Creczynski-Pasa, T.B. Recent trends of chalcones potentialities as antiproliferative and antiresistance agents. Anticancer. Agents Med. Chem., 2015, 15(5), 592-604.
[http://dx.doi.org/10.2174/1871520615666150101130800 PMID: 25553434]
[17]
León-González, A.J.; Acero, N.; Muñoz-Mingarro, D.; Navarro, I.; Martín-Cordero, C. Chalcones as promising lead compounds on cancer therapy. Curr. Med. Chem., 2015, 22(30), 3407-3425.
[http://dx.doi.org/10.2174/0929867322666150729114829 PMID: 26219392]
[18]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[19]
Jandial, D.D.; Blair, C.A.; Zhang, S.; Krill, L.S.; Zhang, Y-B.; Zi, X. Molecular targeted approaches to cancer therapy and prevention using chalcones. Curr. Cancer Drug Targets, 2014, 14(2), 181-200.
[http://dx.doi.org/10.2174/1568009614666140122160515 PMID: 24467530]
[20]
Karthikeyan, C.; Moorthy, N.S.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Recent Patents Anticancer Drug Discov., 2015, 10(1), 97-115.
[http://dx.doi.org/10.2174/1574892809666140819153902 PMID: 25138130]
[21]
Zhang, X.; Rakesh, K.P.; Bukhari, S.N.A.; Balakrishna, M.; Manukumar, H.M.; Qin, H.L. Multi-targetable chalcone analogs to treat deadly Alzheimer’s disease: Current view and upcoming advice. Bioorg. Chem., 2018, 80(June), 86-93.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.009] [PMID: 29890362]
[22]
Tajuddeen, N.; Isah, M.B.; Suleiman, M.A.; van Heerden, F.R.; Ibrahim, M.A. The chemotherapeutic potential of chalcones against leishmaniases: A review. Int. J. Antimicrob. Agents, 2018, 51(3), 311-318.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.06.010] [PMID: 28668673]
[23]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[24]
Zhou, B.; Xing, C. Diverse molecular targets for chalcones with varied bioactivities. Med. Chem. (Los Angeles), 2015, 5(8), 388-404.
[http://dx.doi.org/10.4172/2161-0444.1000291] [PMID: 26798565]
[25]
Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone derivatives: promising starting points for drug design. Molecules, 2017, 22(8), 1210-1235.
[http://dx.doi.org/10.3390/molecules22081210] [PMID: 28757583]
[26]
Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: A patent review (from june 2011 - 2014). Expert Opin. Ther. Pat., 2015, 25(3), 351-366.
[27]
Tyagi, V.; Khan, S.; Shivahare, R.; Srivastava, K.; Gupta, S.; Kidwai, S.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. A natural product inspired hybrid approach towards the synthesis of novel pentamidine based scaffolds as potential anti-parasitic agents. Bioorg. Med. Chem. Lett., 2013, 23(1), 291-296.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.101] [PMID: 23182089]
[28]
Zhao, L.; Mao, L.; Hong, G.; Yang, X.; Liu, T. Design, synthesis and anticancer activity of matrine-1H-1,2,3-triazole-chalcone conjugates. Bioorg. Med. Chem. Lett., 2015, 25(12), 2540-2544.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.051] [PMID: 25959813]
[29]
Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2016, 113, 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[30]
Floyd, M.B., Jr; Nittoli, T.; Wissner, A.; Dushin, R.G.; Nilakantan, R.; Ingalls, R.; Fraser, H.L.; Johnson, B.D. Quinone substituted quinazoline and quinoline kinase inhibitors US 2007/0299092A1,. 2007.
[31]
Kraege, S.; Stefan, K.; Juvale, K.; Ross, T.; Willmes, T.; Wiese, M. The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of breast cancer resistance protein (BCRP/ABCG2). Eur. J. Med. Chem., 2016, 117, 212-229.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.067] [PMID: 27100033]
[32]
Sadek, M.M.; Serrya, R.A.; Kafafy, A.H.N.; Ahmed, M.; Wang, F.; Abouzid, K.A.M. Discovery of new HER2/EGFR dual kinase inhibitors based on the anilinoquinazoline scaffold as potential anti-cancer agents. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 215-222.
[http://dx.doi.org/10.3109/14756366.2013.765417 PMID: 23402383]
[33]
Ahmed, M.; Sadek, M.M.; Serrya, R.A.; Kafafy, A.H.N.; Abouzid, K.A.; Wang, F. Assessment of new anti-HER2 ligands using combined docking, QM/MM scoring and MD simulation. J. Mol. Graph. Model., 2013, 40, 91-98.
[http://dx.doi.org/10.1016/j.jmgm.2012.12.001] [PMID: 23353584]
[34]
Ahmed, M.; Sadek, M.M.; Abouzid, K.A.; Wang, F. In silico design: Extended molecular dynamic simulations of a new series of dually acting inhibitors against EGFR and HER2. J. Mol. Graph. Model., 2013, 44, 220-231.
[http://dx.doi.org/10.1016/j.jmgm.2013.06.004] [PMID: 23911931]
[35]
Wasfy, A.A.F.; Mohmed, N.A.; Salman, A.A. Synthesis and anti-cancer properties of novel quinazoline derivatives. Int. J. Res. Pharm. Chem., 2015, 5(1), 34-40.
[36]
Li, N.; Xin, J.; Meng, Y.; Li, E.; Ma, Q.; Bao, C.; Yang, P.; Song, P.; Cui, F.; Zhao, P.; Li, W.; Ke, Y.; Zhang, Q.; Liu, H. Synthesis and antitumor evaluation of 2,4-substituted quinazoline derivatives containing benzimidazole. Youji Huaxue, 2018, 38, 2673-2679.
[http://dx.doi.org/10.6023/cjoc2018004016]
[37]
Madhavi, S.; Sreenivasulu, R.; Yazala, J.P.; Raju, R.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm. J., 2017, 25(2), 275-279.
[http://dx.doi.org/10.1016/j.jsps.2016.06.005] [PMID: 28344479]
[38]
Thiriveedhi, A.; Nadh, R.V.; Srinivasu, N.; Kaushal, K. Novel Hybrid molecules of quinazoline chalcone derivatives: Synthesis and study of in vitro cytotoxic activities. Lett. Drug Des. Discov., 2018, 15(7), 757-765.
[http://dx.doi.org/10.2174/1570180814666171013162148]
[39]
Hu, D.; Wan, Z.; Song, B.; Xue, W.; Jin, L.; Li, X.; Xie, D.; Zhang, W. W. Chalcone-quinazolinyl thioether derivatives with plant virus resistance, and application in preparation of reagents for resisting tobacco mosaic virus, cucumber mosaic virus and southern rice black-streaked dwarf vírus. CN104592132B,. 2017.
[40]
Wan, Z.; Hu, D.; Li, P.; Xie, D.; Gan, X. Synthesis, antiviral bioactivity of novel 4-thioquinazoline derivatives containing chalcone moiety. Molecules, 2015, 20(7), 11861-11874.
[http://dx.doi.org/10.3390/molecules200711861] [PMID: 26132908]
[41]
Shah, D.R.; Lakum, H.P.; Chikhalia, K.H. Synthesis and in vitro antimicrobial evaluation of piperazine substituted quinazoline-based thiourea/thiazolidinone/chalcone hybrids. Bioorg. Khim., 2015, 41(2), 235-248.
[http://dx.doi.org/10.7868/S013234231502013X PMID: 26165131]
[42]
Wang, M.; Qin, H-L.; Leng, J. Ameeduzzafar; Amjad, M.W.; Raja, M.A.G.; Hussain, M.A.; Bukhari, S.N.A. Synthesis and biological evaluation of new tetramethylpyrazine-based chalcone derivatives as potential anti-Alzheimer agents. Chem. Biol. Drug Des., 2018, 92(5), 1859-1866.
[http://dx.doi.org/10.1111/cbdd.13355] [PMID: 29923315]
[43]
Lauber, B.S.; Hardegger, L.A.; Asraful, A.K.; Lund, B.A.; Dumele, O.; Harder, M.; Kuhn, B.; Engh, R.A.; Diederich, F. Addressing the glycine-rich loop of protein kinases by a multi-facetted interaction network: Inhibition of PKA and a PKB mimic. Chemistry, 2016, 22(1), 211-221.
[http://dx.doi.org/10.1002/chem.201503552] [PMID: 26578105]
[44]
Song, B.; Xie, Y.; Hu, D.; Xue, W.; Wu, F.; Wan, Z.; Li, X.; Du, X. X. Quinazolinyl-chalcone derivatives with high anti-plant virus activity and preparation method and application thereof in preparation of anti-plant virus pesticides. CN103755646B,. 2014.
[45]
Xie, D.; Xie, Y.; Ding, Y.; Wu, J.; Hu, D. Synthesis of chiral chalcone derivatives catalyzed by the chiral cinchona alkaloid squaramide. Molecules, 2014, 19(12), 19491-19500.
[http://dx.doi.org/10.3390/molecules191219491] [PMID: 25429568]
[46]
Hu, D.; Pan, P.; Song, B.; Zhang, G.; Xue, W.; Zhang, J.; Li, T.; Wu, S. Chalcone phosphonate derivative containing quinazoline and preparation method and application of chalcone phosphonate derivative CN105777807B, 2016.
[47]
Zhang, G.P.; Pan, J.K.; Zhang, J.; Wu, Z.X.; Liu, D.Y.; Zhao, L. Design, synthesis, antiviral activities of novel phosphonate derivatives containing quinazoline based on chalcone motif. J. Heterocycl. Chem., 2017, 54(4), 2548-2555.
[http://dx.doi.org/10.1002/jhet.2849]
[48]
Rao, G.S.; Kalaichelvan, V.K.; Rao, G.S. Synthesis and antibacterial activity of 3-phenyl substituted quinazolinone derivatives via chalcones. Int. J. Res. Pharm. Chem., 2015, 5(3), 470-474.
[49]
Rao, G.S.; Kalaichelvan, V.K.; Rao, G.S. Synthesis and antidepressant activity of certain chalcones and chalcone based simple pyrazolines. J. Pharm. Sci. & Res., 2015, 7(9), 676-680.
[50]
Rao, G.S.; Kalaichelvan, V.K.; Rao, G.S. Synthesis and anticonvulsant activity of certain chalcone based pyrazoline compounds. Int. J. Res. Pharm. Chem., 2015, 5(8), 179-185.
[51]
Ahmed, M.F.; Jaiash, D. Design, synthesis and biological evaluation of new quinazoline derivatives as antimicrobial and anti-fungal agents. J. Chem. Pharm. Res., 2015, 7(12), 346-353.
[52]
El-Shenawy, A.I. Synthesis and in vitro antibacterial evaluation of some novel annulated quinazolinone derivatives. Russ. J. Gen. Chem., 2018, 88(8), 1712-1719.
[http://dx.doi.org/10.1134/S107036321808025X]
[53]
Lakshmi, K.; Rao, N.R.; Basaveswararao, M.V. Synthesis, antimicrobial and anthelmintic evaluation of novel quinazolinonyl chalcones. Rasayan J. Chem., 2014, 7(1), 44-54.
[54]
Prajapati, N.K.; Jani, G.R. synthesis, characterization and antimicrobial activity of 3-4-[3-(substitutedphenyl)prop-2-enoyl]phenyl-6-iodo-2-thioxo-2,3-dihydroquinazolin-4-one derivatives: I. Int. J. Adv. Pharm. Biol. Chem., 2014, 3(3), 534-537.
[55]
Ahmed, M.F.; Belal, A. Design, synthesis, and molecular docking studies of 2-(furan-2-yl)quinazolin-4-one derivatives as potential antiproliferative agents. Arch. Pharm. (Weinheim), 2015, 348(7), 487-497.
[http://dx.doi.org/10.1002/ardp.201400468] [PMID: 25921702]
[56]
Wani, Z.A.; Pathania, A.S.; Mahajan, G.; Behl, A.; Mintoo, A.J.; Guru, S.K.; Viswanath, A.; Malik, F.; Kamal, A.; Mondhe, D.M. Anticancer activity of a novel quinazolinone-chalcone derivative through cell cycle arrest in pancreatic cancer cell line. J. Solid Tumors, 2015, 5(2), 73-85.
[http://dx.doi.org/10.5430/jst.v5n2p73]
[57]
Wani, Z.A.; Guru, S.K.; Rao, A.V.S.; Sharma, S.; Mahajan, G.; Behl, A.; Kumar, A.; Sharma, P.R.; Kamal, A.; Bhushan, S.; Mondhe, D.M. A novel quinazolinone chalcone derivative induces mitochondrial dependent apoptosis and inhibits PI3K/Akt/mTOR signaling pathway in human colon cancer HCT-116 cells. Food Chem. Toxicol., 2016, 87, 1-11.
[http://dx.doi.org/10.1016/j.fct.2015.11.016] [PMID: 26615871]
[58]
Cao, S.; Xu, X.; Liao, J.; Ding, P.; Ma, L.; Zhang, J.; Tang, X. Preparation of 2-methyl-4-oxoquinazolin-6-yl containing chalcone analogs as antitumor agents CN 104803927A,. 2015.
[59]
Han, X.; Peng, B.; Xiao, B-B.; Sheng-, Li Cao,; Yang, C-R.; Wang, W-Z.; Wang, F-C.; Li, H-Y.; Yuan, X-L.; Shi, R.; Liao, J.; Wang, H.; Li ;, J.; Xu, X. Synthesis and evaluation of chalcone analogues containing a 4-oxoquinazolin-2-yl group as potential anti-tumor agents. Eur. J. Med. Chem., 2019, 162, 586-601.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.034] [PMID: 30472605]
[60]
Huang, Z.; Tan, J.; Wang, Y.; Wang, C. Process for preparation and application of quinazolinone-α,β-unsaturated ketone conjugate derivative CN 107522700A. 2017.
[61]
Eweas, A.F.; El-Nezhawy, A.O.H.; Baiuomy, A.R.; Awad, M.M. Design, synthesis, anti-inflammatory, analgesic screening, and molecular docking of some novel 2-pyridyl(3H)-quinazolin-4-one derivatives. Med. Chem. Res., 2013, 22, 1011-1020.
[http://dx.doi.org/10.1007/s00044-012-0097-8]
[62]
El-Sabbagh, O.I.; Ibrahim, S.M.; Baraka, M.M.; Kothayer, H. Synthesis of new 2,3-dihydroquinazolin-4(1H)-one derivatives for analgesic and anti-inflammatory evaluation. Arch. Pharm. (Weinheim), 2010, 343(5), 274-281.
[http://dx.doi.org/10.1002/ardp.200900220] [PMID: 20232372]
[63]
Banerjee, M.; Behera, C.C.; Pradhan, G.C.; Azam, M.A.; Sahu, S.K. Synthesis and biological evaluation of some anthranilic acid and 2-phenylquinazoline-4(3H)-one analogues. S. Afr. J. Chem., 2009, 62, 134-142.
[64]
Ahmed, M.F.; Youns, M. Synthesis and biological evaluation of a novel series of 6,8-dibromo-4(3H)quinazolinone derivatives as anticancer agents. Arch. Pharm. (Weinheim), 2013, 346(8), 610-617.
[http://dx.doi.org/10.1002/ardp.201300158] [PMID: 23873839]
[65]
Habib, O.M.O.; Hassan, H.M.; El-Mekabaty, A. Novel quinazolinone derivatives: Synthesis and antimicrobial activity. Med. Chem. Res., 2013, 22, 507-519.
[http://dx.doi.org/10.1007/s00044-012-0079-x]
[66]
Saravanan, G.; Alagarsamy, V.; Kumar, P.D. Synthesis and pharmacological investigations of novel 2-phenylquinazolin-4(3H)-one derivatives. Med. Chem. Res., 2015, 24, 408-422.
[http://dx.doi.org/10.1007/s00044-014-1134-6]
[67]
Shah, R.M.; Prajapati, N.K.; Patel, P.S. Synthesis, spectral studies and biological activities of quinazolin-4-one based some new pyrazolines derivatives. IJPRS, 2012, 1(2), 377-381.
[68]
Dangi, R.R.; Chundawat, N.S.; Talesara, G.L. A convenient synthesis of ethoxyphthalimide derivatized quinazoline assembled pyrimidine and pyridine via common intermediate chalcone and their antimicrobial agents. WJPR, 2014, 4(1), 1400-1413.
[69]
Palewar, S.; Dangi, R.R. A convenient synthesis of some quinazoline assembled pyrazole derivatives via common intermediate chalcones. Int. J. Pharm. Pharm. Sci. Res., 2014, 4(4), 88-90.
[70]
Prajapati, N.K. Synthesis, characterization and spectral studies of new pyrimidine compound. J. Chem. Pharm. Res., 2012, 4(5), 2574-2576.
[71]
Prajapati, N.K.; Shah, R.M.; Patel, P.S. Synthesis, characterization and antifungal activity of 3-4-[6-(substituted phenyl)-2-thioxo-1,2,5,6-tetrahydropyrimidin-4-yl]phenyl-6-iodo-2-thioxo-2,3-dihydroquinazolin-4-one derivatives. WJPR, 2016, 5(12), 1478-1484.
[72]
Sharma, M.; Chauhan, K.; Shivahare, R.; Vishwakarma, P.; Suthar, M.K.; Sharma, A.; Gupta, S.; Saxena, J.K.; Lal, J.; Chandra, P.; Kumar, B.; Chauhan, P.M.S. Discovery of a new class of natural product-inspired quinazolinone hybrid as potent antileishmanial agents. J. Med. Chem., 2013, 56(11), 4374-4392.
[http://dx.doi.org/10.1021/jm400053v] [PMID: 23611626]
[73]
Chen, M.; Li, P.; Hu, D.; Zeng, S.; Li, T.; Jin, L.; Xue, W.; Song, B. Synthesis, antiviral activity, 3D-QSAR, and interaction mechanisms study of novel malonate derivatives containing quinazolin-4(3H)-one moiety. Bioorg. Med. Chem. Lett., 2016, 26(1), 168-173.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.006] [PMID: 26598463]
[74]
Shah, T.J.; Sudani, B.R.; Desai, V.A. Synthesis, characterization and pharmacological studies of chalcone and quinazolines containing 2, 4, 6-trisubstituted s-triazine derivatives. J. Chem. & Cheml. Sci., 2016, 6(5), 493-503.
[75]
El-Zohry, M.F.; Al-Thebeiti, M.S.; Masaret, G.S. Synthesis and some reactions of quinolino[2,l-b]-quinazoline derivatives. Heterocycl. Commun., 2004, 10(1), 89-92.
[http://dx.doi.org/10.1515/HC.2004.10.1.89]
[76]
El-Badry, Y.A.; El-Farargyb, A.F.; Eilbracht, P. Tandem Hydroformylation/Reductive Amination of 3-Allyl-2-methylquinazolin-4(3H)-one. Helv. Chim. Acta, 2013, 96, 1782-1792.
[http://dx.doi.org/10.1002/hlca.201200237]
[77]
Kornicka, A.; Sączewski, F.; Gdaniec, M. Synthesis, molecular structure and reactivity of 5-methylidene-1,2,3,5-tetrahydroi-midazo[2,1-b]quinazolines. Molecules, 2004, 9(3), 86-101.
[http://dx.doi.org/10.3390/90300086] [PMID: 18007413]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy