Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Pistachio Green Hull Extract Induces Apoptosis through Multiple Signaling Pathways by Causing Oxidative Stress on Colon Cancer Cells

Author(s): İsmail Koyuncu*, Ataman Gönel, Ebru Temiz, Eyyüp Karaoğul and Zafer Uyar

Volume 21, Issue 6, 2021

Published on: 30 July, 2020

Page: [725 - 737] Pages: 13

DOI: 10.2174/1871520620999200730155524

Price: $65

Abstract

Background: Pistachio is considered to be one of the fifty foods with the highest antioxidant effect. However, the anticancer effect mechanisms of this plant extracts are unknown.

Objective: The aim of this study was to investigate the anticancer effect of different extracts from the green hull of pistachio.

Methods: The cytotoxic effects of different solvent extracts on cancer and normal cells were examined by cell viability assay and flow cytometric analysis. The levels of the apoptotic gene and protein were investigated by Western Blot and ELISA, and qPCR. The intracellular free radical exchange was determined by oxidative and nitric oxide analyses. DNA damage level was measured by the 8-OHdG test. Phenolic and free fatty acid components were examined by LC-MS/MS and GC-MS, respectively.

Results: It was determined that the n-hexane fraction showed a higher cytotoxic effect on cancer cells. Oxidative and cell cycle analyses indicated that the n-hexane fraction arrested cell cycle of HT-29 at the sub-G1 phase by increasing DNA damage through oxidative stress. In addition, gene expression analysis of the HT-29 treated with the n-hexane fraction indicated that apoptotic and autophagic gene expressions were significantly upregulated. LC-MS/MS analysis of the n-hexane fraction revealed the presence of 15 phenolic compounds, containing mainly gallic acid and catechin hydrate, and GC-MS analysis determined the presence of the following fatty acids: 9-octadecenoic acid, 9,12-octadecadienoic acid and hexadecenoic acid.

Conclusion: Based on these grounds, we suggest that the n-hexane fraction of pistachio green hull damages DNA, arrests the cell cycle at the G1 subphase, and induces apoptosis through oxidative pathways in colon cancer.

Keywords: Apoptosis, cytotoxicity, colorectal cancer, anti-cancer agent, oxidative stress, phenolic compounds.

Graphical Abstract
[1]
Greenwell, M.; Rahman, P.K. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[PMID: 26594645]
[2]
Khlifi, D.; Sghaier, R.M.; Amouri, S.; Laouini, D.; Hamdi, M.; Bouajila, J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol., 2013, 55, 202-208.
[http://dx.doi.org/10.1016/j.fct.2013.01.004] [PMID: 23333573]
[3]
Shah, U.; Shah, R.; Acharya, S.; Acharya, N. Novel anticancer agents from plant sources. Chin. J. Nat. Med., 2013, 11(1), 16-23.
[http://dx.doi.org/10.3724/SP.J.1009.2013.00016]
[4]
Sigstedt, S.C.; Hooten, C.J.; Callewaert, M.C.; Jenkins, A.R.; Romero, A.E.; Pullin, M.J.; Kornienko, A.; Lowrey, T.K.; Slambrouck, S.V.; Steelant, W.F. Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. Int. J. Oncol., 2008, 32(5), 1085-1090.
[http://dx.doi.org/10.3892/ijo.32.5.1085] [PMID: 18425335]
[5]
Pan, S.-Y.; Zhou, S.-F.; Gao, S.-H.; Yu, Z.-L.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ma, D.-L.; Han, Y.-F.; Fong, W.-F. New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evid.-Based Complement. Altern. Med., 2013, 2013 Article ID 627375
[6]
Shukla, S.; Meeran, S.M.; Katiyar, S.K. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett., 2014, 355(1), 9-17.
[http://dx.doi.org/10.1016/j.canlet.2014.09.017] [PMID: 25236912]
[7]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[8]
Garavand, F.; Madadlou, A.; Moini, S. Determination of phenolic profile and antioxidant activity of pistachio hull using HPLC-DAD-ESI-MS as affected by ultrasound and microwave. Int. J. Food Prop., 2015, 20, 2912.
[9]
Tomaino, A.; Martorana, M.; Arcoraci, T.; Monteleone, D.; Giovinazzo, C.; Saija, A. Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie, 2010, 92(9), 1115-1122.
[http://dx.doi.org/10.1016/j.biochi.2010.03.027] [PMID: 20388531]
[10]
Rajaei, A.; Barzegar, M.; Mobarez, A.M.; Sahari, M.A.; Esfahani, Z.H. Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachia vera) green hull extract. Food Chem. Toxicol., 2010, 48(1), 107-112.
[http://dx.doi.org/10.1016/j.fct.2009.09.023] [PMID: 19781589]
[11]
Koyuncu, I.; Kocyigit, A.; Dikme, R.; Selek, S. The Phytotherapeutic Properties of Urfa Pistachio Nuts (Pistacia vera L.). Bezmialem Sci., 2018, 6(3), 200-205.
[12]
Seifaddinipour, M.; Farghadani, R.; Namvar, F.; Mohamad, J.; Abdul Kadir, H. Cytotoxic effects and anti-angiogenesis potential of pistachio (Pistacia vera L.) hulls against MCF-7 human breast cancer cells. Molecules, 2018, 23(1), 110.
[http://dx.doi.org/10.3390/molecules23010110] [PMID: 29303970]
[13]
Kennedy-Hagan, K.; Painter, J.E.; Honselman, C.; Halvorson, A.; Rhodes, K.; Skwir, K. The effect of pistachio shells as a visual cue in reducing caloric consumption. Appetite, 2011, 57(2), 418-420.
[http://dx.doi.org/10.1016/j.appet.2011.06.003] [PMID: 21704666]
[14]
Balan, K.V.; Prince, J.; Han, Z.; Dimas, K.; Cladaras, M.; Wyche, J.H.; Sitaras, N.M.; Pantazis, P. Antiproliferative activity and induction of apoptosis in human colon cancer cells treated in vitro with constituents of a product derived from Pistacia lentiscus L. var. chia. Phytomedicine, 2007, 14(4), 263-272.
[http://dx.doi.org/10.1016/j.phymed.2006.03.009] [PMID: 16713222]
[15]
Dimas, A.S.; Deutsch, S.; Stranger, B.E.; Montgomery, S.B.; Borel, C.; Attar-Cohen, H.; Ingle, C.; Beazley, C.; Gutierrez Arcelus, M.; Sekowska, M.; Gagnebin, M.; Nisbett, J.; Deloukas, P.; Dermitzakis, E.T.; Antonarakis, S.E. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science, 2009, 325(5945), 1246-1250.
[http://dx.doi.org/10.1126/science.1174148] [PMID: 19644074]
[16]
He, L.; He, X.; Lim, L.P.; de Stanchina, E.; Xuan, Z.; Liang, Y.; Xue, W.; Zender, L.; Magnus, J.; Ridzon, D.; Jackson, A.L.; Linsley, P.S.; Chen, C.; Lowe, S.W.; Cleary, M.A.; Hannon, G.J. A microRNA component of the p53 tumour suppressor network. Nature, 2007, 447(7148), 1130-1134.
[http://dx.doi.org/10.1038/nature05939] [PMID: 17554337]
[17]
Koochekpour, S.; Majumdar, S.; Azabdaftari, G.; Attwood, K.; Scioneaux, R.; Subramani, D.; Manhardt, C.; Lorusso, G.D.; Willard, S.S.; Thompson, H.; Shourideh, M.; Rezaei, K.; Sartor, O.; Mohler, J.L.; Vessella, R.L. Serum glutamate levels correlate with Gleason score and glutamate blockade decreases proliferation, migration, and invasion and induces apoptosis in prostate cancer cells. Clin. Cancer Res., 2012, 18(21), 5888-5901.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1308] [PMID: 23072969]
[18]
Li, L-C.; Shi, Y.; Reiland, T.L.; Sakagami, M.; Nicholson, K.; Byron, P.R. Methods and compositions for pulmonary administration of a TNFa inhibitor. US Patents 20,090,110,679A, 2009.
[19]
Martorana, M.; Arcoraci, T.; Rizza, L.; Cristani, M.; Bonina, F.P.; Saija, A.; Trombetta, D.; Tomaino, A. In vitro antioxidant and in vivo photoprotective effect of pistachio (Pistacia vera L., variety Bronte) seed and skin extracts. Fitoterapia, 2013, 85, 41-48.
[http://dx.doi.org/10.1016/j.fitote.2012.12.032] [PMID: 23313777]
[20]
Almehdar, H.; Abdallah, H.M.; Osman, A-M.M.; Abdel-Sattar, E.A. In vitro cytotoxic screening of selected Saudi medicinal plants. J. Nat. Med., 2012, 66(2), 406-412.
[http://dx.doi.org/10.1007/s11418-011-0589-8] [PMID: 21953271]
[21]
Fathalizadeh, J.; Bagheri, V.; Khorramdelazad, H.; Kazemi Arababadi, M.; Jafarzadeh, A.; Mirzaei, M.R.; Shamsizadeh, A.; Hajizadeh, M.R. Induction of apoptosis by pistachio (Pistacia vera L.) hull extract and its molecular mechanisms of action in human hepatoma cell line HepG2. Cell. Mol. Biol., 2015, 61(7), 128-134.
[PMID: 26638894]
[22]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014 Artilce ID 150845
[http://dx.doi.org/10.1155/2014/150845]
[23]
Khatamian, N.; Homayouni Tabrizi, M.; Ardalan, P.; Yadamani, S.; Darchini Maragheh, A. Synthesis of Carum carvi essential oil nanoemulsion, the cytotoxic effect, and expression of caspase 3 gene. J. Food Biochem., 2019, 43(8)e12956
[http://dx.doi.org/10.1111/jfbc.12956] [PMID: 31368576]
[24]
Ma, J.; Ni, X.; Gao, Y.; Huang, K.; Wang, Y.; Liu, J.; Gong, G. Semicarbazone derivatives bearing phenyl moiety: Synthesis, anticancer activity, cell cycle, apoptosis-inducing and metabolic stability study. Chem. Pharm. Bull. (Tokyo), 2019, 67(4), 351-360.
[http://dx.doi.org/10.1248/cpb.c18-00738] [PMID: 30674756]
[25]
Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 2005, 38(12), 1103-1111.
[http://dx.doi.org/10.1016/j.clinbiochem.2005.08.008] [PMID: 16214125]
[26]
Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem., 2004, 37(4), 277-285.
[http://dx.doi.org/10.1016/j.clinbiochem.2003.11.015] [PMID: 15003729]
[27]
Kocyigit, A.; Koyuncu, I.; Taskin, A.; Dikilitas, M.; Bahadori, F.; Turkkan, B. Antigenotoxic and antioxidant potentials of newly derivatized compound naringenin-oxime relative to naringenin on human mononuclear cells. Drug Chem. Toxicol., 2016, 39(1), 66-73.
[http://dx.doi.org/10.3109/01480545.2015.1026973] [PMID: 25826180]
[28]
Sun, X.; Wang, S.; Gai, J.; Guan, J.; Li, J.; Li, Y.; Zhao, J.; Zhao, C.; Fu, L.; Li, Q. SIRT5 promotes cisplatin resistance in ovarian cancer by suppressing DNA damage in a ROS-dependent manner via regulation of the Nrf2/HO-1 pathway. Front. Oncol., 2019, 9, 754.
[http://dx.doi.org/10.3389/fonc.2019.00754] [PMID: 31456942]
[29]
Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol., 2016, 37(9), 11553-11572.
[http://dx.doi.org/10.1007/s13277-016-5098-7] [PMID: 27260630]
[30]
Sak, K. Chemotherapy and dietary phytochemical agents. Chemother. Res. Practice, 2012, 2012 Artilce ID 282570
[http://dx.doi.org/10.1155/2012/282570]
[31]
Aung, T.N.; Qu, Z.; Kortschak, R.D.; Adelson, D.L. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int. J. Mol. Sci., 2017, 18(3), 656.
[http://dx.doi.org/10.3390/ijms18030656] [PMID: 28304343]
[32]
Davis, C.D. Nutritional interactions: Credentialing of molecular targets for cancer prevention. Exp. Biol. Med. (Maywood), 2007, 232(2), 176-183.
[PMID: 17259324]
[33]
Nicolson, G.L. Lipid replacement/antioxidant therapy as an adjunct supplement to reduce the adverse effects of cancer therapy and restore mitochondrial function. Pathol. Oncol. Res., 2005, 11(3), 139-144.
[http://dx.doi.org/10.1007/BF02893390] [PMID: 16195767]
[34]
Gentile, C.; Tesoriere, L.; Butera, D.; Fazzari, M.; Monastero, M.; Allegra, M.; Livrea, M.A. Antioxidant activity of Sicilian pistachio (Pistacia vera L. var. Bronte) nut extract and its bioactive components. J. Agric. Food Chem., 2007, 55(3), 643-648.
[http://dx.doi.org/10.1021/jf062533i] [PMID: 17263455]
[35]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[36]
Russell, L.H., Jr; Mazzio, E.; Badisa, R.B.; Zhu, Z-P.; Agharahimi, M.; Oriaku, E.T.; Goodman, C.B. Autoxidation of gallic acid induces ROS-dependent death in human prostate cancer LNCaP cells. Anticancer Res., 2012, 32(5), 1595-1602.
[PMID: 22593437]
[37]
Wang, R.; Ma, L.; Weng, D.; Yao, J.; Liu, X.; Jin, F. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol. Rep., 2016, 35(5), 3075-3083.
[http://dx.doi.org/10.3892/or.2016.4690] [PMID: 26987028]
[38]
Alshatwi, A.A. Catechin hydrate suppresses MCF-7 proliferation through TP53/Caspase-mediated apoptosis. J. Exp. Clin. Cancer Res., 2010, 29(1), 167.
[http://dx.doi.org/10.1186/1756-9966-29-167] [PMID: 21167021]
[39]
Yoo, Y-C.; Shin, B-H.; Hong, J-H.; Lee, J.; Chee, H-Y.; Song, K-S.; Lee, K-B. Isolation of fatty acids with anticancer activity from Protaetia brevitarsis larva. Arch. Pharm. Res., 2007, 30(3), 361-365.
[http://dx.doi.org/10.1007/BF02977619] [PMID: 17424944]
[40]
Ravi, L.; Krishnan, K. Cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J. Cell Biol., 2017, 12(1), 20-27.
[41]
Qi, G.; Liu, Z.; Fan, R.; Yin, Z.; Mi, Y.; Ren, B.; Liu, X. Athyrium multidentatum (Doll.) Ching extract induce apoptosis via mitochondrial dysfunction and oxidative stress in HepG2 cells. Sci. Rep., 2017, 7(1), 2275.
[http://dx.doi.org/10.1038/s41598-017-02573-8] [PMID: 28536473]
[42]
Bao, H.; Zhang, Q.; Zhu, Z.; Xu, H.; Ding, F.; Wang, M.; Du, S.; Du, Y.; Yan, Z. BHX, a novel pyrazoline derivative, inhibits breast cancer cell invasion by reversing the epithelial-mesenchymal transition and down-regulating Wnt/β-catenin signalling. Sci. Rep., 2017, 7(1), 9153.
[http://dx.doi.org/10.1038/s41598-017-09655-7] [PMID: 28831201]
[43]
Liu, Y.; Zhu, X. Endoplasmic reticulum-mitochondria tethering in neurodegenerative diseases. Transl. Neurodegener., 2017, 6(1), 21.
[http://dx.doi.org/10.1186/s40035-017-0092-6] [PMID: 28852477]
[44]
Villa-Pulgarín, J.A.; Gajate, C.; Botet, J.; Jimenez, A.; Justies, N.; Varela-M, R.E.; Cuesta-Marbán, Á.; Müller, I.; Modolell, M.; Revuelta, J.L.; Mollinedo, F. Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Negl. Trop. Dis., 2017, 11(8)e0005805
[http://dx.doi.org/10.1371/journal.pntd.0005805] [PMID: 28829771]
[45]
Adams, J.M.; Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007, 26(9), 1324-1337.
[http://dx.doi.org/10.1038/sj.onc.1210220] [PMID: 17322918]
[46]
Scorrano, L.; Korsmeyer, S.J. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys. Res. Commun., 2003, 304(3), 437-444.
[http://dx.doi.org/10.1016/S0006-291X(03)00615-6] [PMID: 12729577]
[47]
Yin, F.; Boveris, A.; Cadenas, E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid. Redox Signal., 2014, 20(2), 353-371.
[http://dx.doi.org/10.1089/ars.2012.4774]
[48]
Yin, F.; Sancheti, H.; Liu, Z.; Cadenas, E. Mitochondrial function in ageing: coordination with signalling and transcriptional pathways. J. Physiol., 2016, 594(8), 2025-2042.
[http://dx.doi.org/10.1113/JP270541] [PMID: 26293414]
[49]
Kim, J.J.; Lee, S.B.; Park, J.K.; Yoo, Y.D. TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ., 2010, 17(9), 1420-1434.
[http://dx.doi.org/10.1038/cdd.2010.19] [PMID: 20203691]
[50]
Basak, P.; Sadhukhan, P.; Sarkar, P.; Sil, P.C. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. Toxicol. Rep., 2017, 4, 306-318.
[http://dx.doi.org/10.1016/j.toxrep.2017.06.002] [PMID: 28959654]
[51]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53, 401-426.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[52]
Bargonetti, J.; Manfredi, J.J. Multiple roles of the tumor suppressor p53. Curr. Opin. Oncol., 2002, 14(1), 86-91.
[http://dx.doi.org/10.1097/00001622-200201000-00015] [PMID: 11790986]
[53]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[54]
Bertoli, C.; Skotheim, J.M.; de Bruin, R.A. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol., 2013, 14(8), 518-528.
[http://dx.doi.org/10.1038/nrm3629] [PMID: 23877564]
[55]
Murad, H.; Hawat, M.; Ekhtiar, A.; AlJapawe, A.; Abbas, A.; Darwish, H.; Sbenati, O.; Ghannam, A. Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa. Cancer Cell Int., 2016, 16(1), 39.
[http://dx.doi.org/10.1186/s12935-016-0315-4] [PMID: 27231438]
[56]
Chung, S.S.; Wu, Y.; Okobi, Q.; Adekoya, D.; Atefi, M.; Clarke, O.; Dutta, P.; Vadgama, J.V. Proinflammatory cytokines IL-6 and TNF-α increased telomerase activity through NF-κB/STAT1/STAT3 activation, and withaferin A inhibited the signaling in colorectal cancer cells. Mediators Inflamm., 2017, 20175958429
[57]
Grivennikov, S.I.; Karin, M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev., 2010, 21(1), 11-19.
[http://dx.doi.org/10.1016/j.cytogfr.2009.11.005] [PMID: 20018552]
[58]
Yu, H.; Kortylewski, M.; Pardoll, D. Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol., 2007, 7(1), 41-51.
[http://dx.doi.org/10.1038/nri1995] [PMID: 17186030]
[59]
Kontzias, A.; Kotlyar, A.; Laurence, A.; Changelian, P.; O’Shea, J.J. Jakinibs: A new class of kinase inhibitors in cancer and autoimmune disease. Curr. Opin. Pharmacol., 2012, 12(4), 464-470.
[http://dx.doi.org/10.1016/j.coph.2012.06.008] [PMID: 22819198]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy