Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Research Article

Suitable Signal Peptides for Secretory Production of Recombinant Granulocyte Colony Stimulating Factor in Escherichia coli

Author(s): Sadra S. Tehrani, Golnaz Goodarzi, Mohsen Naghizadeh, Seyyed H. Khatami, Ahmad Movahedpour, Ali Abbasi, Zahra Shabaninejad, Nesa Khalaf, Mortaza Taheri-Anganeh* and Amir Savardashtaki*

Volume 14, Issue 4, 2020

Page: [269 - 282] Pages: 14

DOI: 10.2174/1872208314999200730115018

Price: $65

Abstract

Background: Granulocyte colony-stimulating factor (G-CSF) expressed in engineered Escherichia coli (E. coli) as a recombinant protein is utilized as an adjunct to chemotherapy for improving neutropenia. Recombinant proteins overexpression may lead to the creation of inclusion bodies whose recovery is a tedious and costly process. To overcome the problem of inclusion bodies, secretory production might be used. To achieve a mature secretory protein product, suitable signal peptide (SP) selection is a vital step.

Objective: In the present study, we aimed at in silico evaluation of proper SPs for secretory production of recombinant G-CSF in E. coli.

Methods: Signal peptide website and UniProt were used to collect the SPs and G-CSF sequences. Then, SignalP were utilized in order to predict the SPs and location of their cleavage site. Physicochemical features and solubility were investigated by ProtParam and Protein-sol tools. Fusion proteins sub-cellular localization was predicted by ProtCompB.

Results: LPP, ELBP, TSH, HST3, ELBH, AIDA and PET were excluded according to SignalP. The highest aliphatic index belonged to OMPC, TORT and THIB and PPA. Also, the highest GRAVY belonged to OMPC, ELAP, TORT, BLAT, THIB, and PSPE. Furthermore, G-CSF fused with all SPs were predicted as soluble fusion proteins except three SPs. Finally, we found OMPT, OMPF, PHOE, LAMB, SAT, and OMPP can translocate G-CSF into extracellular space.

Conclusion: Six SPs were suitable for translocating G-CSF into the extracellular media. Although growing data indicate that the bioinformatics approaches can improve the precision and accuracy of studies, further experimental investigations and recent patents explaining several inventions associated to the clinical aspects of SPs for secretory production of recombinant GCSF in E. coli are required for final validation.

Keywords: Bioinformatics, biopharmaceutical, filgrastim, recombinant protein, G-CSF, signal peptide.

Graphical Abstract
[1]
Rader RA. Redefining biopharmaceutical. Nat Biotechnol 2008; 26(7): 743-51.
[http://dx.doi.org/10.1038/nbt0708-743 ] [PMID: 18612293]
[2]
Mehta HM, Malandra M, Corey SJ G-CSF. and GMCSF in Neutropenia J Immunol 2015; 195(4): 1341-9.
[http://dx.doi.org/10.4049/jimmunol.1500861] [PMID: 26254266]
[3]
Wittman B, Horan J, Lyman GH. Prophylactic colony-stimulating factors in children receiving myelosuppressive chemotherapy: a meta-analysis of randomized controlled trials. Cancer Treat Rev 2006; 32(4): 289-303.
[http://dx.doi.org/10.1016/j.ctrv.2006.03.002] [PMID: 16678350]
[4]
Yang B-B, Kido A. Pharmacokinetics and pharmacodynamics of pegfilgrastim. Clin Pharmacokinet 2011; 50(5): 295-306.
[http://dx.doi.org/10.2165/11586040-000000000-00000] [PMID: 21456630]
[5]
Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G. Filgrastim (r-metHuG-CSF): the first 10 years 1996.
[6]
Sivakumaran M, Vasconcelos ZF, Diamond HR, Tabak DG, Barcinski MA, Bonomo A, et al. Filgrastim prevents severe neutropenia and reduces infective morbidity in patients with advanced HIV infection: results of a randomized, multicenter, controlled trial. G-CSF 930101 study group. Blood 2001; 97(1): 333-5.
[http://dx.doi.org/10.1182/blood.V97.1.333] [PMID: 11194828]
[7]
Babalola CP, Nightingale CH, Nicolau DP. Adjunctive efficacy of granulocyte colony-stimulating factor on treatment of Pseudomonas aeruginosa pneumonia in neutropenic and non-neutropenic hosts. J Antimicrob Chemother 2004; 53(6): 1098-100.
[http://dx.doi.org/10.1093/jac/dkh237 ] [PMID: 15128727]
[8]
Gough A, Clapperton M, Rolando N, Foster AV, Philpott-Howard J, Edmonds ME. Randomised placebo-controlled trial of granulocyte-colony stimulating factor in diabetic foot infection. Lancet 1997; 350(9081): 855-9.
[http://dx.doi.org/10.1016/S0140-6736(97)04495-4] [PMID: 9310604]
[9]
Vanz AL, Renard G, Palma MS, Chies JM, Dalmora SL, Basso LA, et al. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization. Microb Cell Fact 2008; 7(1): 13.
[http://dx.doi.org/10.1186/1475-2859-7-13 ] [PMID: 18394164]
[10]
Kesik-Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Biochem 2018; 65(3): 306-22.
[http://dx.doi.org/10.1002/bab.1617] [PMID: 28972297]
[11]
Taheri-Anganeh M, Khatami SH, Jamali Z, Movahedpour A, Ghasemi Y, Savardashtaki A, et al. LytU-SH3b fusion protein as a novel and efficient enzybiotic against methicillin-resistant Staphylococcus aureus. Mol Biol Res Commun 2019; 8(4): 151-8.
[PMID: 32042832]
[12]
Kim M-J, Park HS, Seo KH, Yang H-J, Kim S-K, Choi J-H. Complete solubilization and purification of recombinant human growth hormone produced in Escherichia coli. PLoS One 2013; 8(2):e56168.
[http://dx.doi.org/10.1371/journal.pone.0056168] [PMID: 23409149]
[13]
Thanassi DG, Hultgren SJ. Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 2000; 12(4): 420-30.
[http://dx.doi.org/10.1016/S0955-0674(00)00111-3] [PMID: 10873830]
[14]
Slouka C, Kopp J, Spadiut O, Herwig C. Perspectives of inclusion bodies for bio-based products: curse or blessing? Appl Microbiol Biotechnol 2019; 103(3): 1143-53.
[http://dx.doi.org/10.1007/s00253-018-9569-1] [PMID: 30569219]
[15]
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018; 106: 803-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.080] [PMID: 28830778]
[16]
Dastjerdeh MS, Marashiyan M, Boroujeni MB, Golkar M, Shokrgozar MA, Rahimi H. In silico analysis of different signal peptides for the secretory production of recombinant human keratinocyte growth factor in Escherichia coli. Comput Biol Chem 2019; 80: 225-33.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.03.003] [PMID: 30999249]
[17]
Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2004; 64(5): 625-35.
[http://dx.doi.org/10.1007/s00253-004-1559-9] [PMID: 14966662]
[18]
Zamani M, Nezafat N, Negahdaripour M, Dabbagh F, Ghasemi Y. In silico evaluation of different signal peptides for the secretory production of human growth hormone in E. coli. Int J Pept Res Ther 2015; 21(3): 261-8.
[http://dx.doi.org/10.1007/s10989-015-9454-z]
[19]
Asadi M, Taheri-Anganeh M, Jamali Z, Khatami SH, Irajie C, Savardashtaki A, et al. In silico analysis of signal peptides for secretory production of a-amylase in Bacillus subtilis. Asia Pac J Mol Biol Biotechnol 2019; 27(3): 113-24.
[http://dx.doi.org/10.35118/apjmbb.2019.027.3.11]
[20]
Zarei M, Nezafat N, Morowvat MH, Ektefaie M, Ghasemi Y. In silico analysis of different signal peptides for secretory production of arginine deiminase in Escherichia coli. Recent Pat Biotechnol 2019; 13(3): 217-27.
[http://dx.doi.org/10.2174/1872208313666190101114602] [PMID: 30621572]
[21]
Chang CCH, Song J, Tey BT, Ramanan RN. Bioinformatics approaches for improved recombinant protein production in Escherichia coli: protein solubility prediction. Brief Bioinform 2014; 15(6): 953-62.
[http://dx.doi.org/10.1093/bib/bbt057 ] [PMID: 23926206]
[22]
Taheri-Anganeh M, Khatami SH, Jamali Z, Savardashtaki A, Ghasemi Y, Mostafavi-Pour Z. In silico analysis of suitable signal peptides for secretion of a recombinant alcohol dehydrogenase with a key role in atorvastatin enzymatic synthesis. Mol Biol Res Commun 2019; 8(1): 17-26.
[PMID: 31528640]
[23]
Negahdaripour M, Nezafat N, Hajighahramani N, Soheil Rahmatabadi S, Hossein Morowvat M, Ghasemi Y. In silico study of different signal peptides for secretory production of interleukin-11 in Escherichia coli. Curr Proteomics 2017; 14(2): 112-21.
[http://dx.doi.org/10.2174/1570164614666170106110848]
[24]
Vafadar A, Taheri-Anganeh M, Movahedpour A, Jamali Z, Irajie C, Ghasemi Y, et al. In Silico Design and Evaluation of scFv-CdtB as a Novel Immunotoxin for Breast Cancer Treatment. Int J Cancer Manag 2020; 13(1):e96094.
[http://dx.doi.org/10.5812/ijcm.96094]
[25]
Nezafat N, Karimi Z, Eslami M, Mohkam M, Zandian S, Ghasemi Y. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput Biol Chem 2016; 62: 82-95.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.04.006] [PMID: 27107181]
[26]
Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340(4): 783-95.
[http://dx.doi.org/10.1016/j.jmb.2004.05.028] [PMID: 15223320]
[27]
Choo KH, Tan TW, Ranganathan S. A comprehensive assessment of N-terminal signal peptides prediction methods Bmc Bioinformatics. Heidelberg: Springer 2009.
[28]
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server.The proteomics protocols handbook. Heidelberg: Springer 2005; pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[29]
Walker JM. The proteomics protocols handbook. Heidelberg: Springer 2005; p. 988.
[http://dx.doi.org/10.1385/1592598900]
[30]
Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics 2017; 33(19): 3098-100.
[http://dx.doi.org/10.1093/bioinformatics/btx345] [PMID: 28575391]
[31]
Mousavi P, Mostafavi-Pour Z, Morowvat MH, Nezafat N, Zamani M, Berenjian A, et al. In silico analysis of several signal peptides for the excretory production of reteplase in Escherichia coli. Curr Proteomics 2017; 14(4): 326-35.
[http://dx.doi.org/10.2174/1570164614666170809144446]
[32]
Zeng R, Gao S, Xu L, Liu X, Dai F. Prediction of pathogenesis-related secreted proteins from Stemphylium lycopersici. BMC Microbiol 2018; 18(1): 191.
[http://dx.doi.org/10.1186/s12866-018-1329-y] [PMID: 30458731]
[33]
Wishart DS. Bioinformatics in drug development and assessment. Drug Metab Rev 2005; 37(2): 279-310.
[http://dx.doi.org/10.1081/DMR-55225] [PMID: 15931766]
[34]
Taheri-Anganeh M, Amiri A, Movahedpour A, Khatami SH, Ghasemi Y, Savardashtaki A, et al. In silico evaluation of PLAC1-fliC as a chimeric vaccine against breast cancer. Iran Biomed J 2020; 24(3): 173-82.
[35]
Pourseif MM, Moghaddam G, Naghili B, Saeedi N, Parvizpour S, Nematollahi A, et al. A novel in silico minigene vaccine based on CD4+ T-helper and B-cell epitopes of EG95 isolates for vaccination against cystic echinococcosis. Comput Biol Chem 2018; 72: 150-63.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.11.008] [PMID: 29195784]
[36]
Mohammadi S, Mostafavi-Pour Z, Ghasemi Y, Barazesh M, Pour SK, Atapour A, et al. In silico analysis of different signal peptides for the excretory production of recombinant NS3-GP96 fusion protein in Escherichia coli. Int J Pept Res Ther 2019; 25(4): 1279-90.
[http://dx.doi.org/10.1007/s10989-018-9775-9]
[37]
Baumgarten T, Ytterberg AJ, Zubarev RA, de Gier J-W. Optimizing recombinant protein production in the Escherichia coli periplasm alleviates stress. Appl Environ Microbiol 2018; 84(12): e00270-18.
[http://dx.doi.org/10.1128/AEM.00270-18 ] [PMID: 29654183]
[38]
Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y. A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97(6): 422-41.
[http://dx.doi.org/10.1016/j.ejcb.2018.06.003] [PMID: 29958716]
[39]
Low KO, Muhammad Mahadi N, Md Illias R. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 2013; 97(9): 3811-26.
[http://dx.doi.org/10.1007/s00253-013-4831-z] [PMID: 23529680]
[40]
Babaeipour V, Khanchezar S, Mofid MR, Pesaran Hagi Abbas M. Efficient process development of recombinant human granulocyte colony-stimulating factor (rh-GCSF) production in Escherichia coli. Iran Biomed J 2015; 19(2): 102-10.
[PMID: 25864815]
[41]
Raso SW, Abel J, Barnes JM, Maloney KM, Pipes G, Treuheit MJ, et al. Aggregation of granulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state. Protein Sci 2005; 14(9): 2246-57.
[http://dx.doi.org/10.1110/ps.051489405] [PMID: 16131655]
[42]
Peymanfar SH, Roghanian R, Ghaedi K, Zarkesh-Esfahani S-H, Yari R. Characterization and in Silico analysis of the structural features of G-CSF derived from lysates of Escherichia coli. Cell J 2020; 21(4): 426-32.
[PMID: 31376324]
[43]
Peymanfar P, Roghanian R, Ghaedi K, Sayed H, Yari R. Production and simple purification of recombinant human granulocyte colony-stimulating factor using the inteintag in Escherichia coli. Int J Med Biotechnol Genetics 2016; 4(2): 40-6.
[44]
Juibari AD, Ramezani S, Rezadoust MH. Bioinformatics analysis of various signal peptides for periplasmic expression of parathyroid hormone in E.coli. J Med Life 2019; 12(2): 184-91.
[PMID: 31406522]
[45]
Ghovvati S, Pezeshkian Z, Mirhoseini SZ. In silico analysis of different signal peptides to discover a panel of appropriate signal peptides for secretory production of Interferon-beta 1b in Escherichia coli. Acta Biochim Pol 2018; 65(4): 521-34.
[http://dx.doi.org/10.18388/abp.2018_2351 ] [PMID: 30378597]
[46]
Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Fact 2018; 17(1): 52.
[http://dx.doi.org/10.1186/s12934-018-0901-3] [PMID: 29598818]
[47]
Rasekhian M, Hadadi P, Mirzaei F, Tavallaei O. Assessment of prokaryotic signal peptides for secretion of tumor necrosis factor related apoptosis inducing ligand (trail) in E. Coli: an in silico approach. J Pure Appl Microbiol 2016; 10(4): 2647-53.
[http://dx.doi.org/10.22207/JPAM.10.4.22]
[48]
Mergulhão FJ, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli. Biotechnol Adv 2005; 23(3): 177-202.
[http://dx.doi.org/10.1016/j.biotechadv.2004.11.003] [PMID: 15763404]
[49]
Yarabbi H, Mortazavi SA, Yavarmanesh M, Javadmanesh A. In silico study of different signal peptides to express recombinant glutamate decarboxylase in the outer membrane of Escherichia coli.Int J Pept Res Ther. 2019; pp. 1-13.
[50]
Chan P, Curtis RA, Warwicker J. Soluble expression of proteins correlates with a lack of positively-charged surface. Sci Rep 2013; 3(1): 3333.
[http://dx.doi.org/10.1038/srep03333 ] [PMID: 24276756]
[51]
Kramer RM, Shende VR, Motl N, Pace CN, Scholtz JM. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophys J 2012; 102(8): 1907-15.
[http://dx.doi.org/10.1016/j.bpj.2012.01.060] [PMID: 22768947]
[52]
Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 2012; 10(7): 483-96.
[http://dx.doi.org/10.1038/nrmicro2814 ] [PMID: 22683878]
[53]
Denks K, Vogt A, Sachelaru I, Petriman N-A, Kudva R, Koch H-G. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31(2-3): 58-84.
[http://dx.doi.org/10.3109/09687688.2014.907455] [PMID: 24762201]
[54]
Roshanak S, Tabatabaei Yazdi F, Shahidi F, Javadmanesh A, Movaffagh J. Comparison of different signal sequences to use for periplasmic over-expression of buforin I in Escherichia coli: an in silico study. Int J Pept Res Ther 2020; 1-0.
[http://dx.doi.org/10.1007/s10989-020-10042-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy