Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Recent Nanocarrier Approaches for Targeted Drug Delivery in Cancer Therapy

Author(s): Rohit Bhatia, Amit Sharma, Raj K. Narang and Ravindra K. Rawal*

Volume 14, Issue 3, 2021

Published on: 30 July, 2020

Page: [350 - 366] Pages: 17

DOI: 10.2174/1874467213666200730114943

Price: $65

Abstract

Cancer is one of the most serious health concerns in the 21st century whose prevalence is beyond boundaries and can affect any organ of the human body. The conventional chemotherapeutic treatment strategies lack specificity to tumors and are associated with toxic effects on the immune system and other organ systems. In the past decades, there has been continuous progress in the development of smart nanocarrier systems for target-specific delivery of drugs against a variety of tumors, including intracellular gene-specific targeting. These nanocarriers are able to recognize the tumor cells and deliver the therapeutic agent in fixed proportions, causing no or very less harm to healthy cells. Nanosystems have modified physicochemical properties, improved bioavailability, and long retention in blood, which enhances their potency. A huge number of nanocarrier based formulations have been developed and are in clinical trials. Nanocarrier systems include polymeric micelles, liposomes, dendrimers, carbon nanotubes, gold nanoparticles, etc. Recent advancements in nanocarrier systems include mesoporous silica nanoparticles (MSNs), metal organic frameworks, and quantum dots. In the present review, various nanocarrier based drug delivery systems, along with their applications in the management of cancer, have been described with special emphasis on MSNs.

Keywords: Nanocarriers, specificity, dendrimers, nanotubes, MSNs, quantum dots.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[2]
American Cancer Society. Cancer facts and figures 2017. Genes Dev., 2017, 21, 2525-2538.
[3]
Chabner, B.A.; Roberts, T.G., Jr Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[4]
DeVita, V.T., Jr; Chu, E. A history of cancer chemotherapy. Cancer Res., 2008, 68(21), 8643-8653.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6611] [PMID: 18974103]
[5]
Zhang, W.; Zhang, Z.; Zhang, Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res. Lett., 2011, 6, 555.
[http://dx.doi.org/10.1186/1556-276X-6-555] [PMID: 21995320]
[6]
Ahmad, S.S.; Reinius, M.A.; Hatcher, H.M.; Ajithkumar, T.V. Anticancer chemotherapy in teenagers and young adults: Managing long term side effects. BMJ, 2016, 354, i4567.
[http://dx.doi.org/10.1136/bmj.i4567] [PMID: 27604249]
[7]
Gillet, J.; Gottesman, M.M. Multi-drug resistance in cancer; Humana Press: Totowa, NJ, 2010.
[8]
Alfarouk, K.O.; Stock, C.M.; Taylor, S.; Walsh, M.; Muddathir, A.K.; Verduzco, D.; Bashir, A.H.; Mohammed, O.Y.; Elhassan, G.O.; Harguindey, S.; Reshkin, S.J.; Ibrahim, M.E.; Rauch, C. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int., 2015, 15, 71.
[http://dx.doi.org/10.1186/s12935-015-0221-1] [PMID: 26180516]
[9]
Nooter, K.; Stoter, G. Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol. Res. Pract., 1996, 192(7), 768-780.
[http://dx.doi.org/10.1016/S0344-0338(96)80099-9] [PMID: 8880878]
[10]
Gupta, P.K. Drug targeting in cancer chemotherapy: A clinical perspective. J. Pharm. Sci., 1990, 79(11), 949-962.
[http://dx.doi.org/10.1002/jps.2600791102] [PMID: 2292769]
[11]
Muggia, F.M. Liposomal encapsulated anthracyclines: new therapeutic horizons. Curr. Oncol. Rep., 2001, 3(2), 156-162.
[http://dx.doi.org/10.1007/s11912-001-0016-5] [PMID: 11177748]
[12]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[13]
Hassan, M.; Little, R.F.; Vogel, A.; Aleman, K.; Wyvill, K.; Yarchoan, R.; Gandjbakhche, A.H. Quantitative assessment of tumor vasculature and response to therapy in kaposi’s sarcoma using functional noninvasive imaging. Technol. Cancer Res. Treat., 2004, 3(5), 451-457.
[http://dx.doi.org/10.1177/153303460400300506] [PMID: 15453810]
[14]
Hamaguchi, T.; Matsumura, Y.; Suzuki, M.; Shimizu, K.; Goda, R.; Nakamura, I.; Nakatomi, I.; Yokoyama, M.; Kataoka, K.; Kakizoe, T. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer, 2005, 92(7), 1240-1246.
[http://dx.doi.org/10.1038/sj.bjc.6602479] [PMID: 15785749]
[15]
Nishiyama, N.; Okazaki, S.; Cabral, H.; Miyamoto, M.; Kato, Y.; Sugiyama, Y.; Nishio, K.; Matsumura, Y.; Kataoka, K. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res., 2003, 63(24), 8977-8983.
[PMID: 14695216]
[16]
Ventola, C.L. Progress in Nanomedicine: Approved and Investigational Nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[17]
Yi, Y.; Lin, G.; Chen, S.; Liu, J.; Zhang, H.; Mi, P. Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Mater. Sci. Eng. C, 2018, 83, 218-232.
[http://dx.doi.org/10.1016/j.msec.2017.10.004] [PMID: 29208282]
[18]
Jabir, N.R.; Tabrez, S.; Ashraf, G.M.; Shakil, S.; Damanhouri, G.A.; Kamal, M.A. Nanotechnology-based approaches in anticancer research. Int. J. Nanomedicine, 2012, 7, 4391-4408.
[PMID: 22927757]
[19]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[20]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[21]
Ding, C.; Tong, L.; Feng, J.; Fu, J. Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules, 2016, 21(12), 1715.
[http://dx.doi.org/10.3390/molecules21121715] [PMID: 27999414]
[22]
Aghebati-Maleki, A.; Dolati, S.; Ahmadi, M.; Baghbanzhadeh, A.; Asadi, M.; Fotouhi, A.; Yousefi, M.; Aghebati-Maleki, L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol., 2020, 235(3), 1962-1972.
[http://dx.doi.org/10.1002/jcp.29126] [PMID: 31441032]
[23]
Buabeid, M.A. Arafa El-SA, Murtaza G. Emerging prospects of nanoparticle enabled cancer immunotherapy. J. Immunol. Res., 2020. Article ID 9624532.
[24]
de Lázaro, I.; Mooney, D.J. A nanoparticle’s pathway into tumours. Nat. Mater., 2020, 19(5), 486-487.
[http://dx.doi.org/10.1038/s41563-020-0669-9] [PMID: 32332989]
[25]
Wang, S.Y.; Hu, H.Z.; Qing, X.C.; Zhang, Z.C.; Shao, Z.W. Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J. Cancer, 2020, 11(1), 69-82.
[http://dx.doi.org/10.7150/jca.36588] [PMID: 31892974]
[26]
Bangham, A.D.; Standish, M.M.; Weissmann, G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J. Mol. Biol., 1965, 13(1), 253-259.
[http://dx.doi.org/10.1016/S0022-2836(65)80094-8] [PMID: 5859040]
[27]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[28]
Bangham, A.D. Liposomes: the Babraham connection. Chem. Phys. Lipids, 1993, 64(1-3), 275-285.
[http://dx.doi.org/10.1016/0009-3084(93)90071-A] [PMID: 8242839]
[29]
Gregoriadis, G. Drug entrapment in liposomes. FEBS Lett., 1973, 36(3), 292-296.
[http://dx.doi.org/10.1016/0014-5793(73)80394-1] [PMID: 4763309]
[30]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[31]
Sharma, A. Liposomes in drug delivery: progress and limitations. Int. J. Pharm., 1997, 154, 123-140.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[32]
Bangham, A.D. Properties and uses of lipid vesicles: an overview. Ann. N. Y. Acad. Sci., 1978, 308, 2-7.
[http://dx.doi.org/10.1111/j.1749-6632.1978.tb22010.x] [PMID: 279288]
[33]
Szoka, F., Jr; Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA, 1978, 75(9), 4194-4198.
[http://dx.doi.org/10.1073/pnas.75.9.4194] [PMID: 279908]
[34]
Zumbuehl, O.; Weder, H.G. Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles. Biochim. Biophys. Acta, 1981, 640(1), 252-262.
[http://dx.doi.org/10.1016/0005-2736(81)90550-2] [PMID: 7194112]
[35]
Lesoin, L.; Crampon, C.; Boutin, O.; Badens, E. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J. Supercrit. Fluids, 2011, 57, 162-174.
[http://dx.doi.org/10.1016/j.supflu.2011.01.006]
[36]
Otake, K.; Shimomura, T.; Goto, T.; Imura, T.; Furuya, T.; Yoda, S.; Takebayashi, Y.; Sakai, H.; Abe, M. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir, 2006, 22(6), 2543-2550.
[http://dx.doi.org/10.1021/la051654u] [PMID: 16519453]
[37]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[38]
Ogihara-Umeda, I.; Sasaki, T.; Kojima, S.; Nishigori, H. Optimal radiolabeled liposomes for tumor imaging. J. Nucl. Med., 1996, 37(2), 326-332.
[PMID: 8667071]
[39]
Li, S.; Goins, B.; Zhang, L.; Bao, A. Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug. Chem., 2012, 23(6), 1322-1332.
[http://dx.doi.org/10.1021/bc300175d] [PMID: 22577859]
[40]
Muthu, M.S.; Feng, S.S. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin. Drug Deliv., 2013, 10(2), 151-155.
[http://dx.doi.org/10.1517/17425247.2013.729576] [PMID: 23061654]
[41]
Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol., 2014, 32(1), 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007] [PMID: 24210498]
[42]
Sapra, P.; Allen, T.M. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res., 2003, 42(5), 439-462.
[http://dx.doi.org/10.1016/S0163-7827(03)00032-8] [PMID: 12814645]
[43]
Sawant, R.R.; Torchilin, V.P. Challenges in development of targeted liposomal therapeutics. AAPS J., 2012, 14(2), 303-315.
[http://dx.doi.org/10.1208/s12248-012-9330-0] [PMID: 22415612]
[44]
Hardiansyah, A.; Huang, L.Y.; Yang, M.C.; Liu, T.Y.; Tsai, S.C.; Yang, C.Y.; Kuo, C.Y.; Chan, T.Y.; Zou, H.M.; Lian, W.N.; Lin, C.H. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Res. Lett., 2014, 9(1), 497.
[http://dx.doi.org/10.1186/1556-276X-9-497] [PMID: 25246875]
[45]
Mock, J.N.; Costyn, L.J.; Wilding, S.L.; Arnold, R.D.; Cummings, B.S. Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer. Integr. Biol., 2013, 5(1), 172-182.
[http://dx.doi.org/10.1039/c2ib20108a] [PMID: 22890797]
[46]
Safra, T. Cardiac safety of liposomal anthracyclines. Oncologist, 2003, 8(Suppl. 2), 17-24.
[http://dx.doi.org/10.1634/theoncologist.8-suppl_2-17] [PMID: 13679592]
[47]
Petre, C.E.; Dittmer, D.P. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int. J. Nanomedicine, 2007, 2(3), 277-288.
[PMID: 18019828]
[48]
Zhang, B.; Lu, Y.; Chen, J.; Wu, W. Effects of interior gelation on pharmacokinetics and biodistribution of liposomes encapsulating an anti-cancer drug cytarabine. J. Biomed. Nanotechnol., 2010, 6(6), 704-709.
[http://dx.doi.org/10.1166/jbn.2010.1162] [PMID: 21361136]
[49]
Yan, W.; Leung, S.S.; To, K.K. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond.), 2020, 15(3), 303-318.
[http://dx.doi.org/10.2217/nnm-2019-0308] [PMID: 31802702]
[50]
Cristiano, M.C.; Cosco, D.; Celia, C.; Tudose, A.; Mare, R.; Paolino, D.; Fresta, M. Anticancer activity of all-trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids Surf. B Biointerfaces, 2017, 150, 408-416.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.052] [PMID: 27829536]
[51]
Berlin Grace, V.M.; Viswanathan, S. Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J. Drug Deliv. Sci. Technol., 2017, 39, 223-236.
[http://dx.doi.org/10.1016/j.jddst.2017.04.005]
[52]
Legut, M.; Lipka, D.; Filipczak, N.; Piwoni, A.; Kozubek, A.; Gubernator, J. Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines - in vitro studies. Int. J. Nanomedicine, 2014, 9, 653-668.
[PMID: 24489469]
[53]
Zhou, J.; Zhao, W.Y.; Ma, X.; Ju, R.J.; Li, X.Y.; Li, N.; Sun, M.G.; Shi, J.F.; Zhang, C.X.; Lu, W.L. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials, 2013, 34(14), 3626-3638.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.078] [PMID: 23422592]
[54]
Wang-Gillam, A.; Li, C.P.; Bodoky, G.; Dean, A.; Shan, Y.S.; Jameson, G.; Macarulla, T.; Lee, K.H.; Cunningham, D.; Blanc, J.F.; Hubner, R.A.; Chiu, C.F.; Schwartsmann, G.; Siveke, J.T.; Braiteh, F.; Moyo, V.; Belanger, B.; Dhindsa, N.; Bayever, E.; Von Hoff, D.D.; Chen, L.T. NAPOLI-1 Study Group. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet, 2016, 387(10018), 545-557.
[http://dx.doi.org/10.1016/S0140-6736(15)00986-1] [PMID: 26615328]
[55]
Song, X.L.; Liu, S.; Jiang, Y.; Gu, L.Y.; Xiao, Y.; Wang, X.; Cheng, L.; Li, X.T. Targeting vincristine plus tetrandrine liposomes modified with DSPE-PEG2000-transferrin in treatment of brain glioma. Eur. J. Pharm. Sci., 2017, 96, 129-140.
[http://dx.doi.org/10.1016/j.ejps.2016.09.024] [PMID: 27644895]
[56]
Cheng, Y.; Ou, Z.; Li, Q.; Yang, J.; Hu, M.; Zhou, Y.; Zhuang, X.; Zhang, Z.J.; Guan, S. Cabazitaxel liposomes with aptamer modification enhance tumor‑targeting efficacy in nude mice. Mol. Med. Rep., 2019, 19(1), 490-498.
[PMID: 30483775]
[57]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules, 2018, 23(4), 907.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[58]
Shin, D.H.; Tam, Y.T. Kwon Polymeric micelle nanocarriers in cancer research Front. Chem Sci Eng, 2016, 10, 348-359.
[59]
Cagel, M.; Tesan, F.C.; Bernabeu, E.; Salgueiro, M.J.; Zubillaga, M.B.; Moretton, M.A.; Chiappetta, D.A. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur. J. Pharm. Biopharm., 2017, 113, 211-228.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.019] [PMID: 28087380]
[60]
Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond.), 2010, 5(3), 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[61]
Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev., 2001, 47(1), 113-131.
[http://dx.doi.org/10.1016/S0169-409X(00)00124-1] [PMID: 11251249]
[62]
Qiao, W.; Wang, B.; Wang, Y.; Yang, L.; Zhang, Y.; Shao, P. Cancer Therapy Based on Nanomaterials and Nanocarrier Systems. J. Nanomater., 2010, •••, 1-9.
[http://dx.doi.org/10.1155/2010/796303]
[63]
Rapoport, N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci., 2007, 32, 962-990.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.009]
[64]
Wang, Y.; Fang, J.; Cheng, D.; Wang, Y.; Shuai, X. A pH-sensitive micelle for codelivery of siRNA and doxorubicin to hepatoma cells. Polymer (Guildf.), 2014, 55, 3217-3226.
[http://dx.doi.org/10.1016/j.polymer.2014.05.038]
[65]
Xiong, X.B.; Lavasanifar, A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano, 2011, 5(6), 5202-5213.
[http://dx.doi.org/10.1021/nn2013707] [PMID: 21627074]
[66]
Salzano, G.; Costa, D.F.; Sarisozen, C.; Luther, E.; Mattheolabakis, G.; Dhargalkar, P.P.; Torchilin, V.P. Mixed Nanosized Polymeric Micelles as Promoter of Doxorubicin and miRNA-34a Co-Delivery Triggered by Dual Stimuli in Tumor Tissue. Small, 2016, 12(35), 4837-4848.
[http://dx.doi.org/10.1002/smll.201600925] [PMID: 27432595]
[67]
Wu, J.; Zhang, H.; Hu, X.; Liu, R.; Jiang, W.; Li, Z.; Luan, Y. Reduction-sensitive mixed micelles assembled from amphiphilic prodrugs for self-codelivery of DOX and DTX with synergistic cancer therapy. Colloids Surf. B Biointerfaces, 2018, 161, 449-456.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.011] [PMID: 29127937]
[68]
Kang, Y.; Lu, L.; Lan, J.; Ding, Y.; Yang, J.; Zhang, Y.; Zhao, Y.; Zhang, T.; Ho, R.J.Y. Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA. Acta Biomater., 2018, 68, 137-153.
[http://dx.doi.org/10.1016/j.actbio.2017.12.028] [PMID: 29288085]
[69]
Sheu, M.T.; Jhan, H.J.; Su, C.Y.; Chen, L.C.; Chang, C.E.; Liu, D.Z.; Ho, H.O. Codelivery of doxorubicin-containing thermosensitive hydrogels incorporated with docetaxel-loaded mixed micelles enhances local cancer therapy. Colloids Surf. B Biointerfaces, 2016, 143, 260-270.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.054] [PMID: 27022865]
[70]
Huang, P.; Zhang, Y.; Wang, W.; Zhou, J.; Sun, Y.; Liu, J.; Kong, D.; Liu, J.; Dong, A. Co-delivery of doxorubicin and (131)I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy. J. Control. Release, 2015, 220(Pt A), 456-464.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.007] [PMID: 26562684]
[71]
Zhu, L.; Perche, F.; Wang, T.; Torchilin, V.P. Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials, 2014, 35(13), 4213-4222.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.060] [PMID: 24529391]
[72]
Ghaffari, F.; Bahmanzadeh, M.; Nili-Ahmadabadi, A.; Firozian, F. Cytotoxicity enhancement of paclitaxel by loading on stearate-g-dextran micelles on breast cancer cell line MCF-7. Asian Pac. J. Cancer Prev., 2018, 19(9), 2651-2655.
[PMID: 30256563]
[73]
Sun, Y.; Liang, Y.; Hao, N.; Fu, X.; He, B.; Han, S.; Cao, J.; Ma, Q.; Xu, W.; Sun, Y. Novel polymeric micelles as enzyme-sensitive nuclear-targeted dual-functional drug delivery vehicles for enhanced 9-nitro-20(S)-camptothecin delivery and antitumor efficacy. Nanoscale, 2020, 12(9), 5380-5396.
[http://dx.doi.org/10.1039/C9NR10574C] [PMID: 32022069]
[74]
Wu, Y.; Lv, S.; Li, Y.; He, H.; Ji, Y.; Zheng, M.; Liu, Y.; Yin, L. Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomater. Sci., 2020, 8(3), 949-959.
[http://dx.doi.org/10.1039/C9BM01662G] [PMID: 31840696]
[75]
Wan, D.; Li, C.; Pan, J. Polymeric micelles with reduction-responsive function for targeted cancer chemotherapy. Appl Bio Mater., 2020, 3(2), 1139-1146.
[http://dx.doi.org/10.1021/acsabm.9b01070]
[76]
Palmerston, L.; Mendes, J.; Pan, V. Torchilin Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22, 1401.
[http://dx.doi.org/10.3390/molecules22091401]
[77]
Nanjwade, B.K.; Bechra, H.M.; Derkar, G.K.; Manvi, F.V.; Nanjwade, V.K. Dendrimers: emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci., 2009, 38(3), 185-196.
[http://dx.doi.org/10.1016/j.ejps.2009.07.008] [PMID: 19646528]
[78]
Biswas, S.; Torchilin, V.P. Dendrimers for siRNA Delivery. Pharmaceuticals (Basel), 2013, 6(2), 161-183.
[http://dx.doi.org/10.3390/ph6020161] [PMID: 24275946]
[79]
Yang, J.; Zhang, Q.; Chang, H.; Cheng, Y. Surface-engineered dendrimers in gene delivery. Chem. Rev., 2015, 115(11), 5274-5300.
[http://dx.doi.org/10.1021/cr500542t] [PMID: 25944558]
[80]
Somani, S.; Blatchford, D.R.; Millington, O.; Stevenson, M.L.; Dufès, C. Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. J. Control. Release, 2014, 188, 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.006] [PMID: 24933602]
[81]
Majoros, I.J.; Williams, C.R.; Tomalia, D.A.; Baker, J.R., Jr New dendrimers: synthesis and characterization of POPAM-PAMAM hybrid dendrimers. Macromolecules, 2008, 41(22), 8372-8379.
[http://dx.doi.org/10.1021/ma801843a] [PMID: 21258604]
[82]
Caminade, A.M. Phosphorus dendrimers for nanomedicine. Chem. Commun. (Camb.), 2017, 53(71), 9830-9838.
[http://dx.doi.org/10.1039/C7CC04949H] [PMID: 28745767]
[83]
Bugno, J.; Hsu, H.J.; Hong, S. Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting. J. Drug Target., 2015, 23(7-8), 642-650.
[http://dx.doi.org/10.3109/1061186X.2015.1052077] [PMID: 26453160]
[84]
Wang, H.; Huang, Q.; Chang, H.; Xiao, J.; Cheng, Y. Stimuli-responsive dendrimers in drug delivery. Biomater. Sci., 2016, 4(3), 375-390.
[http://dx.doi.org/10.1039/C5BM00532A] [PMID: 26806314]
[85]
Rajasekhar Reddy, R.; Raghupathi, K.R.; Torres, D.A.; Thayumanavan, S. Stimuli sensitive amphiphilic dendrimers. New J. Chem., 2012, 36(2), 340-349.
[http://dx.doi.org/10.1039/c2nj20879b] [PMID: 24039387]
[86]
Wang, K.; Hu, Q.; Zhu, W.; Zhao, M.; Ping, Y.; Tang, G. Structure-invertible nanoparticles for triggered co-delivery of nucleic acids and hydrophobic drugs for combination. Adv. Funct. Mater., 2015, 25, 3380-3392.
[http://dx.doi.org/10.1002/adfm.201403921]
[87]
Li, Y.; Wang, H.; Wang, K.; Hu, Q.; Yao, Q.; Shen, Y.; Yu, G.; Tang, G. Targeted co-delivery of PTX and TR3 siRNA by PTP peptide modified dendrimer for the treatment of pancreatic cancer. Small, 2017, 13(2), 1602697.
[http://dx.doi.org/10.1002/smll.201602697] [PMID: 27762495]
[88]
Gu, Y.; Guo, Y.; Wang, C.; Xu, J.; Wu, J.; Kirk, T.B.; Ma, D.; Xue, W. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater. Sci. Eng. C, 2017, 70(Pt 1), 572-585.
[http://dx.doi.org/10.1016/j.msec.2016.09.035] [PMID: 27770930]
[89]
Han, M.; Lv, Q.; Tang, X.J.; Hu, Y.L.; Xu, D.H.; Li, F.Z.; Liang, W.Q.; Gao, J.Q. Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex. J. Control. Release, 2012, 163(2), 136-144.
[http://dx.doi.org/10.1016/j.jconrel.2012.08.020] [PMID: 22940126]
[90]
Zhong, Q.; Bielski, E.R.; Rodrigues, L.S.; Brown, M.R.; Reineke, J.J.; da Rocha, S.R. Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol. Pharm., 2016, 13(7), 2363-2375.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00126] [PMID: 27253493]
[91]
Satsangi, A.; Roy, S.S.; Satsangi, R.K.; Vadlamudi, R.K.; Ong, J.L. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells. Mol. Pharm., 2014, 11(6), 1906-1918.
[http://dx.doi.org/10.1021/mp500128k] [PMID: 24847940]
[92]
Kulhari, H.; Pooja, D.; Shrivastava, S.; Kuncha, M.; Naidu, V.G.M.; Bansal, V.; Sistla, R.; Adams, D.J. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep., 2016, 6, 23179.
[http://dx.doi.org/10.1038/srep23179] [PMID: 27052896]
[93]
Bai, C.Z.; Choi, S.; Nam, K.; An, S.; Park, J.S. Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glioma. Int. J. Pharm., 2013, 445(1-2), 79-87.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.057] [PMID: 23384727]
[94]
Patil, M.L.; Zhang, M.; Minko, T. Multifunctional triblock Nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano, 2011, 5(3), 1877-1887.
[http://dx.doi.org/10.1021/nn102711d] [PMID: 21322531]
[95]
Amreddy, N.; Ahmed, R.A.; Munshi, A.; Ramesh, R. Tumor-targeted dendrimer nanoparticles for combinatorial delivery of siRNA and chemotherapy for cancer treatment. Methods Mol. Biol., 2020, 2059, 167-189.
[http://dx.doi.org/10.1007/978-1-4939-9798-5_8] [PMID: 31435921]
[96]
Pishavar, E.; Ramezani, M.; Hashemi, M. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation. Drug Dev. Ind. Pharm., 2019, 45(12), 1931-1939.
[http://dx.doi.org/10.1080/03639045.2019.1680995] [PMID: 31609130]
[97]
Shah, V.; Taratula, O.; Garbuzenko, O.B.; Taratula, O.R.; Rodriguez-Rodriguez, L.; Minko, T. Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: An optimal delivery of siRNA and anticancer drug. Clin. Cancer Res., 2013, 19(22), 6193-6204.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1536] [PMID: 24036854]
[98]
Kesharwani, P.; Tekade, R.K.; Jain, N.K. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm. Res., 2015, 32(4), 1438-1450.
[http://dx.doi.org/10.1007/s11095-014-1549-2] [PMID: 25330744]
[99]
Jain, N.K.; Tare, M.S.; Mishra, V.; Tripathi, P.K. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine (Lond.), 2015, 11(1), 207-218.
[http://dx.doi.org/10.1016/j.nano.2014.09.006] [PMID: 25262579]
[100]
Taratula, O.; Garbuzenko, O.B.; Kirkpatrick, P.; Pandya, I.; Savla, R.; Pozharov, V.P.; He, H.; Minko, T. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J. Control. Release, 2009, 140(3), 284-293.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.019] [PMID: 19567257]
[101]
Chen, A.M.; Taratula, O.; Wei, D.; Yen, H.I.; Thomas, T.; Thomas, T.J.; Minko, T.; He, H. Labile catalytic packaging of DNA/siRNA: control of gold nanoparticles “out” of DNA/siRNA complexes. ACS Nano, 2010, 4(7), 3679-3688.
[http://dx.doi.org/10.1021/nn901796n] [PMID: 20521827]
[102]
Al-Jamal, K.T.; Al-Jamal, W.T.; Wang, J.T.W.; Rubio, N.; Buddle, J.; Gathercole, D.; Zloh, M.; Kostarelos, K. Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano, 2013, 7(3), 1905-1917.
[http://dx.doi.org/10.1021/nn305860k] [PMID: 23527750]
[103]
Niidome, T.; Yamauchi, H.; Takahashi, K.; Naoyama, K.; Watanabe, K.; Mori, T.; Katayama, Y. Hydrophobic cavity formed by oligopeptide for doxorubicin delivery based on dendritic poly(L-lysine). J. Biomater. Sci. Polym. Ed., 2014, 25(13), 1362-1373.
[http://dx.doi.org/10.1080/09205063.2014.938979] [PMID: 25040893]
[104]
Jeffreys, A.J.; Wilson, V.; Thein, S.L. Individual-specific ‘fingerprints’ of human DNA. Nature, 1985, 316(6023), 76-79.
[http://dx.doi.org/10.1038/316076a0] [PMID: 2989708]
[105]
Krätschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R. Solid C60: a new form of carbon. Nature, 1990, 347, 354-358.
[http://dx.doi.org/10.1038/347354a0]
[106]
Liu, Z.; Robinson, J.T.; Tabakman, S.M.; Yang, K.; Dai, H. Carbon materials for drug delivery & cancer therapy. Mater. Today, 2011, 11, 316-323.
[http://dx.doi.org/10.1016/S1369-7021(11)70161-4]
[107]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56-58.
[http://dx.doi.org/10.1038/354056a0]
[108]
Sahoo, N.G.; Bao, H.; Pan, Y.; Pal, M.; Kakran, M.; Cheng, H.K.; Li, L.; Tan, L.P. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chem. Commun. (Camb.), 2011, 47(18), 5235-5237.
[http://dx.doi.org/10.1039/c1cc00075f] [PMID: 21451845]
[109]
Lamprecht, C.; Liashkovich, I.; Neves, V.; Danzberger, J.; Heister, E.; Rangl, M.; Coley, H.M.; McFadden, J.; Flahaut, E.; Gruber, H.J.; Hinterdorfer, P.; Kienberger, F.; Ebner, A. AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology, 2009, 20(43), 434001.
[http://dx.doi.org/10.1088/0957-4484/20/43/434001] [PMID: 19801758]
[110]
Pantarotto, D.; Briand, J.P.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (Camb.), 2004, 7(1), 16-17.
[http://dx.doi.org/10.1039/b311254c] [PMID: 14737310]
[111]
Kam, N.W.S.; Liu, Z.; Dai, H. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem., 2005, 44, 1-6.
[112]
Cai, D.; Mataraza, J.M.; Qin, Z.H.; Huang, Z.; Huang, J.; Chiles, T.C.; Carnahan, D.; Kempa, K.; Ren, Z. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods, 2005, 2(6), 449-454.
[http://dx.doi.org/10.1038/nmeth761] [PMID: 15908924]
[113]
Klumpp, C.; Kostarelos, K.; Prato, M.; Bianco, A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta, 2006, 1758(3), 404-412.
[http://dx.doi.org/10.1016/j.bbamem.2005.10.008] [PMID: 16307724]
[114]
Lay, C.L.; Liu, J.; Liu, Y. Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev. Med. Devices, 2011, 8(5), 561-566.
[http://dx.doi.org/10.1586/erd.11.34] [PMID: 22026621]
[115]
Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev., 2006, 58(15), 1655-1670.
[http://dx.doi.org/10.1016/j.addr.2006.09.020] [PMID: 17125884]
[116]
Wang, J.T.; Al-Jamal, K.T. Functionalized carbon nanotubes: Revolution in brain delivery. Nanomedicine (Lond.), 2015, 10(17), 2639-2642.
[http://dx.doi.org/10.2217/nnm.15.114] [PMID: 26328513]
[117]
Kafa, H.; Wang, J.T.W.; Rubio, N.; Venner, K.; Anderson, G.; Pach, E.; Ballesteros, B.; Preston, J.E.; Abbott, N.J.; Al-Jamal, K.T. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials, 2015, 53, 437-452.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.083] [PMID: 25890741]
[118]
Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomedicine, 2016, 11, 5163-5185.
[http://dx.doi.org/10.2147/IJN.S112660] [PMID: 27785021]
[119]
Madani, S.Y.; Naderi, N.; Dissanayake, O.; Tan, A.; Seifalian, A.M. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int. J. Nanomedicine, 2011, 6, 2963-2979.
[PMID: 22162655]
[120]
Maser, W.K.; Munoz, E.; Benito, A.M.; Martinez, M.T.; de la Fuente, G.F.; Anglaret, E.; Righi, A.; Sauvajol, J.L. Single-wall carbon nanotubes: Study of production parameters using cw CO2-laser ablation technique. Electron Prop Nov Mater Mol Nanostruct, 2000, 544, 213-216.
[http://dx.doi.org/10.1063/1.1342502]
[121]
Fahlman, B.D. Chemical vapor deposition of carbon nanotubes—An experiment in materials chemistry. J. Chem. Educ., 2002, 79, 203-206.
[http://dx.doi.org/10.1021/ed079p203]
[122]
Vander Wal, R.L. Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes. Chem. Phys. Lett., 2000, 324, 217-223.
[http://dx.doi.org/10.1016/S0009-2614(00)00492-9]
[123]
Parasuram, B.; Sundaram, S.; Sathiskumar, C.; Karthikeyan, S. Synthesis of multi-walled carbon nanotubes using tire pyrolysis oil as a carbon precursor by spray pyrolysis method. Inorg. Nano Met Chem, 2018, 48, 103-106.
[http://dx.doi.org/10.1080/24701556.2017.1357578]
[124]
Oskoueian, A.; Matori, K.A.; Bayat, S.; Oskoueian, E.; Ostovan, F.; Toozandehjani, M. Fabrication, characterization, and functionalization of single-walled carbon nanotube conjugated with tamoxifen and its anticancer potential against human breast cancer cells. J. Nanomater., 2018, 2018, 8417016.
[http://dx.doi.org/10.1155/2018/8417016]
[125]
Oh, Y.; Jin, J.O.; Oh, J. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology, 2017, 28(12), 125101.
[http://dx.doi.org/10.1088/1361-6528/aa5d7d] [PMID: 28145889]
[126]
Yuan, S.P.; Zeng, L.Z.; Zhuang, Y.Y.; Hou, Q.; Song, M.Y. Functionalized single-walled carbon nanotubes for the improved solubilization and delivery of curcumin. Fuller. Nanotub. Carbon Nanostruct., 2016, 24, 13-19.
[http://dx.doi.org/10.1080/1536383X.2015.1088007]
[127]
Li, H.; Zhang, N.; Hao, Y.; Wang, Y.; Jia, S.; Zhang, H.; Zhang, Y.; Zhang, Z. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug Deliv., 2014, 21(5), 379-387.
[http://dx.doi.org/10.3109/10717544.2013.848246] [PMID: 24160816]
[128]
Virani, N.A.; Davis, C.; McKernan, P.; Hauser, P.; Hurst, R.E.; Slaton, J.; Silvy, R.P.; Resasco, D.E.; Harrison, R.G. Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology, 2018, 29(3), 035101.
[http://dx.doi.org/10.1088/1361-6528/aa9c0c] [PMID: 29160225]
[129]
Madani, S.Y.; Tan, A.; Naderi, N.; Seifalian, A.M. Application of OctaAmmonium-POSS functionalized single walled carbon nanotubes for thermal treatment of cancer. J. Nanosci. Nanotechnol., 2012, 12(12), 9018-9028.
[http://dx.doi.org/10.1166/jnn.2012.6746] [PMID: 23447953]
[130]
Tian, Z.; Yin, M.; Ma, H.; Zhu, L.; Shen, H.; Jia, N. Supramolecular assembly and antitumor activity of multiwalled carbon nanotube-camptothecin complexes. J. Nanosci. Nanotechnol., 2011, 11(2), 953-958.
[http://dx.doi.org/10.1166/jnn.2011.3100] [PMID: 21456124]
[131]
Raza, K.; Kumar, D.; Kiran, C.; Kumar, M.; Guru, S.K.; Kumar, P.; Arora, S.; Sharma, G.; Bhushan, S.; Katare, O.P. Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: Implications on pharmacokinetic profile and anticancer activity. Mol. Pharm., 2016, 13(7), 2423-2432.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00183] [PMID: 27182646]
[132]
Wang, C.J.; Li, A. Preparation, characterization, and in vitro and vivo antitumor activity of oridonin-conjugated multiwalled carbon nanotubes functionalized with carboxylic group. J. Nanomater., 2016. Article ID 3439419.
[133]
Suo, N.; Wang, M.; Jin, Y.; Ding, J.; Gao, X.; Sun, X.; Zhang, H.; Cui, M.; Zheng, J.; Li, N.; Jin, X.; Jiang, S. Magnetic multiwalled carbon nanotubes with controlled release of epirubicin: an intravesical instillation system for bladder cancer. Int. J. Nanomedicine, 2019, 14, 1241-1254.
[http://dx.doi.org/10.2147/IJN.S189688] [PMID: 30863057]
[134]
Ji, J.; Liu, M.F.; Meng, Y.; Liu, R.Q.; Yan, Y.; Dong, J.Y.; Guo, Z.Z.; Ye, C.S. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer Med Sci Monit, 2016, 22, 2363-2373.
[135]
Lu, Y.J.; Wei, K.C.; Ma, C.C.M.; Yang, S.Y.; Chen, J.P. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B Biointerfaces, 2012, 89, 1-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.08.001] [PMID: 21982868]
[136]
Omurtag Ozgen, P.S.; Atasoy, S.; Zengin Kurt, B.; Durmus, Z.; Yigit, G.; Dag, A. Glycopolymer decorated multiwalled carbon nanotubes for dual targeted breast cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 3123-3137.
[http://dx.doi.org/10.1039/C9TB02711D] [PMID: 32211704]
[137]
Beckler, B.; Cowan, A.; Farrar, N.; Murawski, A.; Robinson, A. Microwave heating of antibody-functionalized carbon nanotubes as a feasible cancer treatment. Biomed. Phys. Eng. Express, 2018, 4(4), 045025.
[http://dx.doi.org/10.1088/2057-1976/aac9fe]
[138]
Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev., 2012, 41(7), 2943-2970.
[http://dx.doi.org/10.1039/c2cs15355f] [PMID: 22388295]
[139]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[140]
Kong, F.Y.; Zhang, J.W.; Li, R.F.; Wang, Z.X.; Wang, W.J.; Wang, W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 2017, 22(9), 1445.
[http://dx.doi.org/10.3390/molecules22091445] [PMID: 28858253]
[141]
Noguez, C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C, 2007, 111, 3806-3819.
[http://dx.doi.org/10.1021/jp066539m]
[142]
El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett., 2005, 5(5), 829-834.
[http://dx.doi.org/10.1021/nl050074e] [PMID: 15884879]
[143]
Mafune, F.; Kohno, J.Y.; Taked, Y.; Kondow, T. Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and Laser induced size control. J. Phys. Chem. B, 2002, 106, 7575-7577.
[http://dx.doi.org/10.1021/jp020577y]
[144]
Song, J.Y.; Jang, H.K.; Kim, B.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem., 2009, 44, 1133-1138.
[http://dx.doi.org/10.1016/j.procbio.2009.06.005]
[145]
Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B, 2006, 110(32), 15700-15707.
[http://dx.doi.org/10.1021/jp061667w] [PMID: 16898714]
[146]
Yang, P.H.; Sun, X.; Chiu, J.F.; Sun, H.; He, Q.Y. Transferrin-mediated gold nanoparticle cellular uptake. Bioconjug. Chem., 2005, 16(3), 494-496.
[http://dx.doi.org/10.1021/bc049775d] [PMID: 15898713]
[147]
Qian, W.; Murakami, M.; Ichikawa, Y.; Che, Y. Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. J. Phys. Chem. C, 2011, 115, 23293-23298.
[http://dx.doi.org/10.1021/jp2079567]
[148]
Han, G.; Ghosh, P.; Rotello, V.M. Functionalized gold nanoparticles for drug delivery. Nanomedicine (Lond.), 2007, 2(1), 113-123.
[http://dx.doi.org/10.2217/17435889.2.1.113] [PMID: 17716197]
[149]
Tian, L.; Lu, L.; Qiao, Y.; Ravi, S.; Salatan, F.; Melancon, M.P. Stimuli-responsive gold nanoparticles for cancer diagnosis and therapy. J. Funct. Biomater., 2016, 7(3), 19.
[http://dx.doi.org/10.3390/jfb7020019] [PMID: 27455336]
[150]
Yao, C; Zhang, L; Wang, J; He, Y; Xin, Y Gold nanoparticle mediated phototherapy for cancer. J. Nanomater., 2016. Article ID 5497136.
[151]
Asadishad, B.; Vossoughi, M.; Alemzadeh, I. Folate-receptor-targeted delivery of doxorubicin using polyethylene glycol-functionalized gold nanoparticles. Ind. Eng. Chem. Res., 2010, 49(4), 1958-1963.
[http://dx.doi.org/10.1021/ie9011479]
[152]
Kim, B.; Han, G.; Toley, B.J.; Kim, C.K.; Rotello, V.M.; Forbes, N.S. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat. Nanotechnol., 2010, 5(6), 465-472.
[http://dx.doi.org/10.1038/nnano.2010.58] [PMID: 20383126]
[153]
Wang, F.; Wang, Y.C.; Dou, S.; Xiong, M.H.; Sun, T.M.; Wang, J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011, 5(5), 3679-3692.
[http://dx.doi.org/10.1021/nn200007z] [PMID: 21462992]
[154]
Prabaharan, M.; Grailer, J.J.; Pilla, S.; Steeber, D.A.; Gong, S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials, 2009, 30(30), 6065-6075.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.048] [PMID: 19674777]
[155]
Li, J.; Wang, X.; Wang, C.; Chen, B.; Dai, Y.; Zhang, R.; Song, M.; Lv, G.; Fu, D. The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells. ChemMedChem, 2007, 2(3), 374-378.
[http://dx.doi.org/10.1002/cmdc.200600264] [PMID: 17206735]
[156]
Paciotti, G.F.; Kingston, D.G.I.; Tamarkin, L. Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res., 2006, 67(1), 47-54.
[http://dx.doi.org/10.1002/ddr.20066]
[157]
Dreaden, E.C.; Mwakwari, S.C.; Sodji, Q.H.; Oyelere, A.K.; El-Sayed, M.A. Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug. Chem., 2009, 20(12), 2247-2253.
[http://dx.doi.org/10.1021/bc9002212] [PMID: 19919059]
[158]
Chen, Y.H.; Tsai, C.Y.; Huang, P.Y.; Chang, M.Y.; Cheng, P.C.; Chou, C.H.; Chen, D.H.; Wang, C.R.; Shiau, A.L.; Wu, C.L. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm., 2007, 4(5), 713-722.
[http://dx.doi.org/10.1021/mp060132k] [PMID: 17708653]
[159]
Patra, C.R.; Bhattacharya, R.; Wang, E.; Katarya, A.; Lau, J.S.; Dutta, S.; Muders, M.; Wang, S.; Buhrow, S.A.; Safgren, S.L.; Yaszemski, M.J.; Reid, J.M.; Ames, M.M.; Mukherjee, P.; Mukhopadhyay, D. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res., 2008, 68(6), 1970-1978.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6102] [PMID: 18339879]
[160]
Podsiadlo, P.; Sinani, V.A.; Bahng, J.H.; Kam, N.W.S.; Lee, J.; Kotov, N.A. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir, 2008, 24(2), 568-574.
[http://dx.doi.org/10.1021/la702782k] [PMID: 18052300]
[161]
Priya, K.; Iyer, P.R. Antiproliferative effects on tumor cells of the synthesized gold nanoparticles against Hep2 liver cancer cell line. Egyp Liver J, 2020, 10(15)
[http://dx.doi.org/10.1186/s43066-020-0017-4]
[162]
Wang, B.; Wang, J.H.; Liu, Q.; Huang, H.; Chen, M.; Li, K.; Li, C.; Yu, X.F.; Chu, P.K. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials, 2014, 35(6), 1954-1966.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.066] [PMID: 24331707]
[163]
Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[164]
Zrazhevskiy, P.; Sena, M.; Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev., 2010, 39(11), 4326-4354.
[http://dx.doi.org/10.1039/b915139g] [PMID: 20697629]
[165]
Oh, E.; Liu, R.; Nel, A.; Gemill, K.B.; Bilal, M.; Cohen, Y.; Medintz, I.L. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol., 2016, 11(5), 479-486.
[http://dx.doi.org/10.1038/nnano.2015.338] [PMID: 26925827]
[166]
Nagy, A.; Steinbrück, A.; Gao, J.; Doggett, N.; Hollingsworth, J.A.; Iyer, R. Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells. ACS Nano, 2012, 6(6), 4748-4762.
[http://dx.doi.org/10.1021/nn204886b] [PMID: 22587339]
[167]
Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev., 2016, 116(5), 2826-2885.
[http://dx.doi.org/10.1021/acs.chemrev.5b00148] [PMID: 26799741]
[168]
Li, X.; Yang, X.; Yuwen, L.; Yang, W.; Weng, L.; Teng, Z.; Wang, L. Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice. Biomaterials, 2016, 96, 24-32.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.014] [PMID: 27135714]
[169]
Kumar, P.; Singh, S.; Gupta, B.K. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale, 2016, 8(30), 14297-14340.
[http://dx.doi.org/10.1039/C5NR06965C] [PMID: 27424665]
[170]
Arshad, E.; Anas, A.; Asok, A.; Jasmin, C.; Pai, S.S.; Bright Singh, I.I.; Mohandas, A.; Biju, V. Fluorescence detection of the pathogenic bacteria Vibrio harveyi in solution and animal cells using semiconductor quantum dots. RSC Advances, 2016, 6, 15686-15693.
[http://dx.doi.org/10.1039/C5RA24161H]
[171]
Nakata, Y.; Mukai, K.; Sugawara, M.; Ohtsubo, K.; Ishikawa, H.; Yokoyama, N. Molecular beam epitaxial growth of InAs self-assembled quantum dots with lightemission at 1.3μm. J. Cryst. Growth, 2000, 8, 93-99.
[http://dx.doi.org/10.1016/S0022-0248(99)00466-2]
[172]
Bertino, M.F.; Gadipalli, R.R.; Martin, L.A.; Rich, L.E.; Yamilov, A.; Heckman, B.R. Quantum dots by ultraviolet and X-ray lithography. Nanotechnology, 2007, 18, 315603.
[http://dx.doi.org/10.1088/0957-4484/18/31/315603]
[173]
Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N.; Kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett., 2012, 7(1), 480.
[http://dx.doi.org/10.1186/1556-276X-7-480] [PMID: 22929008]
[174]
Zhang, H.; Yee, D.; Wang, C. Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine (Lond.), 2008, 3(1), 83-91.
[http://dx.doi.org/10.2217/17435889.3.1.83] [PMID: 18393668]
[175]
Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol., 2007, 25(10), 1165-1170.
[http://dx.doi.org/10.1038/nbt1340] [PMID: 17891134]
[176]
Xu, H.; Chen, C.; Peng, J.; Tang, H.W.; Liu, C.M.; He, Y.; Chen, Z.Z.; Li, Y.; Zhang, Z.L.; Pang, D.W. Evaluation of the bioconjugation efficiency of different quantum dots as probes for immunostaining tumor-marker proteins. Appl. Spectrosc., 2010, 64(8), 847-852.
[http://dx.doi.org/10.1366/000370210792081154] [PMID: 20719046]
[177]
Wu, X.; Liu, H.; Liu, J.; Haley, K.N.; Treadway, J.A.; Larson, J.P.; Ge, N.; Peale, F.; Bruchez, M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol., 2003, 21(1), 41-46.
[http://dx.doi.org/10.1038/nbt764] [PMID: 12459735]
[178]
Kaul, Z.; Yaguchi, T.; Kaul, S.C.; Hirano, T.; Wadhwa, R.; Taira, K. Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res., 2003, 13(6), 503-507.
[http://dx.doi.org/10.1038/sj.cr.7290194] [PMID: 14728808]
[179]
Härmä, H.; Soukka, T.; Lövgren, T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin. Chem., 2001, 47(3), 561-568.
[http://dx.doi.org/10.1093/clinchem/47.3.561] [PMID: 11238312]
[180]
Pathak, S.; Choi, S.K.; Arnheim, N.; Thompson, M.E. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc., 2001, 123(17), 4103-4104.
[http://dx.doi.org/10.1021/ja0058334] [PMID: 11457171]
[181]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.; Nie, S. in vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22(8), 969-976.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[182]
Cai, W.; Chen, K.; Li, Z.B.; Gambhir, S.S.; Chen, X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med., 2007, 48(11), 1862-1870.
[http://dx.doi.org/10.2967/jnumed.107.043216] [PMID: 17942800]
[183]
Mulder, W.J.; Castermans, K.; van Beijnum, J.R.; Oude Egbrink, M.G.; Chin, P.T.; Fayad, Z.A.; Löwik, C.W.; Kaijzel, E.L.; Que, I.; Storm, G.; Strijkers, G.J.; Griffioen, A.W.; Nicolay, K. Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis, 2009, 12(1), 17-24.
[http://dx.doi.org/10.1007/s10456-008-9124-2] [PMID: 19067197]
[184]
Yong, K.T.; Hu, R.; Roy, I.; Ding, H.; Vathy, L.A.; Bergey, E.J.; Mizuma, M.; Maitra, A.; Prasad, P.N. Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods. ACS Appl. Mater. Interfaces, 2009, 1(3), 710-719.
[http://dx.doi.org/10.1021/am8002318] [PMID: 20160901]
[185]
Nifontova, G.; Ramos-Gomes, F.; Baryshnikova, M.; Alves, F.; Nabiev, I.; Sukhanova, A. Cancer Cell Targeting With Functionalized Quantum Dot-Encoded Polyelectrolyte Microcapsules. Front Chem., 2019, 7, 34.
[http://dx.doi.org/10.3389/fchem.2019.00034] [PMID: 30761294]
[186]
Shivaji, K.; Mani, S.; Ponmurugan, P.; De Castro, C.S. Green-synthesis-derived cds quantum dots using tea leaf extract: Antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl. Nano Mater., 2018, 1(4), 1683-1693.
[http://dx.doi.org/10.1021/acsanm.8b00147]
[187]
Kesse, S.; Boakye-Yiadom, K.O.; Ochete, B.O.; Opoku-Damoah, Y.; Akhtar, F.; Filli, M.S.; Asim Farooq, M.; Aquib, M.; Maviah Mily, B.J.; Murtaza, G.; Wang, B. Mesoporous silica nanomaterials: Versatile nanocarriers for cancer theranostics and drug and gene delivery. Pharmaceutics, 2019, 11(2), 77.
[http://dx.doi.org/10.3390/pharmaceutics11020077] [PMID: 30781850]
[188]
Bansal, K.K.; Mishra, D.K.; Rosling, A.; Rosenholm, A.M. Therapeutic potentials of polymer-coated mesoporous silica nanoparticles. Appl. Sci. (Basel), 2020, 10, 289.
[http://dx.doi.org/10.3390/app10010289]
[189]
Gisbert-Garzarán, M.; Manzano, M.; Vallet-Regí, M. Mesoporous silica nanoparticles for the treatment of complex bone diseases: Bone cancer, bone infection and osteoporosis. Pharmaceutics, 2020, 12(1), 83.
[http://dx.doi.org/10.3390/pharmaceutics12010083] [PMID: 31968690]
[190]
Nguyen, T.L.; Choi, Y.; Kim, J. Mesoporous silica as a versatile platform for cancer immunotherapy. Adv. Mater., 2018, 1803953, 1-17.
[http://dx.doi.org/10.1002/adma.201803953] [PMID: 30417454]
[191]
Liu, H.J.; Xu, P. Smart mesoporous silica nanoparticles for protein delivery. Nanomaterials (Basel), 2019, 9(4), E511.
[http://dx.doi.org/10.3390/nano9040511] [PMID: 30986952]
[192]
Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B, 2018, 8(2), 165-177.
[http://dx.doi.org/10.1016/j.apsb.2018.01.007] [PMID: 29719777]
[193]
Hassan, Z.; Reza, K.O.; Yahya, H.M.; Leila, G.; Legha, A.; Bizhan, M. Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles. Pharm. Dev. Technol., 2019, 24(1), 127-132.
[http://dx.doi.org/10.1080/10837450.2018.1431930] [PMID: 29357725]
[194]
Moodley, T.; Singh, M. Polymeric mesoporous silica nanoparticles for enhanced delivery of 5-Fluorouracil in vitro. Pharmaceutics, 2019, 11(6), 288.
[http://dx.doi.org/10.3390/pharmaceutics11060288] [PMID: 31248179]
[195]
Saroj, S.; Rajput, S.J. Etoposide encapsulated functionalized mesoporous silica nanoparticles: Synthesis, characterization and effect of functionalization on dissolution kinetics in simulated and biorelevant media. J. Drug Deliv. Sci. Technol., 2018, 44, 27-40.
[http://dx.doi.org/10.1016/j.jddst.2017.11.020]
[196]
Du, X.; Li, X.; Xiong, L.; Zhang, X.; Kleitz, F.; Qiao, S.Z. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials, 2016, 91, 90-127.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.019] [PMID: 27017579]
[197]
Zheng, Y.; Fahrenholtz, C.D.; Hackett, C.L.; Ding, S.; Day, C.S.; Dhall, R.; Marrs, G.S.; Gross, M.D.; Singh, R.; Bierbach, U. Large-pore functionalized mesoporous silica nanoparticles as drug delivery vector for a highly cytotoxic hybrid platinum-acridine anticancer agent. Chemistry, 2017, 23(14), 3386-3397.
[http://dx.doi.org/10.1002/chem.201604868] [PMID: 28122141]
[198]
She, X.; Chen, L.; Li, C.; He, C.; He, L.; Kong, L. Functionalization of Hollow Mesoporous Silica Nanoparticles for Improved 5-FU Loading. J. Nanomater., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/872035]
[199]
Nel, A.E.; Zink, J.I.; Meng, H. Lipid Bilayer Coated Mesoporous Silica Nanoparticles with a High Loading Capacity for One or More Anticancer Agents U.S. Patent 20160008283A1, 2016.
[200]
Wang, S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater., 2009, 117, 1-9.
[http://dx.doi.org/10.1016/j.micromeso.2008.07.002]
[201]
Galarneau, A.; Cambon, H.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New J. Chem., 2003, 27, 73-79.
[http://dx.doi.org/10.1039/b207378c]
[202]
Kleitz, F.; Liu, D.; Gopinathan, M.A.; Park, I.S.; Solovyov, L.A.; Shmakov, A.N.; Ryoo, R. Large cage face-centered-cubic fm3m mesoporous silica: Synthesis and structure. J. Phys. Chem. B, 2003, 107, 14296-14300.
[http://dx.doi.org/10.1021/jp036136b]
[203]
Kalbasi, J.R.; Zirakbash, A. Synthesis, characterization and drug release studies of poly(2-hydroxyethyl methacrylate)/KIT-5 nanocomposite as an innovative organic–inorganic hybrid carrier system. RSC Advances, 2015, 5, 12463-12471.
[http://dx.doi.org/10.1039/C4RA13930E]
[204]
Jammaer, J.; Aerts, A.; D’Haen, J.; Seo, J.W.; Martens, J.A. Convenient synthesis of ordered mesoporous silica at room temperature and quasi-neutral pH. J. Mater. Chem., 2009, 19, 8290-8293.
[http://dx.doi.org/10.1039/b915273c]
[205]
Vialpando, M.; Aerts, A.; Persoons, J.; Martens, J.; Van Den Mooter, G. Evaluation of ordered mesoporous silica as a carrier for poorly soluble drugs: Influence of pressure on the structure and drug release. J. Pharm. Sci., 2011, 100(8), 3411-3420.
[http://dx.doi.org/10.1002/jps.22535] [PMID: 21387318]
[206]
Kumar, D.; Schumacher, K.; von Hohenesche, C.D.F.; Grun, M.; Unger, K.K. MCM-41, MCM-48 and related mesoporous adsorbents: Their synthesis and characterisation. Colloids Surf. A Physicochem. Eng. Asp., 2001, 187-188.
[http://dx.doi.org/10.1016/S0927-7757(01)00638-0]
[207]
Wang, S.; Li, H. Structure directed reversible adsorption of organic dye on mesoporous silica in aqueous solution. Microporous Mesoporous Mater., 2006, 97, 21-26.
[http://dx.doi.org/10.1016/j.micromeso.2006.08.005]
[208]
Ukmar, T.; Planinšek, O. Ordered mesoporous silicates as matrices for controlled release of drugs. Acta Pharm., 2010, 60(4), 373-385.
[http://dx.doi.org/10.2478/v1007-010-0037-4] [PMID: 21169131]
[209]
Zhao, D.; Zhou, W.; Wan, Y. Ordered Mesoporous Materials; Wiley-VCH Verlag GmbH   Co. KGaA: Weinheim, Germany, 2013.
[210]
Kim, K.S.; Park, M.; Kim, T.W.; Kim, J.E.; Papoulis, D.; Komarneni, S.; Choi, J. Adsorbate-dependent uptake behavior of topographically bi-functionalized ordered mesoporous silica materials. J. Porous Mater., 2015, 22, 1297-1303.
[http://dx.doi.org/10.1007/s10934-015-0008-8]
[211]
Lu, G.Q.; Zhao, X.S. Nanoporous Materials: Science and Engineering; Series on Chemical Engineering; Imperial College Press: London, UK; World Scientific Publishing Co.: Singapore, 2004.
[212]
Ge, S.; Geng, W.; He, X.; Zhao, J.; Zhou, B.; Duan, L.; Wu, Y.; Zhang, Q. Effect of framework structure, pore size and surface modification on the adsorption performance of methylene blue and Cu2+ in mesoporous silica. Colloids Surf. A Physicochem. Eng. Asp., 2018, 539, 154-162.
[http://dx.doi.org/10.1016/j.colsurfa.2017.12.016]
[213]
Mayoral, A.; Blanco, R.M.; Diaz, I. Location of enzyme in lipase-SBA-12 hybrid biocatalyst. J. Mol. Catal., B Enzym., 2013, 90, 23-25.
[http://dx.doi.org/10.1016/j.molcatb.2013.01.012]
[214]
Lercher, J.A.; Kaliaguine, S.; Gobin, O.C. SBA-16 Materials Synthesis, Diffusion and Sorption Properties; Technical University of Munich: Munich, Germany, 2006.
[215]
Chen, L.; She, X.; Wang, T.; He, L.; Shigdar, S.; Duan, W.; Kong, L. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles. Nanoscale, 2015, 7(33), 14080-14092.
[http://dx.doi.org/10.1039/C5NR03527A] [PMID: 26242620]
[216]
Liu, K.; Wang, Z.Q.; Wang, S.J.; Liu, P.; Qin, Y.H.; Ma, Y.; Li, X.C.; Huo, Z.J. Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation. Int. J. Nanomedicine, 2015, 10, 6445-6454.
[PMID: 26491300]
[217]
Khosravian, P.; Shafiee Ardestani, M.; Khoobi, M.; Ostad, S.N.; Dorkoosh, F.A.; Akbari Javar, H.; Amanlou, M. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. OncoTargets Ther., 2016, 9, 7315-7330.
[http://dx.doi.org/10.2147/OTT.S113815] [PMID: 27980423]
[218]
Quan, G.; Pan, X.; Wang, Z.; Wu, Q.; Li, G.; Dian, L.; Chen, B.; Wu, C. Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery. J. Nanobiotechnology, 2015, 13, 7.
[http://dx.doi.org/10.1186/s12951-015-0068-6] [PMID: 25643602]
[219]
Radhakrishnan, K.; Tripathy, J.; Datey, A.; Chakravortty, D.; Raichur, A.M. Mesoporous silica–chondroitin sulphate hybrid nanoparticles for targeted and bio-responsive drug delivery. New J. Chem., 2015, 39, 1754-1760.
[http://dx.doi.org/10.1039/C4NJ01430H]
[220]
Chen, X.; Sun, H.; Hu, J.; Han, X.; Liu, H.; Hu, Y. Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery. Colloids Surf. B Biointerfaces, 2017, 152, 77-84.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.010] [PMID: 28088015]
[221]
Xie, X.; Li, F.; Zhang, H.; Lu, Y.; Lian, S.; Lin, H.; Gao, Y.; Jia, L. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur. J. Pharm. Sci., 2016, 83, 28-35.
[http://dx.doi.org/10.1016/j.ejps.2015.12.014] [PMID: 26690044]
[222]
Brevet, D.; Gary-Bobo, M.; Raehm, L.; Richeter, S.; Hocine, O.; Amro, K.; Loock, B.; Couleaud, P.; Frochot, C.; Morère, A.; Maillard, P.; Garcia, M.; Durand, J.O. Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem. Commun. (Camb.), 2009, (12), 1475-1477.
[http://dx.doi.org/10.1039/b900427k] [PMID: 19277361]
[223]
Murugan, C.; Rayappan, K.; Thangam, R.; Bhanumathi, R.; Shanthi, K.; Vivek, R.; Thirumurugan, R.; Bhattacharyya, A.; Sivasubramanian, S.; Gunasekaran, P.; Kannan, S. Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Sci. Rep., 2016, 6, 34053.
[http://dx.doi.org/10.1038/srep34053] [PMID: 27725731]
[224]
Goel, S.; Chen, F.; Hong, H.; Valdovinos, H.F.; Hernandez, R.; Shi, S.; Barnhart, T.E.; Cai, W. VEGF₁₂₁-conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl. Mater. Interfaces, 2014, 6(23), 21677-21685.
[http://dx.doi.org/10.1021/am506849p] [PMID: 25353068]
[225]
Zhang, B.; Sai Lung, P.; Zhao, S.; Chu, Z.; Chrzanowski, W.; Li, Q. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci. Rep., 2017, 7(1), 7315.
[http://dx.doi.org/10.1038/s41598-017-07588-9] [PMID: 28779154]
[226]
Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small, 2007, 3(11), 1941-1949.
[http://dx.doi.org/10.1002/smll.200700378] [PMID: 17963284]
[227]
Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J., 2016, 20(1), 1-11.
[PMID: 26286636]
[228]
Bednarski, M.; Dudek, M.; Knutelska, J.; Nowiński, L.; Sapa, J.; Zygmunt, M.; Nowak, G.; Luty-Błocho, M.; Wojnicki, M.; Fitzner, K.; Tęsiorowski, M. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: in vivo studies. Pharmacol. Rep., 2015, 67(3), 405-409.
[http://dx.doi.org/10.1016/j.pharep.2014.10.019] [PMID: 25933945]
[229]
Naqvi, S.; Samim, M.; Abdin, M.; Ahmed, F.J.; Maitra, A.; Prashant, C.; Dinda, A.K. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomedicine, 2010, 5, 983-989.
[http://dx.doi.org/10.2147/IJN.S13244] [PMID: 21187917]
[230]
Ma, S.; Zhou, J.; Zhang, Y.; He, Y.; Jiang, Q.; Yue, D.; Xu, X.; Gu, Z. Highly stable fluorinated nanocarriers with iRGD for overcoming the stability dilemma and enhancing tumor penetration in an orthotopic breast cancer. ACS Appl. Mater. Interfaces, 2016, 8(42), 28468-28479.
[http://dx.doi.org/10.1021/acsami.6b09633] [PMID: 27712073]
[231]
Wang, Y.; Santos, A.; Evdokiou, A.; Losic, D. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(36), 7153-7172.
[http://dx.doi.org/10.1039/C5TB00956A] [PMID: 32262822]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy