Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Investigation of Diagnostic Proteins by 2D Electrophoresis in Major Depression Model Induced by Forced Swim Test in Rats

Author(s): Tuğçe Duman, Enes Akyüz, Huri Bulut, Abdurrahim Koçyiğit, Ahmet Tülek, Ersin Karataş* and İsmet Kırpınar

Volume 28, Issue 2, 2021

Published on: 29 July, 2020

Page: [195 - 204] Pages: 10

DOI: 10.2174/0929866527999200729183729

Price: $65

Abstract

Background: Aside from its pervasiveness, whereby it affects as much as 20% of the world's population, depression continues to be one of the most crucial psychiatric problems due to the loss of power it causes by disrupting daily life functioning, containing economic consequences, and having a high suicidal tendency. Major depression (MD) is a systemic and multifactorial disorder involving complex interactions between genetic predisposition and disturbances of various molecular pathways.

Objectives: In our current study, we aimed to identify the proteins obtained from serum samples that change during depression with the MD model.

Methods: The MD model was applied through the forced swim test in rats. 14 Winstar Albino male rats were divided into two equal groups as follows: depression and control groups. Serum samples were separated by chromatographic methods and then compared with two-dimensional (2D) electrophoresis.

Results: A total of 9 potential diagnostic protein sequences were identified, which were distinguished with computer software. During the last phase of the study, the Matrix-Assisted Laser Desorption/ Ionization – Time of Flight (MALDI-TOF) analysis, the previous expression sequences identified among the groups were determined and classified. By comparing protein expressions, it was concluded that 9 different points could be used together as a potential biomarker.

Conclusion: Results can help us identify a new diagnostic system that can be used to diagnose MD.

Keywords: Depression model, rats, 2D electrophoresis, protein, forcing swim test, major depression.

Graphical Abstract
[1]
Clayborne, Z.M.; Varin, M.; Colman, I. Systematic review and meta-analysis: Adolescent depression and long-term psychosocial outcomes. J. Am. Acad. Child Adolesc. Psychiatry, 2019, 58(1), 72-79.
[http://dx.doi.org/10.1016/j.jaac.2018.07.896]
[2]
Cryan, J.F.; Markou, A.; Lucki, I. Assessing antidepressant activity in rodents: Recent developments and future needs. Trends Pharmacol. Sci., 2002, 23(5), 238-245.
[http://dx.doi.org/10.1016/S0165-6147(02)02017-5]
[3]
Evans, W.E.; McLeod, H.L. Pharmacogenomics- drug disposition, drug targets, and side effects. N. Engl. J. Med., 2003, 348(6), 538-549.
[http://dx.doi.org/10.1056/NEJMra020526]
[4]
Arango, V.; Underwood, M.D.; Mann, J.J. Serotonin brain circuits involved in major depression and suicide. Prog. Brain Res., 2002, 136, 443-453.
[http://dx.doi.org/10.1016/S0079-6123(02)36037-0]
[5]
Al-Harbi, K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer. Adherence, 2012, 6, 369-388.
[http://dx.doi.org/10.2147/PPA.S29716]
[6]
Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nature, 2008, 455(7215), 894-902.
[http://dx.doi.org/10.1038/nature07455]
[7]
Smith, K.M.; Renshaw, P.F.; Bilello, J. The diagnosis of depression: Current and emerging methods. Compr. Psychiatry, 2013, 54(1), 1-6.
[http://dx.doi.org/10.1016/j.comppsych.2012.06.006]
[8]
Khawaja, X.; Xu, J.; Liang, J.J.; Barrett, J.E. Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J. Neurosci. Res., 2004, 75(4), 451-460.
[http://dx.doi.org/10.1002/jnr.10869]
[9]
Mu, J.; Yang, Z.S.; Xie, P. Proteomic analysis of a rat model of depression. Expert Rev. Proteomics, 2008, 5(2), 315-320.
[http://dx.doi.org/10.1586/14789450.5.2.315]
[10]
Krishnan, V.; Nestler, E.J. Animal models of depression: Molecular perspectives. Curr. Top. Behav. Neurosci., 2011, 7, 121-147.
[http://dx.doi.org/10.1007/7854_2010_108]
[11]
Siopi, A.; Deda, O.; Manou, V.; Kosmidis, I.; Komninou, D.; Raikos, N.; Theodoridis, G.A.; Mougios, V. Comparison of the serum metabolic fingerprint of different exercise modes in men with and without metabolic syndrome. Metabolites, 2019, 9(6), 116.
[http://dx.doi.org/10.3390/metabo9060116]
[12]
Lee, M.Y.; Kim, E.Y.; Kim, S.H.; Cho, K.C.; Ha, K.; Kim, K.P.; Ahn, Y.M. Discovery of serum protein biomarkers in drug-free patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 69, 60-68.
[http://dx.doi.org/10.1016/j.pnpbp.2016.04.009]
[13]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0]
[14]
Beidas, R.S.; Stewart, R.E.; Walsh, L.; Lucas, S.; Downey, M.M.; Jackson, K.; Fernandez, T.; Mandell, D.S. Free, brief, and validated: Standardized instruments for low-resource mental health settings. Cognit. Behav. Pract., 2015, 22(1), 5-19.
[http://dx.doi.org/10.1016/j.cbpra.2014.02.002]
[15]
Pedrelli, P.; Blais, M.A.; Alpert, J.E.; Shelton, R.C.; Walker, R.S.; Fava, M. Reliability and validity of the Symptoms of Depression Questionnaire (SDQ). CNS Spectr., 2014, 19(6), 535-546.
[http://dx.doi.org/10.1017/S1092852914000406]
[16]
Serra, F.; Spoto, A.; Ghisi, M.; Vidotto, G. Formal psychological assessment in evaluating depression: A new methodology to build exhaustive and irredundant adaptive questionnaires. PLoS One, 2015, 10(4), e0122131.
[http://dx.doi.org/10.1371/journal.pone.0122131]
[17]
Krishnan, V.; Nestler, E.J. Linking molecules to mood: New insight into the biology of depression. Am. J. Psychiatry, 2010, 167(11), 1305-1320.
[http://dx.doi.org/10.1176/appi.ajp.2009.10030434]
[18]
Richelson, E.; Nelson, A. Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J. Pharmacol. Exp. Ther., 1984, 230(1), 94-102.
[19]
Nestler, E.J.; Gould, E.; Manji, H.; Buncan, M.; Duman, R.S.; Greshenfeld, H.K.; Hen, R.; Koester, S.; Lederhendler, I.; Meaney, M.; Robbins, T.; Winsky, L.; Zalcman, S. Preclinical models: Status of basic research in depression. Biol. Psychiatry, 2002, 52(6), 503-528.
[http://dx.doi.org/10.1016/S0006-3223(02)01405-1]
[20]
Perić, I.; Costina, V.; Stanisavljević, A.; Findeisen, P.; Filipović, D. Proteomic characterization of hippocampus of chronically socially isolated rats treated with fluoxetine: Depression-like behaviour and fluoxetine mechanism of action. Neuropharmacology, 2018, 135, 268-283.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.034]
[21]
Zhang, Y.; Yuan, S.; Pu, J.; Yang, L.; Zhou, X.; Liu, L.; Jiang, X.; Zhang, H.; Teng, T.; Tian, L.; Xie, P. Integrated metabolomics and proteomics analysis of hippocampus in a rat model of depression. Neuroscience, 2018, 371, 207-220.
[http://dx.doi.org/10.1016/j.neuroscience.2017.12.001]
[22]
Ráez, A.; Oliveras, I.; Río-Álamos, C.; Díaz-Morán, S.; Cañete, T.; Blázquez, G.; Tobeña, A.; Fernández-Teruel, A. A missing link between depression models: Forced swimming test, helplessness and passive coping in genetically heterogeneous NIH-HS rats. Behav. Processes, 2020, 177, 104142.
[http://dx.doi.org/10.1016/j.beproc.2020.104142]
[23]
Feshitan, J.A.; Chen, C.C.; Kwan, J.J.; Borden, M.A. Microbubble size isolation by differential centrifugation. J. Colloid Interface Sci., 2009, 329(2), 316-324.
[http://dx.doi.org/10.1016/j.jcis.2008.09.066]
[24]
Dörner, T.; Radbruch, A. Antibodies and B cell memory in viral immunity. Immunity, 2007, 27(3), 384-392.
[http://dx.doi.org/10.1016/j.immuni.2007.09.002]
[25]
Yamanaka, K.; Kakuta, Y.; Miyagawa, S.; Nakazawa, S.; Kato, T.; Abe, T.; Imamura, R.; Okumi, M.; Maeda, A.; Okuyama, H.; Mizuno, M.; Nonomura, N. Depression of complement regulatory factors in rat and human renal grafts is associated with the progress of acute T-cell mediated rejection. PLoS One, 2016, 11(2), e0148881.
[http://dx.doi.org/10.1371/journal.pone.0148881]
[26]
Teng, G.; Papavasiliou, F.N. Immunoglobulin somatic hypermutation. Annu. Rev. Genet., 2007, 41, 107-120.
[http://dx.doi.org/10.1146/annurev.genet.41.110306.130340]
[27]
Gunnarsson, R.; Åkerström, B.; Hansson, S.R.; Gram, M. Recombinant alpha-1-microglobulin: A potential treatment for preeclampsia. Drug Discov. Today, 2017, 22(4), 736-743.
[http://dx.doi.org/10.1016/j.drudis.2016.12.005]
[28]
Gui, S.W.; Liu, Y.Y.; Zhong, X.G.; Liu, X.; Zheng, P.; Pu, J.C.; Zhou, J.; Chen, J.J.; Zhao, L.B.; Liu, L.X.; Xu, G.; Xie, P. Plasma disturbance of phospholipid metabolism in major depressive disorder by integration of proteomics and metabolomics. Neuropsychiatr. Dis. Treat., 2018, 14, 1451-1461.
[http://dx.doi.org/10.2147/NDT.S164134]
[29]
McDonnell, T.; Artim-Esen, B.; Wincup, C.; Ripoll, V.M.; Isenberg, D.; Giles, I.P.; Rahman, A.; Pericleous, C. Antiphospholipid Antibodies to domain I of Beta-2-glycoprotein I show different subclass predominance in comparison to antibodies to Whole Beta-2-glycoprotein I. Front. Immunol., 2018, 9, 2244.
[http://dx.doi.org/10.3389/fimmu.2018.02244]
[30]
Ogle, M.E.; Segar, C.E.; Sridhar, S.; Botchwey, E.A. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp. Biol. Med. (Maywood), 2016, 241(10), 1084-1097.
[http://dx.doi.org/10.1177/1535370216650293]
[31]
Goodman, D.S. Plasma retinol-binding protein. Ann. N. Y. Acad. Sci., 1980, 348, 378-390.
[http://dx.doi.org/10.1111/j.1749-6632.1980.tb21314.x]
[32]
Soprano, D.R.; Smith, J.E.; Goodman, D.S. Effect of retinol status on retinol-binding protein biosynthesis rate and translatable messenger RNA level in rat liver. J. Biol. Chem., 1982, 257(13), 7693-7697.
[33]
Simon, T.; Cook, V.R.; Rao, A.; Weinberg, R.B. Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth. J. Lipid Res., 2011, 52(11), 1984-1994.
[http://dx.doi.org/10.1194/jlr.M017418]
[34]
Kalogeris, T.J.; Rodriguez, M.D.; Tso, P. Control of synthesis and secretion of intestinal apolipoprotein A-IV by lipid. J. Nutr., 1997, 127(3), 537S-543S.
[http://dx.doi.org/10.1093/jn/127.3.537S]
[35]
Zheng, W.; Lu, Y.M.; Lu, G.Y.; Zhao, Q.; Cheung, O.; Blaner, W.S. Transthyretin, thyroxine, and retinol-binding protein in human cerebrospinal fluid: Effect of lead exposure. Toxicol. Sci., 2001, 61(1), 107-114.
[http://dx.doi.org/10.1093/toxsci/61.1.107]
[36]
Sullivan, G.M.; Hatterer, J.A.; Herbert, J.; Chen, X.; Roose, S.P.; Attia, E.; Mann, J.J.; Marangell, L.B.; Goetz, R.R.; Gorman, J.M. Low levels of transthyretin in the CSF of depressed patients. Am. J. Psychiatry, 1999, 156(5), 710-715.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy