Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Progress of the Anticancer Agents Related to the Microtubules Target

Author(s): Olagoke Zacchaeus Olatunde, Jianping Yong* and Canzhong Lu*

Volume 20, Issue 20, 2020

Page: [2165 - 2192] Pages: 28

DOI: 10.2174/1389557520666200729162510

Price: $65

Abstract

Anticancer drugs based on the microtubules target are potent mitotic spindle poison agents, which interact directly with the microtubules, and were classified as microtubule-stabilizing agents and microtubule-destabilizing agents. Researchers have worked tremendously towards the improvements of anticancer drugs, in terms of improving the efficacy, solubility and reducing the side effects, which brought about advancement in chemotherapy. In this review, we focused on describing the discovery, structures and functions of the microtubules as well as the progress of anticancer agents related to the microtubules, which will provide adequate references for researchers.

Keywords: Microtubules, structures, functions, mechanism, target, anticancer agents.

Graphical Abstract
[1]
Slautterback, D.B. Cytoplasmic Microtubules. I. Hydra. J. Cell Biol., 1963, 18, 367-388.
[http://dx.doi.org/10.1083/jcb.18.2.367] [PMID: 14079495]
[2]
Ledbetter, M.C.; Porter, K.R.A. Microtubule in plant cell fine structure. J. Cell Biol., 1963, 19(1), 239-250.
[http://dx.doi.org/10.1083/jcb.19.1.239] [PMID: 19866635]
[3]
Roth, L.E.; Daniels, E.W. Electron microscopic studies of mitosis in amebae. II. The giant ameba Pelomyxa carolinensis. J. Cell Biol., 1962, 12, 57-78.
[http://dx.doi.org/10.1083/jcb.12.1.57] [PMID: 14494393]
[4]
Sabatini, D.D.; Bensch, K.; Barrnett, R.J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol., 1963, 17, 19-58.
[http://dx.doi.org/10.1083/jcb.17.1.19] [PMID: 13975866]
[5]
Wells, W.A. Microtubules get a name. J. Cell Biol., 2005, 168(6), 852-853.
[http://dx.doi.org/10.1083/jcb1686fta1]
[6]
Taylor, E.W. The mechanism of colchicine inhibition of mitosis. I. Kinetics of inhibition and the binding of h3-colchicine. J. Cell Biol., 1965, 25, 145-160.
[http://dx.doi.org/10.1083/jcb.25.1.145] [PMID: 14342828]
[7]
Borisy, G.G.; Taylor, E.W. The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J. Cell Biol., 1967a, 34(2), 525-533.
[http://dx.doi.org/10.1083/jcb.34.2.525] [PMID: 6068183]
[8]
Borisy, G.G.; Taylor, E.W. The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol., 1967b, 34(2), 535-548.
[http://dx.doi.org/10.1083/jcb.34.2.535] [PMID: 6035643]
[9]
Mohri, H. Amino-acid composition of “Tubulin” constituting microtubules of sperm flagella. Nature, 1968, 217(5133), 1053-1054.
[http://dx.doi.org/10.1038/2171053a0] [PMID: 4296139]
[10]
Satir, P. Studies on cilia. 3. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J. Cell Biol., 1968, 39(1), 77-94.
[http://dx.doi.org/10.1083/jcb.39.1.77] [PMID: 5678451]
[11]
Shelanski, M.L.; Taylor, E.W. Isolation of a protein subunit from microtubules. J. Cell Biol., 1967, 34(2), 549-554.
[http://dx.doi.org/10.1083/jcb.34.2.549] [PMID: 6035644]
[12]
Weisenberg, R.C.; Borisy, G.G.; Taylor, E.W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry, 1968, 7(12), 4466-4479.
[http://dx.doi.org/10.1021/bi00852a043] [PMID: 5700666]
[13]
Gibbons, I.R. Studies on the protein components of Cilia from Tetrahymena Pyriformis. Proc. Natl. Acad. Sci. USA, 1963, 50, 1002-1010.
[http://dx.doi.org/10.1073/pnas.50.5.1002] [PMID: 14082342]
[14]
Amos, L.; Klug, A. Arrangement of subunits in flagellar microtubules. J. Cell Sci., 1974, 14(3), 523-549.
[PMID: 4830832]
[15]
Chen, H.; Lin, Z.; Arnst, K.E.; Miller, D.D.; Li, W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules, 2017, 22(8), 1281.
[http://dx.doi.org/10.3390/molecules22081281] [PMID: 28763044]
[16]
Allen, C.; Borisy, G.G. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J. Mol. Biol., 1974, 90(2), 381-402.
[http://dx.doi.org/10.1016/0022-2836(74)90381-7] [PMID: 4476803]
[17]
David-Pfeuty, T.; Erickson, H.P.; Pantaloni, D. Guanosinetriphosphatase activity of tubulin associated with microtubule assembly. Proc. Natl. Acad. Sci. USA, 1977, 74(12), 5372-5376.
[http://dx.doi.org/10.1073/pnas.74.12.5372] [PMID: 202954]
[18]
Macneal, R.K.; Purich, D.L. Chromium (III)-nucleotide complexes as probes of the guanosine 5′-triphosphate-induced microtubule assembly. Arch. Biochem. Biophys., 1978, 191(1), 233-243.
[http://dx.doi.org/10.1016/0003-9861(78)90086-3] [PMID: 736563]
[19]
Alushin, G.M.; Lander, G.C.; Kellogg, E.H.; Zhang, R.; Baker, D.; Nogales, E. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell, 2014, 157(5), 1117-1129.
[http://dx.doi.org/10.1016/j.cell.2014.03.053] [PMID: 24855948]
[20]
Margolis, R.L.; Wilson, L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell, 1978, 13(1), 1-8.
[http://dx.doi.org/10.1016/0092-8674(78)90132-0] [PMID: 620419]
[21]
Mitchison, T.; Kirschner, M. Dynamic instability of microtubule growth. Nature, 1984a, 312(5991), 237-242.
[http://dx.doi.org/10.1038/312237a0] [PMID: 6504138]
[22]
Mitchison, T.; Kirschner, M. Microtubule assembly nucleated by isolated centrosomes. Nature, 1984b, 312(5991), 232-237.
[http://dx.doi.org/10.1038/312232a0] [PMID: 6504137]
[23]
Rodionov, V.I.; Borisy, G.G. Microtubule treadmilling in vivo. Science, 1997, 275(5297), 215-218.
[http://dx.doi.org/10.1126/science.275.5297.215] [PMID: 8985015]
[24]
Wegner, A. Head to tail polymerization of actin. J. Mol. Biol., 1976, 108(1), 139-150.
[http://dx.doi.org/10.1016/S0022-2836(76)80100-3] [PMID: 1003481]
[25]
Gelfand, V.I.; Bershadsky, A.D. Microtubule dynamics: Mechanism, regulation, and function. Annu. Rev. Cell Biol., 1991, 7, 93-116.
[http://dx.doi.org/10.1146/annurev.cb.07.110191.000521] [PMID: 1809357]
[26]
Erickson, H.P.; O’Brien, E.T. Microtubule dynamic instability and GTP hydrolysis. Annu. Rev. Biophys. Biomol. Struct., 1992, 21, 145-166.
[http://dx.doi.org/10.1146/annurev.bb.21.060192.001045] [PMID: 1525467]
[27]
Walker, M.J.A.; Curtis, M.J.; Hearse, D.J.; Campbell, R.W.F.; Janse, M.J.; Yellon, D.M.; Cobbe, S.M.; Coker, S.J.; Harness, J.B.; Harron, D.W. The Lambeth Conventions: Guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc. Res., 1988, 22(7), 447-455.
[http://dx.doi.org/10.1093/cvr/22.7.447] [PMID: 3252968]
[28]
O’Brien, E.; Petrie, J.; Littler, W.; de Swiet, M.; Padfield, P.L.; O’Malley, K.; Jamieson, M.; Altman, D.; Bland, M.; Atkins, N. The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems. J. Hypertens., 1990, 8(7), 607-619.
[http://dx.doi.org/10.1097/00004872-199007000-00004] [PMID: 2168451]
[29]
Drechsel, D.N.; Hyman, A.A.; Cobb, M.H.; Kirschner, M.W. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell, 1992, 3(10), 1141-1154.
[http://dx.doi.org/10.1091/mbc.3.10.1141] [PMID: 1421571]
[30]
Trinczek, B.; Biernat, J.; Baumann, K.; Mandelkow, E.M.; Mandelkow, E. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol. Biol. Cell, 1995, 6(12), 1887-1902.
[http://dx.doi.org/10.1091/mbc.6.12.1887] [PMID: 8590813]
[31]
Bayley, P.M.; Sharma, K.K.; Martin, S.R. Microtubule dynamics in vitro. Microtubules; Hyams, J.S; Lloyd, C.W., Ed.; Wiley-Liss: New York, 1994, pp. 111-137.
[32]
O’Brien, E.T.; Salmon, E.D.; Walker, R.A.; Erickson, H.P. Effects of magnesium on the dynamic instability of individual microtubules. Biochemistry, 1990, 29(28), 6648-6656.
[http://dx.doi.org/10.1021/bi00480a014] [PMID: 2397205]
[33]
Odde, D.J.; Cassimeris, L.; Buettner, H.M. Kinetics of microtubule catastrophe assessed by probabilistic analysis. Biophys. J., 1995, 69(3), 796-802.
[http://dx.doi.org/10.1016/S0006-3495(95)79953-2] [PMID: 8519980]
[34]
Walker, R.A.; Pryer, N.K.; Salmon, E.D. Dilution of individual microtubules observed in real time in vitro: Evidence that cap size is small and independent of elongation rate. J. Cell Biol., 1991, 114(1), 73-81.
[http://dx.doi.org/10.1083/jcb.114.1.73] [PMID: 2050742]
[35]
Cassimeris, L.; Pryer, N.K.; Salmon, E.D. Real-time observations of microtubule dynamic instability in living cells. J. Cell Biol., 1988, 107(6 Pt 1), 2223-2231.
[http://dx.doi.org/10.1083/jcb.107.6.2223] [PMID: 3198684]
[36]
Horio, T.; Hotani, H. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature, 1986, 321(6070), 605-607.
[http://dx.doi.org/10.1038/321605a0] [PMID: 3713844]
[37]
Sammak, P.J.; Borisy, G.G. Direct observation of microtubule dynamics in living cells. Nature, 1988, 332(6166), 724-726.
[http://dx.doi.org/10.1038/332724a0] [PMID: 3357537]
[38]
Schulze, E.; Kirschner, M. New features of microtubule behaviour observed in vivo. Nature, 1988, 334(6180), 356-359.
[http://dx.doi.org/10.1038/334356a0] [PMID: 3393227]
[39]
Belmont, L.D.; Hyman, A.A.; Sawin, K.E.; Mitchison, T.J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell, 1990, 62(3), 579-589.
[http://dx.doi.org/10.1016/0092-8674(90)90022-7] [PMID: 2379239]
[40]
Pepperkok, R.; Bré, M.H.; Davoust, J.; Kreis, T.E. Microtubules are stabilized in confluent epithelial cells but not in fibroblasts. J. Cell Biol., 1990, 111(6 Pt 2), 3003-3012.
[http://dx.doi.org/10.1083/jcb.111.6.3003] [PMID: 2269663]
[41]
Wadsworth, P.; McGrail, M. Interphase microtubule dynamics are cell type-specific. J. Cell Sci., 1990, 95(Pt 1), 23-32.
[PMID: 2190995]
[42]
Hayden, J.H.; Bowser, S.S.; Rieder, C.L. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: Direct visualization in live newt lung cells. J. Cell Biol., 1990, 111(3), 1039-1045.
[http://dx.doi.org/10.1083/jcb.111.3.1039] [PMID: 2391359]
[43]
Khodiyar, V.K.; Maltais, L.J.; Ruef, B.J.; Sneddon, K.M.; Smith, J.R.; Shimoyama, M.; Cabral, F.; Dumontet, C.; Dutcher, S.K.; Harvey, R.J.; Lafanechère, L.; Murray, J.M.; Nogales, E.; Piquemal, D.; Stanchi, F.; Povey, S.; Lovering, R.C. A revised nomenclature for the human and rodent alpha-tubulin gene family. Genomics, 2007, 90(2), 285-289.
[http://dx.doi.org/10.1016/j.ygeno.2007.04.008] [PMID: 17543498]
[44]
Ferlini, C.; Raspaglio, G.; Cicchillitti, L.; Mozzetti, S.; Prislei, S.; Bartollino, S.; Scambia, G. Looking at drug resistance mechanisms for microtubule interacting drugs: does TUBB3 work? Curr. Cancer Drug Targets, 2007, 7(8), 704-712.
[http://dx.doi.org/10.2174/156800907783220453] [PMID: 18220531]
[45]
Sullivan, K.F.; Cleveland, D.W. Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc. Natl. Acad. Sci. USA, 1986, 83(12), 4327-4331.
[http://dx.doi.org/10.1073/pnas.83.12.4327] [PMID: 3459176]
[46]
Lewis, S.A.; Wang, D.H.; Cowan, N.J. Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein. Science, 1988, 242(4880), 936-939.
[http://dx.doi.org/10.1126/science.3142041] [PMID: 3142041]
[47]
Kavallaris, M.; Don, S.; Verrills, N.M. Microtubule-associ-ated proteins and microtubule-interacting proteins: Regulators of microtubule dynamics. Microtubule Targets in Cancer Therapy; Fojo, A.T., Ed.; The Humana Press: Totowa, NJ, 2007, pp. 81-102.
[48]
Hyams, J.S.; Lloyd, C.W., Eds.; Microtubules; Wiley-Liss: New York, 1994, p. 439.
[49]
Pryer, N.K.; Walker, R.A.; Skeen, V.P.; Bourns, B.D.; Soboeiro, M.F.; Salmon, E.D. Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. Real-time observations using video microscopy. J. Cell Sci., 1992, 103(Pt 4), 965-976.
[PMID: 1487507]
[50]
Ookata, K.; Hisanaga, S.; Bulinski, J.C.; Murofushi, H.; Aizawa, H.; Itoh, T.J.; Hotani, H.; Okumura, E.; Tachibana, K.; Kishimoto, T. Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J. Cell Biol., 1995, 128(5), 849-862.
[http://dx.doi.org/10.1083/jcb.128.5.849] [PMID: 7876309]
[51]
Pereira, A.; Doshen, J.; Tanaka, E.; Goldstein, L.S. Genetic analysis of a Drosophila microtubule-associated protein. J. Cell Biol., 1992, 116(2), 377-383.
[http://dx.doi.org/10.1083/jcb.116.2.377] [PMID: 1309812]
[52]
Wang, X.M.; Peloquin, J.G.; Zhai, Y.; Bulinski, J.C.; Borisy, G.G. Removal of MAP4 from microtubules in vivo produces no observable phenotype at the cellular level. J. Cell Biol., 1996, 132(3), 345-357.
[http://dx.doi.org/10.1083/jcb.132.3.345] [PMID: 8636213]
[53]
Honore, S.; Pasquier, E.; Braguer, D. Understanding microtubule dynamics for improved cancer therapy. Cell. Mol. Life Sci., 2005, 62(24), 3039-3056.
[http://dx.doi.org/10.1007/s00018-005-5330-x] [PMID: 16314924]
[54]
Jordan, M.A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2002, 2(1), 1-17.
[http://dx.doi.org/10.2174/1568011023354290] [PMID: 12678749]
[55]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[56]
Veldhoen, R.A.; Banman, S.L.; Hemmerling, D.R.; Odsen, R.; Simmen, T.; Simmonds, A.J.; Underhill, D.A.; Goping, I.S. The chemotherapeutic agent paclitaxel inhibits autophagy through two distinct mechanisms that regulate apoptosis. Oncogene, 2013, 32(6), 736-746.
[http://dx.doi.org/10.1038/onc.2012.92] [PMID: 22430212]
[57]
Xi, G.; Hu, X.; Wu, B.; Jiang, H.; Young, C.Y.; Pang, Y.; Yuan, H. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett., 2011, 307(2), 141-148.
[http://dx.doi.org/10.1016/j.canlet.2011.03.026] [PMID: 21511395]
[58]
Wang, J.; Yin, Y.; Hua, H.; Li, M.; Luo, T.; Xu, L.; Wang, R.; Liu, D.; Zhang, Y.; Jiang, Y. Blockade of GRP78 sensitizes breast cancer cells to microtubules-interfering agents that induce the unfolded protein response. J. Cell. Mol. Med., 2009, 13(9B), 3888-3897.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00873.x] [PMID: 19674193]
[59]
Field, J.J.; Díaz, J.F.; Miller, J.H. The binding sites of microtubule-stabilizing agents. Chem. Biol., 2013, 20(3), 301-315.
[http://dx.doi.org/10.1016/j.chembiol.2013.01.014] [PMID: 23521789]
[60]
Pasquier, E; Kavallaris, M. Microtubules: A Dynamic Target in Cancer Therapy UBMBLife, 2008, 60(3), 165-170.
[http://dx.doi.org/10.1002/iub.25]
[61]
Nogales, E. Structural insights into microtubule function. Annu. Rev. Biochem., 2000, 69, 277-302.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.277] [PMID: 10966460]
[62]
Crume, K.P.; O’Sullivan, D.; Miller, J.H.; Northcote, P.T.; La Flamme, A.C. Delaying the onset of experimental autoimmune encephalomyelitis with the microtubule-stabilizing compounds, paclitaxel and peloruside A. J. Leuk. Biol., 2009, 86, 949-958.
[63]
Brunden, K.R.; Trojanowski, J.Q.; Lee, V.M.Y. Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat. Rev. Drug Discov., 2009, 8(10), 783-793.
[http://dx.doi.org/10.1038/nrd2959] [PMID: 19794442]
[64]
Elie-Caille, C.; Severin, F.; Helenius, J.; Howard, J.; Muller, D.J.; Hyman, A.A. Straight GDP-tubulin protofilaments form in the presence of taxol. Curr. Biol., 2007, 17(20), 1765-1770.
[http://dx.doi.org/10.1016/j.cub.2007.08.063] [PMID: 17919908]
[65]
Andreu, J.M.; Bordas, J.; Diaz, J.F.; García de Ancos, J.; Gil, R.; Medrano, F.J.; Nogales, E.; Pantos, E.; Towns-Andrews, E. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules. J. Mol. Biol., 1992, 226(1), 169-184.
[http://dx.doi.org/10.1016/0022-2836(92)90132-4] [PMID: 1352357]
[66]
Leonard, G.D.; Fojo, T.; Bates, S.E. The role of ABC transporters in clinical practice. Oncologist, 2003, 8(5), 411-424.
[http://dx.doi.org/10.1634/theoncologist.8-5-411] [PMID: 14530494]
[67]
Trock, B.J.; Leonessa, F.; Clarke, R. Multidrug resistance in breast cancer: A meta-analysis of MDR1/gp170 expression and its possible functional significance. J. Natl. Cancer Inst., 1997, 89(13), 917-931.
[http://dx.doi.org/10.1093/jnci/89.13.917] [PMID: 9214671]
[68]
Chiou, J.F.; Liang, J.A.; Hsu, W.H.; Wang, J.J.; Ho, S.T.; Kao, A. Comparing the relationship of Taxol-based chemotherapy response with P-glycoprotein and lung resistance-related protein expression in non-small cell lung cancer. Lung, 2003, 181(5), 267-273.
[http://dx.doi.org/10.1007/s00408-003-1029-7] [PMID: 14705770]
[69]
Rottenberg, S.; Nygren, A.O.; Pajic, M.; van Leeuwen, F.W.; van der Heijden, I.; van de Wetering, K.; Liu, X.; de Visser, K.E.; Gilhuijs, K.G.; van Tellingen, O.; Schouten, J.P.; Jonkers, J.; Borst, P. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12117-12122.
[http://dx.doi.org/10.1073/pnas.0702955104] [PMID: 17626183]
[70]
Sève, P.; Dumontet, C. Is class III beta-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol., 2008, 9(2), 168-175.
[http://dx.doi.org/10.1016/S1470-2045(08)70029-9] [PMID: 18237851]
[71]
Risinger, A.L.; Jackson, E.M.; Polin, L.A.; Helms, G.L.; LeBoeuf, D.A.; Joe, P.A.; Hopper-Borge, E.; Ludueña, R.F.; Kruh, G.D.; Mooberry, S.L. The taccalonolides: Microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms. Cancer Res., 2008, 68(21), 8881-8888.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2037] [PMID: 18974132]
[72]
Orr, G.A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S.B. Mechanisms of Taxol resistance related to microtubules. Oncogene, 2003, 22(47), 7280-7295.
[http://dx.doi.org/10.1038/sj.onc.1206934] [PMID: 14576838]
[73]
Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698), 665-667.
[http://dx.doi.org/10.1038/277665a0] [PMID: 423966]
[74]
Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol., 2005, 23(31), 7794-7803.
[http://dx.doi.org/10.1200/JCO.2005.04.937] [PMID: 16172456]
[75]
Clinical Trials. gov. National Institutes of Health.. http://clinicaltrials.gov2019.
[76]
Galsky, M.D.; Dritselis, A.; Kirkpatrick, P.; Oh, W.K. Cabazitaxel. Nat. Rev. Drug Discov., 2010, 9(9), 677-678.
[http://dx.doi.org/10.1038/nrd3254] [PMID: 20811375]
[77]
Bollag, D.M.; McQueney, P.A.; Zhu, J.; Hensens, O.; Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods, C.M. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res., 1995, 55(11), 2325-2333.
[PMID: 7757983]
[78]
Demeule, M.; Régina, A.; Ché, C.; Poirier, J.; Nguyen, T.; Gabathuler, R.; Castaigne, J.P.; Béliveau, R. Identification and design of peptides as a new drug delivery system for the brain. J. Pharmacol. Exp. Ther., 2008, 324(3), 1064-1072.
[http://dx.doi.org/10.1124/jpet.107.131318] [PMID: 18156463]
[79]
Régina, A.; Demeule, M.; Ché, C.; Lavallée, I.; Poirier, J.; Gabathuler, R.; Béliveau, R.; Castaigne, J.P. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br. J. Pharmacol., 2008, 155(2), 185-197.
[http://dx.doi.org/10.1038/bjp.2008.260] [PMID: 18574456]
[80]
Diéras, V.; Limentani, S.; Romieu, G.; Tubiana-Hulin, M.; Lortholary, A.; Kaufman, P.; Girre, V.; Besenval, M.; Valero, V. Phase II multicenter study of larotaxel (XRP9881), a novel taxoid, in patients with metastatic breast cancer who previously received taxane-based therapy. Ann. Oncol., 2008, 19(7), 1255-1260.
[http://dx.doi.org/10.1093/annonc/mdn060] [PMID: 18381372]
[81]
TPI 287. Tapestry Pharmaceuticals., Pharmaceuticals.. www.tapestrypharma.com/TPI2872008.
[82]
Zatloukal, P.; Gervais, R.; Vansteenkiste, J.; Bosquee, L.; Sessa, C.; Brain, E.; Dansin, E.; Urban, T.; Dohollou, N.; Besenval, M.; Quoix, E. Randomized multicenter phase II study of larotaxel (XRP9881) in combination with cisplatin or gemcitabine as first-line chemotherapy in nonirradiable stage IIIB or stage IV non-small cell lung cancer. J. Thorac. Oncol., 2008, 3(8), 894-901.
[http://dx.doi.org/10.1097/JTO.0b013e31817e6669] [PMID: 18670308]
[83]
Gerth, K.; Bedorf, N.; Höfle, G.; Irschik, H.; Reichenbach, H. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J. Antibiot. (Tokyo), 1996, 49(6), 560-563.
[http://dx.doi.org/10.7164/antibiotics.49.560] [PMID: 8698639]
[84]
Lee, F.Y.; Borzilleri, R.; Fairchild, C.R.; Kamath, A.; Smykla, R.; Kramer, R.; Vite, G. Preclinical discovery of ixabepilone, a highly active antineoplastic agent. Cancer Chemother. Pharmacol., 2008, 63(1), 157-166.
[http://dx.doi.org/10.1007/s00280-008-0724-8] [PMID: 18347795]
[85]
Kowalski, R.J.; Giannakakou, P.; Hamel, E. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol(R)). J. Biol. Chem., 1997, 272(4), 2534-2541.
[http://dx.doi.org/10.1074/jbc.272.4.2534] [PMID: 8999970]
[86]
Fumoleau, P.; Coudert, B.; Isambert, N.; Ferrant, E. Novel tubulin-targeting agents: Anticancer activity and pharmacologic profile of epothilones and related analogues. Ann. Oncol., 2007, 18(5)(Suppl. 5), v9-v15.
[http://dx.doi.org/10.1093/annonc/mdm173] [PMID: 17656562]
[87]
Chou, T.C.; Zhang, X.G.; Harris, C.R.; Kuduk, S.D.; Balog, A.; Savin, K.A.; Bertino, J.R.; Danishefsky, S.J. Desoxyepothilone B is curative against human tumor xenografts that are refractory to paclitaxel. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15798-15802.
[http://dx.doi.org/10.1073/pnas.95.26.15798] [PMID: 9861050]
[88]
Lee, F.Y.; Borzilleri, R.; Fairchild, C.R.; Kim, S.H.; Long, B.H.; Reventos-Suarez, C.; Vite, G.D.; Rose, W.C.; Kramer, R.A. BMS-247550: A novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin. Cancer Res., 2001, 7(5), 1429-1437.
[PMID: 11350914]
[89]
Cutts, J.H.; Beer, C.T.; Noble, R.L. Biological properties of Vincaleukoblastine, an alkaloid in Vinca rosea Linn, with reference to its antitumor action. Cancer Res., 1960, 20, 1023-1031.
[PMID: 13719013]
[90]
Goodin, S.; Kane, M.P.; Rubin, E.H. Epothilones: Mechanism of action and biologic activity. J. Clin. Oncol., 2004, 22(10), 2015-2025.
[http://dx.doi.org/10.1200/JCO.2004.12.001] [PMID: 15143095]
[91]
Peterson, J.K.; Tucker, C.; Favours, E.; Cheshire, P.J.; Creech, J.; Billups, C.A.; Smykla, R.; Lee, F.Y.F.; Houghton, P.J. In vivo evaluation of ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin. Cancer Res., 2005, 11(19 Pt 1), 6950-6958.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0740] [PMID: 16203787]
[92]
Cheng, K.L.; Bradley, T.; Budman, D.R. Novel microtubule-targeting agents - the epothilones. Biologics, 2008, 2(4), 789-811.
[PMID: 19707459]
[93]
Khawaja, N.R.; Carré, M.; Kovacic, H.; Estève, M.A.; Braguer, D. Patupilone-induced apoptosis is mediated by mitochondrial reactive oxygen species through Bim relocalization to mitochondria. Mol. Pharmacol., 2008, 74(4), 1072-1083.
[http://dx.doi.org/10.1124/mol.108.048405] [PMID: 18593821]
[94]
Sessa, C.; Perotti, A.; Lladò, A.; Cresta, S.; Capri, G.; Voi, M.; Marsoni, S.; Corradino, I.; Gianni, L. Phase I clinical study of the novel epothilone B analogue BMS-310705 given on a weekly schedule. Ann. Oncol., 2007, 18(9), 1548-1553.
[http://dx.doi.org/10.1093/annonc/mdm198] [PMID: 17761711]
[95]
Klar, U.; Buchmann, B.; Schwede, W.; Skuballa, W.; Hoffmann, J.; Lichtner, R.B. Total synthesis and antitumor activity of ZK-EPO: the first fully synthetic epothilone in clinical development. Angew. Chem. Int. Ed. Engl., 2006, 45(47), 7942-7948.
[http://dx.doi.org/10.1002/anie.200602785] [PMID: 17006870]
[96]
Galmarini, C.M. Sagopilone, a microtubule stabilizer for the potential treatment of cancer. Curr. Opin. Investig. Drugs, 2009, 10(12), 1359-1371.
[PMID: 19943207]
[97]
Altmann, K.H.; Memmert, K. Epothilones as lead structures for new anticancer drugs--pharmacology, fermentation, and structureactivity-relationships. Prog. Drug Res., 2008, 66, 273- 275-334.
[http://dx.doi.org/10.1007/978-3-7643-8595-8_6] [PMID: 18416309]
[98]
Corley, D.G.; Herb, R.; Moore, R.E.; Scheuer, P.J.; Paul, V.J. Laulimalides: New potent cytotoxic macrolides from a marine sponge and a nudibranch predator. J. Org. Chem., 1988, 53, 3644-3646.
[http://dx.doi.org/10.1021/jo00250a053]
[99]
Jefford, C.W.; Bernardinelli, G.; Tanaka, J.; Higa, T. Structures and absolute configurations of the marine toxins, latrunculin A and laulimalide. Tetrahedron Lett., 1996, 37, 159-162.
[http://dx.doi.org/10.1016/0040-4039(95)02113-2]
[100]
Lu, H.; Murtagh, J.; Schwartz, E.L. The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (taxotere). Mol. Pharmacol., 2006, 69(4), 1207-1215.
[http://dx.doi.org/10.1124/mol.105.019075] [PMID: 16415178]
[101]
Gapud, E.J.; Bai, R.; Ghosh, A.K.; Hamel, E. Laulimalide and paclitaxel: A comparison of their effects on tubulin assembly and their synergistic action when present simultaneously. Mol. Pharmacol., 2004, 66(1), 113-121.
[http://dx.doi.org/10.1124/mol.66.1.113] [PMID: 15213302]
[102]
Mooberry, S.L.; Hilinski, M.K.; Clark, E.A.; Wender, P.A. Function-oriented synthesis: Biological evaluation of laulimalide analogues derived from a last step cross metathesis diversification strategy. Mol. Pharm., 2008, 5(5), 829-838.
[http://dx.doi.org/10.1021/mp800043n] [PMID: 18662015]
[103]
Pryor, D.E.; O’Brate, A.; Bilcer, G.; Díaz, J.F.; Wang, Y.; Wang, Y.; Kabaki, M.; Jung, M.K.; Andreu, J.M.; Ghosh, A.K.; Giannakakou, P.; Hamel, E. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry, 2002, 41(29), 9109-9115.
[http://dx.doi.org/10.1021/bi020211b] [PMID: 12119025]
[104]
Huzil, J.T.; Chen, K.; Kurgan, L.; Tuszynski, J.A. The roles of β-tubulin mutations and isotype expression in acquired drug resistance. Cancer Inform., 2007, 3, 159-181.
[http://dx.doi.org/10.1177/117693510700300028] [PMID: 19455242]
[105]
Bennett, M.J.; Barakat, K.; Huzil, J.T.; Tuszynski, J.; Schriemer, D.C. Discovery and characterization of the laulimalide-microtubule binding mode by mass shift perturbation mapping. Chem. Biol., 2010, 17(7), 725-734.
[http://dx.doi.org/10.1016/j.chembiol.2010.05.019] [PMID: 20659685]
[106]
Nguyen, T.L.; Xu, X.; Gussio, R.; Ghosh, A.K.; Hamel, E. The assembly-inducing laulimalide/peloruside a binding site on tubulin: molecular modeling and biochemical studies with [3H]peloruside A. J. Chem. Inf. Model., 2010, 50(11), 2019-2028.
[http://dx.doi.org/10.1021/ci1002894] [PMID: 21028850]
[107]
Prota, A.E.; Bargsten, K.; Zurwerra, D.; Field, J.J.; Díaz, J.F.; Altmann, K.H.; Steinmetz, M.O. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science, 2013, 339(6119), 587-590.
[http://dx.doi.org/10.1126/science.1230582] [PMID: 23287720]
[108]
Churchill, C.D.; Klobukowski, M.; Tuszynski, J.A. The unique binding mode of laulimalide to two tubulin protofilaments. Chem. Biol. Drug Des., 2015, 86(2), 190-199.
[http://dx.doi.org/10.1111/cbdd.12475] [PMID: 25376845]
[109]
West, L.M.; Northcote, P.T.; Battershill, C.N. Peloruside A: a potent cytotoxic macrolide isolated from the new zealand marine sponge Mycale sp. J. Org. Chem., 2000, 65(2), 445-449.
[http://dx.doi.org/10.1021/jo991296y] [PMID: 10813954]
[110]
Hood, K.A.; Bäckström, B.T.; West, L.M.; Northcote, P.T.; Berridge, M.V.; Miller, J.H. The novel cytotoxic sponge metabolite peloruside A, structurally similar to bryostatin-1, has unique bioactivity independent of protein kinase C. Anticancer Drug Des., 2001, 16(2-3), 155-166.
[PMID: 11962513]
[111]
Hood, K.A.; West, L.M.; Rouwé, B.; Northcote, P.T.; Berridge, M.V.; Wakefield, S.J.; Miller, J.H. Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule- stabilizing activity. Cancer Res., 2002, 62(12), 3356-3360.
[PMID: 12067973]
[112]
Gaitanos, T.N.; Buey, R.M.; Díaz, J.F.; Northcote, P.T.; Teesdale-Spittle, P.; Andreu, J.M.; Miller, J.H. Peloruside A does not bind to the taxoid site on β-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res., 2004, 64(15), 5063-5067.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0771] [PMID: 15289305]
[113]
Chan, A; Singh, AJ; Northcote, PT; Miller, JH Inhibition of human vascular endothelial cell migration and capillary-like tube formation by the microtubule-stabilizing agent peloruside A. Invest New Drug 2015, a33, 564-574.
[114]
Meyer, C.J.; Krauth, M.; Wick, M.J.; Shay, J.W.; Gellert, G.; De Brabander, J.K.; Northcote, P.T.; Miller, J.H. Peloruside A inhibits growth of human lung and breast tumor xenografts in an athymicnu/numouse model. Mol. Cancer Ther., 2015, 14(8), 1816-1823.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0167] [PMID: 26056149]
[115]
Huzil, J.T.; Chik, J.K.; Slysz, G.W.; Freedman, H.; Tuszynski, J.; Taylor, R.E.; Sackett, D.L.; Schriemer, D.C. A unique mode of microtubule stabilization induced by peloruside A. J. Mol. Biol., 2008, 378(5), 1016-1030.
[http://dx.doi.org/10.1016/j.jmb.2008.03.026] [PMID: 18405918]
[116]
Hamel, E.; Day, B.W.; Miller, J.H.; Jung, M.K.; Northcote, P.T.; Ghosh, A.K.; Curran, D.P.; Cushman, M.; Nicolaou, K.C.; Paterson, I.; Sorensen, E.J. Synergistic effects of peloruside A and laulimalide with taxoid site drugs, but not with each other, on tubulin assembly. Mol. Pharmacol., 2006, 70(5), 1555-1564.
[http://dx.doi.org/10.1124/mol.106.027847] [PMID: 16887932]
[117]
Kanakkanthara, A.; Rowe, M.R.; Field, J.J.; Northcote, P.T.; Teesdale-Spittle, P.H.; Miller, J.H. βI-tubulin mutations in the laulimalide/peloruside binding site mediate drug sensitivity by altering drug-tubulin interactions and microtubule stability. Cancer Lett., 2015, 365(2), 251-260.
[http://dx.doi.org/10.1016/j.canlet.2015.06.001] [PMID: 26052091]
[118]
Liao, X.; Wu, Y.; De Brabander, J.K. Total synthesis and absolute configuration of the novel microtubule-stabilizing agent peloruside A. Angew. Chem. Int. Ed. Engl., 2003, 42(14), 1648-1652.
[http://dx.doi.org/10.1002/anie.200351145] [PMID: 12698467]
[119]
Wullschleger, C.W.; Gertsch, J.; Altmann, K.H. Stereoselective synthesis of a monocyclic peloruside a analogue. Org. Lett., 2010, 12(5), 1120-1123.
[http://dx.doi.org/10.1021/ol100123p] [PMID: 20141163]
[120]
Brackovic, A.; Harvey, J.E. Synthetic, semisynthetic and natural analogues of peloruside A. Chem. Commun. (Camb.), 2015, 51(23), 4750-4765.
[http://dx.doi.org/10.1039/C4CC09785H] [PMID: 25642465]
[121]
Tinley, T.L.; Randall-Hlubek, D.A.; Leal, R.M.; Jackson, E.M.; Cessac, J.W.; Quada, J.C., Jr; Hemscheidt, T.K.; Mooberry, S.L. Taccalonolides E and A: Plant-derived steroids with microtubule-stabilizing activity. Cancer Res., 2003, 63(12), 3211-3220.
[PMID: 12810650]
[122]
Li, J.; Risinger, A.L.; Peng, J.; Chen, Z.; Hu, L.; Mooberry, S.L. Potent taccalonolides, AF and AJ, inform significant structure-activity relationships and tubulin as the binding site of these microtubule stabilizers. J. Am. Chem. Soc., 2011, 133(47), 19064-19067.
[http://dx.doi.org/10.1021/ja209045k] [PMID: 22040100]
[123]
Buey, R.M.; Barasoain, I.; Jackson, E.; Meyer, A.; Giannakakou, P.; Paterson, I.; Mooberry, S.; Andreu, J.M.; Díaz, J.F. Microtubule interactions with chemically diverse stabilizing agents: Thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem. Biol., 2005, 12(12), 1269-1279.
[http://dx.doi.org/10.1016/j.chembiol.2005.09.010] [PMID: 16356844]
[124]
Muramatsu, H.; Miyauchi, M.; Sato, B.; Yoshimura, S.; Takase, S.; Terano, H.; Oku, T. A novel microtubule-stabilizing agent, WS9885B. In: 40th Symposium on the chemistry of natural products. , 1998; pp. 487-492.
[125]
Sato, B.; Muramatsu, H.; Miyauchi, M.; Hori, Y.; Takase, S.; Hino, M.; Hashimoto, S.; Terano, H. A new antimitotic substance, FR182877. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. (Tokyo), 2000, 53(2), 123-130.
[http://dx.doi.org/10.7164/antibiotics.53.123] [PMID: 10805571]
[126]
Adam, G.C.; Vanderwal, C.D.; Sorensen, E.J.; Cravatt, B.F. (-)-FR182877 is a potent and selective inhibitor of carboxylesterase-1. Angew. Chem. Int. Ed. Engl., 2003, 42(44), 5480-5484.
[http://dx.doi.org/10.1002/anie.200352576] [PMID: 14618582]
[127]
Prussia, A.J.; Yang, Y.; Geballe, M.T.; Snyder, J.P. Cyclostreptin and microtubules: Is a low-affinity binding site required? ChemBioChem, 2010, 11(1), 101-109.
[http://dx.doi.org/10.1002/cbic.200900538] [PMID: 19946930]
[128]
Calvo, E.; Barasoain, I.; Matesanz, R.; Pera, B.; Camafeita, E.; Pineda, O.; Hamel, E.; Vanderwal, C.D.; Andreu, J.M.; López, J.A.; Díaz, J.F. Cyclostreptin derivatives specifically target cellular tubulin and further map the paclitaxel site. Biochemistry, 2012, 51(1), 329-341.
[http://dx.doi.org/10.1021/bi201380p] [PMID: 22148836]
[129]
Edler, M.C.; Buey, R.M.; Gussio, R.; Marcus, A.I.; Vanderwal, C.D.; Sorensen, E.J.; Díaz, J.F.; Giannakakou, P.; Hamel, E. Cyclostreptin (FR182877), an antitumor tubulin-polymerizing agent deficient in enhancing tubulin assembly despite its high affinity for the taxoid site. Biochemistry, 2005, 44(34), 11525-11538.
[http://dx.doi.org/10.1021/bi050660m] [PMID: 16114889]
[130]
Pettit, G.R.; Cichacz, Z.A.; Gao, F.; Boyd, M.R.; Schmidt, J.M. Isolation and structure of the cancer cell growth inhibitor dictyostatin 1. J. Chem. Soc. Chem. Commun., 1994, 1111-1112.
[http://dx.doi.org/10.1039/c39940001111]
[131]
Isbrucker, R.A.; Cummins, J.; Pomponi, S.A.; Longley, R.E.; Wright, A.E. Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin. Biochem. Pharmacol., 2003, 66(1), 75-82.
[http://dx.doi.org/10.1016/S0006-2952(03)00192-8] [PMID: 12818367]
[132]
Madiraju, C.; Edler, M.C.; Hamel, E.; Raccor, B.S.; Balachandran, R.; Zhu, G.; Giuliano, K.A.; Vogt, A.; Shin, Y.; Fournier, J.H.; Fukui, Y.; Brückner, A.M.; Curran, D.P.; Day, B.W. Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. Biochemistry, 2005, 44(45), 15053-15063.
[http://dx.doi.org/10.1021/bi050685l] [PMID: 16274252]
[133]
Paterson, I.; Gardner, N.M.; Poullennec, K.G.; Wright, A.E. Synthesis and biological evaluation of novel analogues of dictyostatin. Bioorg. Med. Chem. Lett., 2007, 17(9), 2443-2447.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.031] [PMID: 17336522]
[134]
Jung, W.H.; Harrison, C.; Shin, Y.; Fournier, J.H.; Balachandran, R.; Raccor, B.S.; Sikorski, R.P.; Vogt, A.; Curran, D.P.; Day, B.W. Total synthesis and biological evaluation of C16 analogs of (-)-dictyostatin. J. Med. Chem., 2007, 50(13), 2951-2966.
[http://dx.doi.org/10.1021/jm061385k] [PMID: 17542572]
[135]
Shin, Y.; Fournier, J.H.; Balachandran, R.; Madiraju, C.; Raccor, B.S.; Zhu, G.; Edler, M.C.; Hamel, E.; Day, B.W.; Curran, D.P. Synthesis and biological evaluation of (-)-16-normethyldictyo-statin: A potent analogue of (-)-dictyostatin. Org. Lett., 2005, 7(14), 2873-2876.
[http://dx.doi.org/10.1021/ol050808u] [PMID: 15987158]
[136]
Vollmer, L.L.; Jiménez, M.; Camarco, D.P.; Zhu, W.; Daghestani, H.N.; Balachandran, R.; Reese, C.E.; Lazo, J.S.; Hukriede, N.A.; Curran, D.P.; Day, B.W.; Vogt, A. A simplified synthesis of novel dictyostatin analogues with in vitro activity against epothilone B-resistant cells and antiangiogenic activity in zebrafish embryos. Mol. Cancer Ther., 2011, 10(6), 994-1006.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-1048] [PMID: 21490306]
[137]
Shin, Y.; Fournier, J.H.; Fukui, Y.; Brückner, A.M.; Curran, D.P. Total synthesis of (-)-dictyostatin: confirmation of relative and absolute configurations. Angew. Chem. Int. Ed. Engl., 2004, 43(35), 4634-4637.
[http://dx.doi.org/10.1002/anie.200460593] [PMID: 15316999]
[138]
Fukui, Y.; Brückner, A.M.; Shin, Y.; Balachandran, R.; Day, B.W.; Curran, D.P. Fluorous mixture synthesis of (-)-dictyostatin and three stereoisomers. Org. Lett., 2006, 8(2), 301-304.
[http://dx.doi.org/10.1021/ol0526827] [PMID: 16408900]
[139]
Zhu, W.; Jiménez, M.; Jung, W.H.; Camarco, D.P.; Balachandran, R.; Vogt, A.; Day, B.W.; Curran, D.P. Streamlined syntheses of (-)-dictyostatin, 16-desmethyl-25,26-dihydrodictyostatin, and 6-epi-16-desmethyl-25,26-dihydrodictyostatin. J. Am. Chem. Soc., 2010, 132(26), 9175-9187.
[http://dx.doi.org/10.1021/ja103537u] [PMID: 20545347]
[140]
Jiménez, M.; Zhu, W.; Vogt, A.; Day, B.W.; Curran, D.P. Efficient syntheses of 25,26-dihydrodictyostatin and 25,26-dihydro-6-epi-dictyostatin, two potent new microtubule-stabilizing agents. Beilstein J. Org. Chem., 2011, 7, 1372-1378.
[http://dx.doi.org/10.3762/bjoc.7.161] [PMID: 22043248]
[141]
Gunasekera, S.P.; Gunasekera, M.; Longley, R.E. Discodermolide: A new bioactive polyhydroxylated lactone from the marine sponge discodermia dissolute. J. Org. Chem., 1990, 55, 4912-4915.
[http://dx.doi.org/10.1021/jo00303a029]
[142]
Longley, R.E.; Caddigan, D.; Harmody, D.; Gunasekera, M.; Gunasekera, S.P. Discodermolide--a new, marine-derived immunosuppressive compound. II. In vivo studies. Transplantation, 1991, 52(4), 656-661.
[http://dx.doi.org/10.1097/00007890-199110000-00015] [PMID: 1926345]
[143]
Longley, R.E.; Caddigan, D.; Harmody, D.; Gunasekera, M.; Gunasekera, S.P. Discodermolide--a new, marine-derived immunosuppressive compound. I. In vitro studies. Transplantation, 1991, 52(4), 650-656.
[http://dx.doi.org/10.1097/00007890-199110000-00014] [PMID: 1833864]
[144]
Longley, R.E.; Gunasekera, S.P.; Faherty, D.; Mclane, J.; Dumont, F. Immunosuppression by discodermolide. Ann. N. Y. Acad. Sci., 1993, 696, 94-107.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb17145.x] [PMID: 8109858]
[145]
Hung, D.T.; Nerenberg, J.B.; Schreiber, S.L. Distinct binding and cellular properties of synthetic (+)- and (-)-discodermolides. Chem. Biol., 1994, 1(1), 67-71.
[http://dx.doi.org/10.1016/1074-5521(94)90042-6] [PMID: 9383372]
[146]
ter Haar, E.; Kowalski, R.J.; Hamel, E.; Lin, C.M.; Longley, R.E.; Gunasekera, S.P.; Rosenkranz, H.S.; Day, B.W. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry, 1996, 35(1), 243-250.
[http://dx.doi.org/10.1021/bi9515127] [PMID: 8555181]
[147]
Smith, A.B., III; Freeze, B.S.; LaMarche, M.J.; Sager, J.; Kinzler, K.W.; Vogelstein, B. Discodermolide analogues as the chemical component of combination bacteriolytic therapy. Bioorg. Med. Chem. Lett., 2005, 15(15), 3623-3626.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.068] [PMID: 15979874]
[148]
Huang, G.S.; Lopez-Barcons, L.; Freeze, B.S.; Smith, A.B., III; Goldberg, G.L.; Horwitz, S.B.; McDaid, H.M. Potentiation of taxol efficacy and by discodermolide in ovarian carcinoma xenograft-bearing mice. Clin. Cancer Res., 2006, 12(1), 298-304.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0229] [PMID: 16397055]
[149]
Lindel, T.; Jensen, P.R.; Fenical, W.; Long, B.H.; Casazza, A.M.; Carboni, J.; Fairchild, C.R. Eleutherobin, a new cytotoxin that mimics paclitaxel (taxol) by stabilizing microtubules. J. Am. Chem. Soc., 1997, 119, 8744-8745.
[http://dx.doi.org/10.1021/ja9717828]
[150]
Long, B.H.; Carboni, J.M.; Wasserman, A.J.; Cornell, L.A.; Casazza, A.M.; Jensen, P.R.; Lindel, T.; Fenical, W.; Fairchild, C.R. Polymerization, is similar to paclitaxel (taxol®) eleutherobin, a novel cytotoxic agent that induces tubulin. Cancer Res., 1998, 58, 1111-1115.
[PMID: 9515790]
[151]
Ojima, I.; Chakravarty, S.; Inoue, T.; Lin, S.; He, L.; Horwitz, S.B.; Kuduk, S.D.; Danishefsky, S.J. A common pharmacophore for cytotoxic natural products that stabilize microtubules. Proc. Natl. Acad. Sci. USA, 1999, 96(8), 4256-4261.
[http://dx.doi.org/10.1073/pnas.96.8.4256] [PMID: 10200249]
[152]
Cinel, B.; Roberge, M.; Behrisch, H.; van Ofwegen, L.; Castro, C.B.; Andersen, R.J. Antimitotic diterpenes from Erythropodium caribaeorum test pharmacophore models for microtubule stabilization. Org. Lett., 2000, 2(3), 257-260.
[http://dx.doi.org/10.1021/ol9912027] [PMID: 10814296]
[153]
Beumer, R.; Bayón, P.; Bugada, P.; Ducki, S.; Mongelli, N.; Sirtori, F.R.; Telser, J.; Gennari, C. Synthesis of novel simplified sarcodictyin/eleutherobin analogs with potent microtubule-stabilizing activity, using ring closing metathesis as the key-step. Tetrahedron, 2003, 59, 8803-8820.
[http://dx.doi.org/10.1016/j.tet.2003.08.057]
[154]
Berrué, F.; McCulloch, M.W.; Kerr, R.G. Marine diterpene glycosides. Bioorg. Med. Chem., 2011, 19(22), 6702-6719.
[http://dx.doi.org/10.1016/j.bmc.2011.06.083] [PMID: 21783368]
[155]
D’Ambrosioa, M.; Guerriero, A.; Pietra, F. Sarcodictyin A and sarcodictyin B, by (E)-N(1)-methylurocanic acid: Isolation from the mediterranean stoloniferan sarcodictyon roseum. Helv. Chim. Acta, 1987, 70, 2019-2027.
[http://dx.doi.org/10.1002/hlca.19870700807]
[156]
D’Ambrosiob, M.; Guerriero, A.; Pietra, F. Isolation from mediterranean stoloniferan coral Sarcodictyon roseum Sarcodictyin C, D, E and F novel diterpenoidic alcohols esterified by (E)- or (Z)-N (1)- methylurocanic acid: Failure of the carbon–skeleton type a classification criterion. Helv. Chim. Acta, 1988, 71, 964.
[http://dx.doi.org/10.1002/hlca.19880710504]
[157]
Lin, Y.; Bewley, C.A.; Faulkner, D.J. The valdivones, anti-inflammatory diterpene esters from the South African soft coral Alcyonium valdivae. Tetrahedron, 1993, 49, 7977-7984.
[http://dx.doi.org/10.1016/S0040-4020(01)88021-2]
[158]
Tanaka, J.; Higa, T. ChemInform Abstract: Zampanolide (I), a new cytotoxic macrolide from a marine sponge. Tetrahedron Lett., 1996, 37, 5535-5538.
[http://dx.doi.org/10.1016/0040-4039(96)01149-5]
[159]
Taufa, T.; Singh, A.J.; Harland, C.R.; Patel, V.; Jones, B.; Halafihi, T.I.; Miller, J.H.; Keyzers, R.A.; Northcote, P.T. Zampanolides B−E from the marine sponge cacospongia mycof ijiensis: Potent cytotoxic macrolides with microtubule-stabilizing activity. J. Nat. Prod., 2018, 81(11), 2539-2544.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00641] [PMID: 30371079]
[160]
Uenishi, J.; Iwamoto, T.; Tanaka, J. Total synthesis of (-)-zampanolide and questionable existence of (-)-dactylolide as the elusive biosynthetic precursor of (-)-zampanolide in an Okinawan sponge. Org. Lett., 2009, 11(15), 3262-3265.
[http://dx.doi.org/10.1021/ol901167g] [PMID: 19586001]
[161]
Ding, F.; Jennings, M.P. Total synthesis of (-)-dactylolide and formal synthesis of (-)-zampanolide via target oriented β-C-glycoside formation. J. Org. Chem., 2008, 73(15), 5965-5976.
[http://dx.doi.org/10.1021/jo8009853] [PMID: 18588348]
[162]
Field, J.J.; Singh, A.J.; Kanakkanthara, A.; Halafihi, T.; Northcote, P.T.; Miller, J.H. Microtubule-stabilizing activity of zampanolide, a potent macrolide isolated from the Tongan marine sponge Cacospongia mycofijiensis. J. Med. Chem., 2009, 52(22), 7328-7332.
[http://dx.doi.org/10.1021/jm901249g] [PMID: 19877653]
[163]
Field, J.J.; Pera, B.; Calvo, E.; Canales, A.; Zurwerra, D.; Trigili, C.; Rodríguez-Salarichs, J.; Matesanz, R.; Kanakkanthara, A.; Wakefield, S.J.; Singh, A.J.; Jiménez-Barbero, J.; Northcote, P.; Miller, J.H.; López, J.A.; Hamel, E.; Barasoain, I.; Altmann, K.H.; Díaz, J.F. Zampanolide, a potent new microtubule-stabilizing agent, covalently reacts with the taxane luminal site in tubulin α,β-heterodimers and microtubules. Chem. Biol., 2012, 19(6), 686-698.
[http://dx.doi.org/10.1016/j.chembiol.2012.05.008] [PMID: 22726683]
[164]
Zurwerra, D.; Glaus, F.; Betschart, L.; Schuster, J.; Gertsch, J.; Ganci, W.; Altmann, K.H. Total synthesis of (-)-zampanolide and structure-activity relationship studies on (-)-dactylolide derivatives. Chemistry, 2012, 18(52), 16868-16883.
[http://dx.doi.org/10.1002/chem.201202553] [PMID: 23136113]
[165]
Chen, Q.H.; Kingston, D.G. Zampanolide and dactylolide: Cytotoxic tubulin-assembly agents and promising anticancer leads. Nat. Prod. Rep., 2014, 31(9), 1202-1226.
[http://dx.doi.org/10.1039/C4NP00024B] [PMID: 24945566]
[166]
Smith, A.B., III; Safonov, I.G.; Corbett, R.M. Total synthesis of (+)-zampanolide. J. Am. Chem. Soc., 2001, 123(49), 12426-12427.
[http://dx.doi.org/10.1021/ja012220y] [PMID: 11734051]
[167]
Smith, A.B., III; Safonov, I.G.; Corbett, R.M. Total syntheses of (+)-zampanolide and (+)-dactylolide exploiting a unified strategy. J. Am. Chem. Soc., 2002, 124(37), 11102-11113.
[http://dx.doi.org/10.1021/ja020635t] [PMID: 12224958]
[168]
Manzo, E.; van Soest, R.; Matainaho, L.; Roberge, M.; Andersen, R.J. Ceratamines A and B, antimitotic heterocyclic alkaloids isolated from the marine sponge Pseudoceratina sp. collected in Papua New Guinea. Org. Lett., 2003, 5(24), 4591-4594.
[http://dx.doi.org/10.1021/ol035721s] [PMID: 14627391]
[169]
Karjala, G.; Chan, Q.; Manzo, E.; Andersen, R.J.; Roberge, M. Ceratamines, structurally simple microtubule-stabilizing antimitotic agents with unusual cellular effects. Cancer Res., 2005, 65(8), 3040-3043.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4369] [PMID: 15833830]
[170]
Nodwell, M.; Zimmerman, C.; Roberge, M.; Andersen, R.J. Synthetic analogues of the microtubule-stabilizing sponge alkaloid ceratamine A are more active than the natural product. J. Med. Chem., 2010, 53(21), 7843-7851.
[http://dx.doi.org/10.1021/jm101012q] [PMID: 20945907]
[171]
Lin, C.M.; Hamel, E. Effects of inhibitors of tubulin polymerization on GTP hydrolysis. J. Biol. Chem., 1981, 256(17), 9242-9245.
[PMID: 6114958]
[172]
Toso, R.J.; Jordan, M.A.; Farrell, K.W.; Matsumoto, B.; Wilson, L. Kinetic stabilization of microtubule dynamic instability in vitro by vinblastine. Biochemistry, 1993, 32(5), 1285-1293.
[http://dx.doi.org/10.1021/bi00056a013] [PMID: 8448138]
[173]
Takanari, H.; Yosida, T.; Morita, J.; Izutsu, K.; Ito, T. Instability of pleomorphic tubulin paracrystals artificially induced by Vinca alkaloids in tissue-cultured cells. Biol. Cell, 1990, 70(1-2), 83-90.
[http://dx.doi.org/10.1016/0248-4900(90)90363-8] [PMID: 2085693]
[174]
Thomas, D.A. Safety and efficacy of marquibo (vincristine sulfate liposomes injection, OPISOME (TM)) for the treatment of adults with relapsed or refractory acute lymphoblastic leukemia (ALL); American Society of Hemotology.: Atlanta, GA , 2007.
[175]
Clinical Trials. gov. National Institutes of Health.. http://clinicaltrials.gov2008.
[176]
Yun-san. Yip, A.; Yuen-Yuen Ong, E.; Chow, L.W. Vinfluine: Clinical perspectives of an emerging anticancer agent. Expert Opin. Investig. Drugs, 2008, 17(4), 583-591.
[http://dx.doi.org/10.1517/13543784.17.4.583] [PMID: 18363522]
[177]
Hirata, Y.; Uemura, D. Halichondrins-antitumor polyether macrolides from a marine sponge. Pure Appl. Chem., 1986, 58, 701-710.
[http://dx.doi.org/10.1351/pac198658050701]
[178]
Pettit, G.R.; Herald, C.L.; Boyd, M.R.; Leet, J.E.; Dufresne, C.; Doubek, D.L.; Schmidt, J.M.; Cerny, R.L.; Hooper, J.N.A.; Rützler, K.C. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J. Med. Chem., 1991, 34(11), 3339-3340.
[http://dx.doi.org/10.1021/jm00115a027] [PMID: 1956053]
[179]
Litaudon, M.; Hickford, S.J.H.; Lill, R.E.; Lake, R.J.; Blunt, J.W.; Munro, M.H.G. Antitumor polyether macrolides: New and hemisynthetic halichondrins from the New Zealand deep-water sponge Lissodendoryxsp. J. Org. Chem., 1997, 62, 1868-1871.
[http://dx.doi.org/10.1021/jo962231n]
[180]
Bai, R.L.; Paull, K.D.; Herald, C.L.; Malspeis, L.; Pettit, G.R.; Hamel, E. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem., 1991, 266(24), 15882-15889.
[PMID: 1874739]
[181]
Aicher, T.D.; Buszek, K.R.; Fang, F.G.; Forsyth, C.J.; Jung, S.H.; Kishi, Y.; Matelich, M.C.; Scola, P.M.; Spero, D.M.; Yoon, S.K. Total synthesis of halichondrin B and norhalichondrin B. J. Am. Chem. Soc., 1992, 114, 3162-3164.
[http://dx.doi.org/10.1021/ja00034a086]
[182]
Littlefield, B.A.; Palme, M.H.; Seletsky, B.M.; Towle, M.J.; Yu, M.J.; Zheng, W. Inventors, Eisai Co., Ltd., assignee. Macrocyclic analogs and methods of their use and preparation. U.S. patent 2001 2001, 6, 214-865.
[183]
Seletsky, B.M.; Wang, Y.; Hawkins, L.D.; Palme, M.H.; Habgood, G.J.; DiPietro, L.V.; Towle, M.J.; Salvato, K.A.; Wels, B.F.; Aalfs, K.K.; Kishi, Y.; Littlefield, B.A.; Yu, M.J. Structurally simplified macrolactone analogues of halichondrin B. Bioorg. Med. Chem. Lett., 2004, 14(22), 5547-5550.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.068] [PMID: 15482921]
[184]
Zheng, W.; Seletsky, B.M.; Palme, M.H.; Lydon, P.J.; Singer, L.A.; Chase, C.E.; Lemelin, C.A.; Shen, Y.; Davis, H.; Tremblay, L.; Towle, M.J.; Salvato, K.A.; Wels, B.F.; Aalfs, K.K.; Kishi, Y.; Littlefield, B.A.; Yu, M.J. Macrocyclic ketone analogues of halichondrin B. Bioorg. Med. Chem. Lett., 2004, 14(22), 5551-5554.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.069] [PMID: 15482922]
[185]
Towle, M.J.; Salvato, K.A.; Budrow, J.; Wels, B.F.; Kuznetsov, G.; Aalfs, K.K.; Welsh, S.; Zheng, W.; Seletsky, B.M.; Palme, M.H.; Habgood, G.J.; Singer, L.A.; Dipietro, L.V.; Wang, Y.; Chen, J.J.; Quincy, D.A.; Davis, A.; Yoshimatsu, K.; Kishi, Y.; Yu, M.J.; Littlefield, B.A. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res., 2001, 61(3), 1013-1021.
[PMID: 11221827]
[186]
Kuznetsov, G.; Towle, M.J.; Cheng, H.; Kawamura, T.; TenDyke, K.; Liu, D.; Kishi, Y.; Yu, M.J.; Littlefield, B.A. Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389. Cancer Res., 2004, 64(16), 5760-5766.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1169] [PMID: 15313917]
[187]
Dabydeen, D.A.; Burnett, J.C.; Bai, R.; Verdier-Pinard, P.; Hickford, S.J.H.; Pettit, G.R.; Blunt, J.W.; Munro, M.H.G.; Gussio, R.; Hamel, E. Comparison of the activities of the truncated halichondrin B analog NSC 707389 (E7389) with those of the parent compound and a proposed binding site on tubulin. Mol. Pharmacol., 2006, 70(6), 1866-1875.
[http://dx.doi.org/10.1124/mol.106.026641] [PMID: 16940412]
[188]
Hadaschik, B.A.; Adomat, H.; Fazli, L.; Fradet, Y.; Andersen, R.J.; Gleave, M.E.; So, A.I. Intravesical chemotherapy of high-grade bladder cancer with HTI-286, a synthetic analogue of the marine sponge product hemiasterlin. Clin. Cancer Res., 2008, 14(5), 1510-1518.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4475] [PMID: 18316576]
[189]
Amador, M.L.; Jimeno, J.; Paz-Ares, L.; Cortes-Funes, H.; Hidalgo, M. Progress in the development and acquisition of anticancer agents from marine sources. Ann. Oncol., 2003, 14(11), 1607-1615.
[http://dx.doi.org/10.1093/annonc/mdg443] [PMID: 14581267]
[190]
Kijjoa, A.; Sawangwong, P. Drugs and cosmetics from the sea (review paper). Mar. Drugs, 2004, 73-82.
[http://dx.doi.org/10.3390/md202073]
[191]
Vaishampayan, U.; Glode, M.; Du, W.; Kraft, A.; Hudes, G.; Wright, J.; Hussain, M. Phase II study of dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma. Clin. Cancer Res., 2000, 6(11), 4205-4208.
[PMID: 11106233]
[192]
Margolin, K.; Longmate, J.; Synold, T.W.; Gandara, D.R.; Weber, J.; Gonzalez, R.; Johansen, M.J.; Newman, R.; Baratta, T.; Doroshow, J.H. Dolastatin-10 in metastatic melanoma: A phase II and pharmokinetic trial of the california cancer consortium. Invest. New Drugs, 2001, 19(4), 335-340.
[http://dx.doi.org/10.1023/A:1010626230081] [PMID: 11561695]
[193]
Hoffman, M.A.; Blessing, J.A.; Lentz, S.S. Gynecologic Oncology Group Study. A phase II trial of dolastatin-10 in recurrent platinum-sensitive ovarian carcinoma: A Gynecologic Oncology Group study. Gynecol. Oncol., 2003, 89(1), 95-98.
[http://dx.doi.org/10.1016/S0090-8258(03)00007-6] [PMID: 12694660]
[194]
Mross, K.; Berdel, W.E.; Fiebig, H.H.; Velagapudi, R.; von Broen, I.M.; Unger, C. Clinical and pharmacologic phase I study of Cemadotin-HCl (LU103793), a novel antimitotic peptide, given as 24-hour infusion in patients with advanced cancer. A study of the Arbeitsgemeinschaft Internistische Onkologie (AIO) Phase I Group and Arbeitsgruppe Pharmakologie in der Onkologie und Haematologie (APOH) Group of the German Cancer Society. Ann. Oncol., 1998, 9(12), 1323-1330.
[http://dx.doi.org/10.1023/A:1008430515881] [PMID: 9932163]
[195]
Mita, A.C.; Hammond, L.A.; Bonate, P.L.; Weiss, G.; McCreery, H.; Syed, S.; Garrison, M.; Chu, Q.S.; DeBono, J.S.; Jones, C.B.; Weitman, S.; Rowinsky, E.K. Phase I and pharmacokinetic study of tasidotin hydrochloride (ILX651), a third-generation dolastatin-15 analogue, administered weekly for 3 weeks every 28 days in patients with advanced solid tumors. Clin. Cancer Res., 2006, 12(17), 5207-5215.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0179] [PMID: 16951240]
[196]
Garg, V.; Zhang, W.; Gidwani, P.; Kim, M.; Kolb, E.A. Preclinical analysis of tasidotin HCl in Ewing’s sarcoma, rhabdomyosarcoma, synovial sarcoma, and osteosarcoma. Clin. Cancer Res., 2007, 13(18 Pt 1), 5446-5454.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2661] [PMID: 17875774]
[197]
Schwartz, R.E.; Hirsch, C.F.; Sesin, D.F.; Flor, J.E.; Chartrain, M.; Fromthng, R.E.; Harris, G.H.; Salvatore, M.J.; Liesch, J.M.; Yudin, K. Pharmaceuticals from cultured algae. J. Ind. Microbiol., 1990, 5, 133-124.
[http://dx.doi.org/10.1007/BF01573860]
[198]
Hirsch, C.F.; Liesch, J.M.; Salvatore, M.J.; Schwartz, R.E.; Sesin, D.F. Antifungal fermentation product and method. U.S. Patent No., 1990, 4, 946-835.
[199]
Smith, C.D.; Zhang, X.; Mooberry, S.L.; Patterson, G.M.; Moore, R.E. Cryptophycin: A new antimicrotubule agent active against drug-resistant cells. Cancer Res., 1994, 54(14), 3779-3784.
[PMID: 7913408]
[200]
Smith, C.D.; Zhang, X. Mechanism of action cryptophycin. Interaction with the Vinca alkaloid domain of tubulin. J. Biol. Chem., 1996, 271(11), 6192-6198.
[http://dx.doi.org/10.1074/jbc.271.11.6192] [PMID: 8626409]
[201]
Edelman, M.J.; Gandara, D.R.; Hausner, P.; Israel, V.; Thornton, D.; DeSanto, J.; Doyle, L.A. Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer. Lung Cancer, 2003, 39(2), 197-199.
[http://dx.doi.org/10.1016/S0169-5002(02)00511-1] [PMID: 12581573]
[202]
Kupchan, S.M. Novel natural products with antitumor activity. Fed. Proc., 1974, 33(11), 2288-2295.
[PMID: 4609809]
[203]
Wasantapruek, S.; Kruatrachue, M.; Piankijagum, A.; Limpongs, K.; Zimmerly, V.A. Letter: Novel maytansinoids. Structural interrelations and requirements for antileukemic activity. J. Am. Chem. Soc., 1974, 96(11), 3706-3708.
[http://dx.doi.org/10.1021/ja00818a086] [PMID: 4833726]
[204]
Issell, B.F.; Crooke, S.T. Maytansine. Cancer Treat. Rev., 1978, 5(4), 199-207.
[http://dx.doi.org/10.1016/S0305-7372(78)80014-0] [PMID: 367597]
[205]
Wolpert-DeFillippes, MK; Bono, VH; Dion, RL; Johns, DG Initial studies on maytansine-induced metaphase arrest in 11210 mürine leukemia cells. Bioehem. Pharma¢ol, 1975, 24, 1735-1738.
[http://dx.doi.org/10.1016/0006-2952(75)90017-9]
[206]
Rea’nillard, S.; Rebhun, L.L. Antimitotic activity of the potent tumor inhibitor maytansine. Sciente, 1975, 189, l002-l005.
[207]
Mandelbaum-Shavit, F.; Wolpert-DeFilippes, M.K.; Johns, D.G. Binding of maytansine to rat brain tubulin. Biochem. Biophys. Res. Commun., 1976, 72(1), 47-54.
[http://dx.doi.org/10.1016/0006-291X(76)90958-X] [PMID: 985482]
[208]
Bai, R.; Taylor, G.F.; Cichacz, Z.A.; Herald, C.L.; Kepler, J.A.; Pettit, G.R.; Hamel, E. The spongistatins, potently cytotoxic inhibitors of tubulin polymerization, bind in a distinct region of the vinca domain. Biochemistry, 1995, 34(30), 9714-9721.
[http://dx.doi.org/10.1021/bi00030a009] [PMID: 7626642]
[209]
Hanauske, A.R.; Catimel, G.; Aamdal, S.; ten Bokkel Huinink, W.; Paridaens, R.; Pavlidis, N.; Kaye, S.B.; te Velde, A.; Wanders, J.; Verweij, J. The EORTC Early Clinical Trials Group. Phase II clinical trials with rhizoxin in breast cancer and melanoma. Br. J. Cancer, 1996, 73(3), 397-399.
[http://dx.doi.org/10.1038/bjc.1996.68] [PMID: 8562349]
[210]
Tierno, M.B.; Kitchens, C.A.; Petrik, B.; Graham, T.H.; Wipf, P.; Xu, F.L.; Saunders, W.S.; Raccor, B.S.; Balachandran, R.; Day, B.W.; Stout, J.R.; Walczak, C.E.; Ducruet, A.P.; Reese, C.E.; Lazo, J.S. Microtubule binding and disruption and induction of premature senescence by disorazole C(1). J. Pharmacol. Exp. Ther., 2009, 328(3), 715-722.
[http://dx.doi.org/10.1124/jpet.108.147330] [PMID: 19066338]
[211]
Martín, M.J.; Coello, L.; Fernández, R.; Reyes, F.; Rodríguez, A.; Murcia, C.; Garranzo, M.; Mateo, C.; Sánchez-Sancho, F.; Bueno, S.; de Eguilior, C.; Francesch, A.; Munt, S.; Cuevas, C. Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J. Am. Chem. Soc., 2013, 135(27), 10164-10171.
[http://dx.doi.org/10.1021/ja404578u] [PMID: 23750450]
[212]
Lambert, J.M.; Chari, R.V. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J. Med. Chem., 2014, 57(16), 6949-6964.
[http://dx.doi.org/10.1021/jm500766w] [PMID: 24967516]
[213]
Menchon, G.; Prota, A.E.; Lucena-Agell, D.; Bucher, P.; Jansen, R.; Irschik, H.; Müller, R.; Paterson, I.; Díaz, J.F.; Altmann, K.H.; Steinmetz, M.O. A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin. Nat. Commun., 2018, 9(1), 2106.
[http://dx.doi.org/10.1038/s41467-018-04535-8] [PMID: 29844393]
[214]
Pera, B.; Barasoain, I.; Pantazopoulou, A.; Canales, A.; Matesanz, R.; Rodriguez-Salarichs, J.; García-Fernandez, L.F.; Moneo, V.; Jiménez-Barbero, J.; Galmarini, C.M.; Cuevas, C.; Peñalva, M.A.; Díaz, J.F.; Andreu, J.M. New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. ACS Chem. Biol., 2013, 8(9), 2084-2094.
[http://dx.doi.org/10.1021/cb400461j] [PMID: 23859655]
[215]
Kobayashi, S.; Tsuchiya, K.; Harada, T.; Nishide, M.; Kurokawa, T.; Nakagawa, T.; Shimada, N.; Kobayashi, K. Pironetin, a novel plant growth regulator produced by Streptomyces sp. NK10958. I. Taxonomy, production, isolation and preliminary characterization. J. Antibiot. (Tokyo), 1994, 47(6), 697-702.
[http://dx.doi.org/10.7164/antibiotics.47.697] [PMID: 8040075]
[216]
Kobayashi, S.; Tsuchiya, K.; Kurokawa, T.; Nakagawa, T.; Shimada, N.; Iitaka, Y. Pironetin, a novel plant growth regulator produced by Streptomyces sp. NK10958. II. Structural elucidation. J. Antibiot. (Tokyo), 1994, 47(6), 703-707.
[http://dx.doi.org/10.7164/antibiotics.47.703] [PMID: 7794417]
[217]
Kondoh, M.; Usui, T.; Kobayashi, S.; Tsuchiya, K.; Nishikawa, K.; Nishikiori, T.; Mayumi, T.; Osada, H. Cell cycle arrest and antitumor activity of pironetin and its derivatives. Cancer Lett., 1998, 126(1), 29-32.
[http://dx.doi.org/10.1016/S0304-3835(97)00528-4] [PMID: 9563645]
[218]
Kondoh, M.; Usui, T.; Nishikiori, T.; Mayumi, T.; Osada, H. Apoptosis induction via microtubule disassembly by an antitumour compound, pironetin. Biochem. J., 1999, 340(Pt 2), 411-416.
[http://dx.doi.org/10.1042/bj3400411] [PMID: 10333483]
[219]
Watanabe, H.; Watanabe, H.; Usui, T.; Kondoh, M.; Osada, H.; Kitahara, T. Synthesis of pironetin and related analogs: studies on structure-activity relationships as tubulin assembly inhibitors. J. Antibiot. (Tokyo), 2000, 53(5), 540-545.
[http://dx.doi.org/10.7164/antibiotics.53.540] [PMID: 10908119]
[220]
Usui, T.; Watanabe, H.; Nakayama, H.; Tada, Y.; Kanoh, N.; Kondoh, M.; Asao, T.; Takio, K.; Watanabe, H.; Nishikawa, K.; Kitahara, T.; Osada, H. The anticancer natural product pironetin selectively targets Lys352 of alpha-tubulin. Chem. Biol., 2004, 11(6), 799-806.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.028] [PMID: 15217613]
[221]
Bañuelos-Hernández, A.E.; Mendoza-Espinoza, J.A.; Pereda-Miranda, R.; Cerda-García-Rojas, C.M. Studies of (-)-pironetin binding to α-tubulin: Conformation, docking, and molecular dynamics. J. Org. Chem., 2014, 79(9), 3752-3764.
[http://dx.doi.org/10.1021/jo500420j] [PMID: 24761989]
[222]
Yang, J.; Wang, Y.; Wang, T.; Jiang, J.; Botting, C.H.; Liu, H.; Chen, Q.; Yang, J.; Naismith, J.H.; Zhu, X.; Chen, L. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat. Commun., 2016, 7, 12103.
[http://dx.doi.org/10.1038/ncomms12103] [PMID: 27357539]
[223]
Prota, A.E.; Setter, J.; Waight, A.B.; Bargsten, K.; Murga, J.; Diaz, J.F.; Steinmetz, M.O. Pironetin binds covalently to alph-aCys316 and perturbs a major loop and helix of alpha-tubulinto inhibit microtubule formation. J. Mol. Biol., 2016, 428(15), 2981-2988.
[http://dx.doi.org/10.1016/j.jmb.2016.06.023] [PMID: 27395016]
[224]
Capraro, H.G.; Brossi, A. The Alkaloids; Brossi, A., Ed.; Academic: New York, 1984, Vol. 23, pp. 1-70.
[225]
Communication by Bellet P,. Gaignault JC. on findings presented at a meeting of the National Academy of Pharmacy in Paris, December 51985.
[226]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202.
[http://dx.doi.org/10.1038/nature02393] [PMID: 15014504]
[227]
Brossi, A; Yeh, HJC; Chrzanowska, M; Wolff, J; Hamel, E; Lin, CM; Quin, F; Suffness, M; Silverton, J Colchicine and its analogues: Recent findings. 1988, 8(1), 77-94.
[228]
Ben-Chetrit, E.; Levy, M. Colchicine: 1998 update. Semin. Arthritis Rheum., 1998, 28(1), 48-59.
[http://dx.doi.org/10.1016/S0049-0172(98)80028-0] [PMID: 9726336]
[229]
Kanthou, C.; Tozer, G.M. Tumour targeting by microtubule-depolymerizing vascular disrupting agents. Expert Opin. Ther. Targets, 2007, 11(11), 1443-1457.
[http://dx.doi.org/10.1517/14728222.11.11.1443] [PMID: 18028009]
[230]
Pettit, G.R.; Singh, S.B.; Niven, M.L.; Hamel, E.; Schmidt, J.M. Isolation, structure, and synthesis of combretastatins A-1 and B-1, potent new inhibitors of microtubule assembly, derived from Combretum caffrum. J. Nat. Prod., 1987, 50(1), 119-131.
[http://dx.doi.org/10.1021/np50049a016] [PMID: 3598594]
[231]
Cooney, M.M.; van Heeckeren, W.; Bhakta, S.; Ortiz, J.; Remick, S.C. Drug insight: Vascular disrupting agents and angiogenesis--novel approaches for drug delivery. Nat. Clin. Pract. Oncol., 2006, 3(12), 682-692.
[http://dx.doi.org/10.1038/ncponc0663] [PMID: 17139319]
[232]
Tozer, G.M.; Prise, V.E.; Wilson, J.; Locke, R.J.; Vojnovic, B.; Stratford, M.R.; Dennis, M.F.; Chaplin, D.J. Combretastatin A-4 phosphate as a tumor vascular-targeting agent: Early effects in tumors and normal tissues. Cancer Res., 1999, 59(7), 1626-1634.
[PMID: 10197639]
[233]
Horsman, M.R.; Ehrnrooth, E.; Ladekarl, M.; Overgaard, J. The effect of combretastatin A-4 disodium phosphate in a C3H mouse mammary carcinoma and a variety of murine spontaneous tumors. Int. J. Radiat. Oncol. Biol. Phys., 1998, 42(4), 895-898.
[http://dx.doi.org/10.1016/S0360-3016(98)00299-5] [PMID: 9845117]
[234]
Murata, R.; Siemann, D.W.; Overgaard, J.; Horsman, M.R. Interaction between combretastatin A-4 disodium phosphate and radiation in murine tumors. Radiother. Oncol., 2001, 60(2), 155-161.
[http://dx.doi.org/10.1016/S0167-8140(01)00384-X] [PMID: 11439210]
[235]
Rojiani, A.M.; Li, L.; Rise, L.; Siemann, D.W. Activity of the vascular targeting agent combretastatin A-4 disodium phosphate in a xenograft model of AIDS-associated Kaposi’s sarcoma. Acta Oncol., 2002, 41(1), 98-105.
[http://dx.doi.org/10.1080/028418602317314136] [PMID: 11990526]
[236]
Siemann, D.W.; Mercer, E.; Lepler, S.; Rojiani, A.M. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy. Int. J. Cancer, 2002, 99(1), 1-6.
[http://dx.doi.org/10.1002/ijc.10316] [PMID: 11948484]
[237]
Young, S.L.; Chaplin, D.J. Combretastatin A4 phosphate: Background and current clinical status. Expert Opin. Investig. Drugs, 2004, 13(9), 1171-1182.
[http://dx.doi.org/10.1517/13543784.13.9.1171] [PMID: 15330748]
[238]
West, C.M.; Price, P. Combretastatin A4 phosphate. Anticancer Drugs, 2004, 15(3), 179-187.
[http://dx.doi.org/10.1097/00001813-200403000-00001] [PMID: 15014350]
[239]
Cooney, M.M.; Radivoyevitch, T.; Dowlati, A.; Overmoyer, B.; Levitan, N.; Robertson, K.; Levine, S.L.; DeCaro, K.; Buchter, C.; Taylor, A.; Stambler, B.S.; Remick, S.C. Cardiovascular safety profile of combretastatin a4 phosphate in a single-dose phase I study in patients with advanced cancer. Clin. Cancer Res., 2004, 10(1 Pt 1), 96-100.
[http://dx.doi.org/10.1158/1078-0432.CCR-0364-3] [PMID: 14734457]
[240]
Segreti, J.A.; Polakowski, J.S.; Koch, K.A.; Marsh, K.C.; Bauch, J.L.; Rosenberg, S.H.; Sham, H.L.; Cox, B.F.; Reinhart, G.A. Tumor selective antivascular effects of the novel antimitotic compound ABT-751: An in vivo rat regional hemodynamic study. Cancer Chemother. Pharmacol., 2004, 54(3), 273-281.
[http://dx.doi.org/10.1007/s00280-004-0807-0] [PMID: 15173957]
[241]
Jorgensen, T.J.; Tian, H.; Joseph, I.B.; Menon, K.; Frost, D. Chemosensitization and radiosensitization of human lung and colon cancers by antimitotic agent, ABT-751, in athymic murine xenograft models of subcutaneous tumor growth. Cancer Chemother. Pharmacol., 2007, 59(6), 725-732.
[http://dx.doi.org/10.1007/s00280-006-0326-2] [PMID: 16967299]
[242]
Morton, C.L.; Favours, E.G.; Mercer, K.S.; Boltz, C.R.; Crumpton, J.C.; Tucker, C.; Billups, C.A.; Houghton, P.J. Evaluation of ABT-751 against childhood cancer models in vivo. Invest. New Drugs, 2007, 25(4), 285-295.
[http://dx.doi.org/10.1007/s10637-007-9042-y] [PMID: 17384918]
[243]
Yee, K.W.L.; Hagey, A.; Verstovsek, S.; Cortes, J.; Garcia-Manero, G.; O’Brien, S.M.; Faderl, S.; Thomas, D.; Wierda, W.; Kornblau, S.; Ferrajoli, A.; Albitar, M.; McKeegan, E.; Grimm, D.R.; Mueller, T.; Holley-Shanks, R.R.; Sahelijo, L.; Gordon, G.B.; Kantarjian, H.M.; Giles, F.J. Phase 1 study of ABT-751, a novel microtubule inhibitor, in patients with refractory hematologic malignancies. Clin. Cancer Res., 2005, 11(18), 6615-6624.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0650] [PMID: 16166440]
[244]
Fox, E.; Maris, J.M.; Widemann, B.C.; Goodspeed, W.; Goodwin, A.; Kromplewski, M.; Fouts, M.E.; Medina, D.; Cohn, S.L.; Krivoshik, A.; Hagey, A.E.; Adamson, P.C.; Balis, F.M. A phase I study of ABT-751, an orally bioavailable tubulin inhibitor, administered daily for 21 days every 28 days in pediatric patients with solid tumors. Clin. Cancer Res., 2008, 14(4), 1111-1115.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4097] [PMID: 18281544]
[245]
Mita, M. Phase I dose escalation trial with DCE-MRI imaging of the novel vascular disrupting agent NPI-2358; AACR, 2008.
[246]
LaVallee, T.M.; Burke, P.A.; Swartz, G.M.; Hamel, E.; Agoston, G.E.; Shah, J.; Suwandi, L.; Hanson, A.D.; Fogler, W.E.; Sidor, C.F.; Treston, A.M. Significant antitumor activity in vivo following treatment with the microtubule agent ENMD-1198. Mol. Cancer Ther., 2008, 7(6), 1472-1482.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0107] [PMID: 18566218]
[247]
Mabjeesh, N.J.; Escuin, D.; LaVallee, T.M.; Pribluda, V.S.; Swartz, G.M.; Johnson, M.S.; Willard, M.T.; Zhong, H.; Simons, J.W.; Giannakakou, P. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell, 2003, 3(4), 363-375.
[http://dx.doi.org/10.1016/S1535-6108(03)00077-1] [PMID: 12726862]
[248]
Fotsis, T.; Zhang, Y.; Pepper, M.S.; Adlercreutz, H.; Montesano, R.; Nawroth, P.P.; Schweigerer, L. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature, 1994, 368(6468), 237-239.
[http://dx.doi.org/10.1038/368237a0] [PMID: 7511798]
[249]
Dahut, W.L.; Lakhani, N.J.; Gulley, J.L.; Arlen, P.M.; Kohn, E.C.; Kotz, H.; McNally, D.; Parr, A.; Nguyen, D.; Yang, S.X.; Steinberg, S.M.; Venitz, J.; Sparreboom, A.; Figg, W.D. Phase I clinical trial of oral 2-methoxyestradiol, an antiangiogenic and apoptotic agent, in patients with solid tumors. Cancer Biol. Ther., 2006, 5(1), 22-27.
[http://dx.doi.org/10.4161/cbt.5.1.2349] [PMID: 16357512]
[250]
James, J.; Murry, D.J.; Treston, A.M.; Storniolo, A.M.; Sledge, G.W.; Sidor, C.; Miller, K.D. Phase I safety, pharmacokinetic and pharmacodynamic studies of 2-methoxyestradiol alone or in combination with docetaxel in patients with locally recurrent or metastatic breast cancer. Invest. New Drugs, 2007, 25(1), 41-48.
[http://dx.doi.org/10.1007/s10637-006-9008-5] [PMID: 16969706]
[252]
Pasquier, E.; Sinnappan, S.; Munoz, M.A.; Kavallaris, M. ENMD-1198, a new analogue of 2-methoxyestradiol, displays both antiangiogenic and vascular-disrupting properties. Mol. Cancer Ther., 2010, 9(5), 1408-1418.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0894] [PMID: 20442304]
[253]
[254]
Mooney, C.J.; Nagaiah, G.; Fu, P.; Wasman, J.K.; Cooney, M.M.; Savvides, P.S.; Bokar, J.A.; Dowlati, A.; Wang, D.; Agarwala, S.S.; Flick, S.M.; Hartman, P.H.; Ortiz, J.D.; Lavertu, P.N.; Remick, S.C. A phase II trial of fosbretabulin in advanced anaplastic thyroid carcinoma and correlation of baseline serum-soluble intracellular adhesion molecule-1 with outcome. Thyroid, 2009, 19(3), 233-240.
[http://dx.doi.org/10.1089/thy.2008.0321] [PMID: 19265494]
[255]
Hua, J.; Sheng, Y.; Pinney, K.G.; Garner, C.M.; Kane, R.R.; Prezioso, J.A.; Pettit, G.R.; Chaplin, D.J.; Edvardsen, K. Oxi4503, a novel vascular targeting agent: Effects on blood flow and antitumor activity in comparison to combretastatin A-4 phosphate. Anticancer Res., 2003, 23(2B), 1433-1440.
[PMID: 12820406]
[256]
Shnyder, S.D.; Cooper, P.A.; Millington, N.J.; Pettit, G.R.; Bibby, M.C.; Auristatin, P.Y.E. Auristatin PYE, a novel synthetic derivative of dolastatin 10, is highly effective in human colon tumour models. Int. J. Oncol., 2007, 31(2), 353-360.
[http://dx.doi.org/10.3892/ijo.31.2.353] [PMID: 17611692]
[257]
Anthony, S.P.; Read, W.; Rosen, P.J.; Tibes, R.; Park, D.; Everton, D.; Tseng, B.; Whisnant, J.; Von Hoff, D.D. Initial results of a first-in-man Phase I study of EPC2407, a novel small molecule microtubule inhibitor anticancer agent with tumor vascular endothelial disrupting activity. J Clin Oncol Abstr., 2008, 26, 2531.
[http://dx.doi.org/10.1200/jco.2008.26.15_suppl.2531]
[258]
LoRusso, P.M.; Gadgeel, S.M.; Wozniak, A.; Barge, A.J.; Jones, H.K.; DelProposto, Z.S.; DeLuca, P.A.; Evelhoch, J.L.; Boerner, S.A.; Wheeler, C. Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumors. Invest. New Drugs, 2008, 26(2), 159-167.
[http://dx.doi.org/10.1007/s10637-008-9112-9] [PMID: 18219445]
[259]
Delmonte, A.; Sessa, C. AVE8062: A new combretastatin derivative vascular disrupting agent. Expert Opin. Investig. Drugs, 2009, 18(10), 1541-1548.
[http://dx.doi.org/10.1517/13543780903213697] [PMID: 19758109]
[260]
(a)Lu, CZ; Yong, JP Quinazoline derivatives and application thereof. PCT/WO2013143057A1, 2013 10 March;
(b)Lu, CZ; Yong, JP Thieno[2,3-d]pyrimidine derivatives, preparation method and use thereof. PCT/WO2014043866A1, 2014 27 March;
(c)Yong, J.P.; Lu, C.Z. Ferrocene drivatives, preparation method and use thereof. U. S. patent: 9738673B1, 2017 22 August;
(d)Yong, J.P.; Lu, C.Z. Nicotinic acid derivatives, their prepareation and the use thereof. U. S. patent: 10519119B2, 2019 31 December;
(e)Yong, J P; Lu, CZ Metronidazole derivatives, preparation method and the use thereof. ZL201410067346.3, 2019 8 March;
(f)Yong, J.; Lu, C.; Wu, X. Synthesis of isoxazole moiety containing thieno[2,3-d]-pyrimidine derivatives and preliminarily in vitro anticancer activity (Part II). Anticancer. Agents Med. Chem., 2015, 15(9), 1148-1155.
[http://dx.doi.org/10.2174/1871520615666150305103122] [PMID: 25742095]
(g)Yong, J.; Lu, C.; Wu, X. . Synthesis and biological evaluation of quinazoline derivatives as potential anticancer agents (II). Anticancer. Agents Med. Chem., 2015, 15(10), 1326-1332.
[http://dx.doi.org/10.2174/1871520615666150526115904] [PMID: 26008189]
(h)Yong, J.P.; Lu, C.Z.; Wu, X. Potential anticancer agents. I. Synthesis of isoxazole moiety containing quinazoline derivatives and preliminarily in vitro anticancer activity. Anticancer. Agents Med. Chem., 2015, 15(1), 131-136.
[http://dx.doi.org/10.2174/1871520614666140812105445] [PMID: 25142319]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy