Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Discovery of Traditional Chinese Medicine Derived Compounds as Wild Type and Mutant Plasmodium falciparum Dihydrofolate Reductase Inhibitors: Induced Fit Docking and ADME Studies

Author(s): Opeyemi Iwaloye*, Olusola Olalekan Elekofehinti, Babatomiwa Kikiowo, Toyin Mary Fadipe, Moses Orimoloye Akinjiyan, Esther Opeyemi Ariyo, Olabisi Olapade Aiyeku and Nicholas Adeyemi Adewumi

Volume 18, Issue 4, 2021

Published on: 29 July, 2020

Page: [554 - 569] Pages: 16

DOI: 10.2174/1570163817999200729122753

Price: $65

Abstract

Background: In a bid to come up with effective compounds as inhibitors for antimalarial treatment, we built a library of 2,000 traditional Chinese medicine(TCM)-derived compounds retrieved from TCM Database@Taiwan.

Methods: The active sites of both the wild type and mutant Plasmodium falciparum dihydrofolatereductase (pfDHFR) were explored using computational tools. pfDHFR, one of the prime drug targets in the prevention of malaria infection induced by the female anopheles mosquito has continued to offer resistance to drugs (antifolates) due to mutation in some of the key amino acid residues crucial for its inhibition.

Results: We utilized virtual throughput screening and glide XP docking to screen the compounds, and 8 compounds were found to have promising docking scores with both the wild type and mutant pfDHFR. They were further subjected to Induce Fit Docking (IFD) to affirm their inhibitory potency. The ADME properties and biological activity spectrum of the compounds were also considered. The inhibition profile of the compounds revealed that a number of compounds formed intermolecular interactions with ASP54, ILE14, LEU164, SER108/ASN108, ARG122 and ASP58. Most of the compounds can be considered as drug candidates due to their antiprotozoal activities and accordance with the Lipinski’s Rule of Five (ROF).

Conclusion: The outcome of the present study should further be investigated to attest the efficacy of these compounds as better drug candidates than the antifolates.

Keywords: Traditional Chinese Medicine (TCM), antifolates, lipinski’s Rule of Five (ROF), antiprotozoal activities, ADME properties, biological activity spectrum.

Graphical Abstract
[1]
World Health Organization. World malaria report 2015. Geneva: World Health Organization 2015.
[2]
Snow RW, Sartorius B, Kyalo D, et al. The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature 2017; 550(7677): 515-8.
[http://dx.doi.org/10.1038/nature24059] [PMID: 29019978]
[3]
White NJ. Malaria parasite clearance. Malar J 2017; 16(1): 88.
[http://dx.doi.org/10.1186/s12936-017-1731] [http://dx.doi.org/10.1186/s12936-017-1731-1] [PMID: 28231817]
[4]
Bartoloni A, Zammarchi L. Clinical aspects of uncomplicated and severe malaria. Mediterr J Hematol Infect Dis 2012; 4(1): e2012026.
[http://dx.doi.org/10.4084/MJHID2012.026] [http://dx.doi.org/10.4084/mjhid.2012.026] [PMID: 22708041]
[5]
Schantz-Dunn J, Nour NM. Malaria and pregnancy: A global health perspective. Rev Obstet Gynecol 2009; 2(3): 186-92.
[PMID: 19826576]
[6]
Howitt P, Darzi A, Yang GZ, et al. Technologies for global health. Lancet 2012; 380(9840): 507-35.
[http://dx.doi.org/10.1016/S0140-6736(12)61127-1] [PMID: 22857974] [http://dx.doi.org/10.1016/S0140-6736(12)61127-1] [PMID: 22857974]
[7]
Kokwaro G. Ongoing challenges in the management of malaria. Malar J 2009; 8(Suppl. 1): S2.
[http://dx.doi.org/10.1186/1475-2875-8-S1-S2] [PMID: 19818169]
[8]
World Health Organization. Guidelines for the treatment of malaria. (2nd ed). Geneva: World Health Organization 2010; p. 9. ISBN 97892-4-154792-5
[9]
Gollin D, Zimmermann C. Malaria: Disease impacts and long-run income differences(PDF) (Report) institute for the study of labor 2007.
[10]
Yuthavong Y, Tarnchompoo B, Vilaivan T, et al. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc Natl Acad Sci USA 2012; 109(42): 16823-8.
[http://dx.doi.org/10.1073/pnas.1204556109] [PMID: 23035243]
[11]
Schnell JR, Dyson HJ, Wright PE. Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu Rev Biophys Biomol Struct 2004; 33(1): 119-40.
[http://dx.doi.org/10.1146/annurev.biophys.33.110502.133613] [PMID: 15139807]
[12]
Rastelli G, Sirawaraporn W, Sompornpisut P, Vilaivan T, Kamchonwongpaisan S, Quarrell R. Interaction of pyrimethamine, cycloguanil, WR9921 0 and their analogs with P. falciparum dihydrofolatereductase: Structural basis of antifolate resistance. Bioorg Med Chem 2000; 8: 117-28.
[http://dx.doi.org/10.1016/S0968-0896(00)00022-5]
[13]
Fung FY, Linn YC. Developing traditional Chinese medicine in the era of evidence-based medicine: current evidences and challenges. Evid Based Complement Alternat Med 2015.2015425037
[http://dx.doi.org/10.1155/2015/425037] [PMID: 25949261]
[14]
Huang MY, Zhang LL, Ding J, Lu JJ. Anticancer drug discovery from Chinese medicinal herbs. Chin Med 2018; 13: 35.
[http://dx.doi.org/10.1186/s13020-018-0192-y] [PMID: 29997684]
[15]
Chang TT, Sun MF, Chen HY, et al. Screening from the world’s largest TCM database against H1N1 virus. J Biomol Struct Dyn 2011; 28(5): 773-86.
[http://dx.doi.org/10.1080/07391102.2011.10508605] [PMID: 21294588]
[16]
Jayaraj PB, Ajay MK, Nufail M, Gopakumar G, Jaleel UC. GPURFSCREEN: a GPU based virtual screening tool using random forest classifier. J Cheminform 2016; 8: 12.
[http://dx.doi.org/10.1186/s13321-016-0124-8] [PMID: 26933453]
[17]
Singh IV, Mishra S. Molecular docking analysis of pyrimethamine derivatives with plasmodium falciparum dihydrofolate reductase. Bioinformation 2018; 14(5): 232-5.
[http://dx.doi.org/10.6026/97320630014232] [PMID: 30108420]
[18]
Almerico AM, Tutone M, Guarcello A, Lauria A. In vitro and in silico studies of polycondensed diazine systems as anti-parasitic agents. Bioorg Med Chem Lett 2012; 22(2): 1000-4.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.004] [PMID: 22197138]
[19]
Allegra M, Carletti F, Gambino G, et al. Indicaxanthin from opuntia ficus-indica crosses the blood-brain barrier and modulates neuronal bioelectric activity in rat hippocampus at dietary-consistent amounts. J Agric Food Chem 2015; 63(33): 7353-60.
[http://dx.doi.org/10.1021/acs.jafc.5b02612] [PMID: 26227670]
[20]
Röhrig UF, Awad L, Grosdidier A, et al. Rational design of indoleamine 2,3-dioxygenase inhibitors. J Med Chem 2010; 53(3): 1172-89.
[http://dx.doi.org/10.1021/jm9014718] [PMID: 20055453]
[21]
Ludwig Institute for Cancer Research. New computational tool for cancertreatment Science Daily
[22]
Guedes IA, de Magalhães CS, Dardenne LE. Receptor-ligand molecular docking. Biophys Rev 2014; 6(1): 75-87.
[http://dx.doi.org/10.1007/s12551-013-0130-2] [PMID: 28509958]
[23]
Almerico AM, Tutone M, Pantano L, Lauria A. A3 adenosine receptor: homology modeling and3D-QSAR studies. J Mol Graph Model 42: 60-72.
[24]
Saravanan K, Sivanandam M, Hunday G, Mathiyalagan L, Kumaradhas P. Investigation of intermolecular interactions andstability of verubecestat in the active site of BACE1: Development of first model from QM/MMbased charge density and MD analysis J Biomol Struct Dynamics 37(9): 2339-54.https://doi.org/1 0.1 080/073911
[25]
Tutone M, Virzì A, Almerico AM. Reverse screening on indicaxanthin from Opuntia ficus-indica as natural chemoactive and chemopreventive agent. J Theor Biol 2018; 455(1): 147-60.
[http://dx.doi.org/10.1016/j.jtbi.2018.07.017] [PMID: 30030079]
[26]
Suite S. 2012Protein Preparation Wizard; Epik version 23, Schrödinger, LLC, New York, NY, 2012; Impact version 58, Schrödinger, LLC, New York, NY, 2012; Prime version 31. New York, NY. Schrödinger LLC: 2012.
[27]
Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. J Chem Theory Comput 2011; 7(2): 525-37.
[http://dx.doi.org/10.1021/ct100578z] [PMID: 26596171]
[28]
Greenwood JR, Calkins D, Sullivan AP, Shelley JC. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des 2010; 24(6-7): 591-604.
[http://dx.doi.org/10.1007/s10822-010-9349-1] [PMID: 20354892]
[29]
Sherman W, Day T, Jacobson MP, Friesner RA, Farid R. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006; 49(2): 534-53.
[http://dx.doi.org/10.1021/jm050540c] [PMID: 16420040]
[30]
Release S. 2018-4: QikProp. New York, NY: Schrödinger, LLC 2018.
[31]
Parasuraman S. Prediction of activity spectra for substances. J Pharmacol Pharmacother 2011; 2(1): 52-3.
[http://dx.doi.org/10.4103/0976-500X.77119] [PMID: 21701651]
[32]
Poroikov VV, Filimonov DA, Ihlenfeldt WD, et al. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 2003; 43(1): 228-36.
[http://dx.doi.org/10.1021/ci020048r] [PMID: 12546557]
[33]
Chen MJ, Shimada T, Moulton AD, Harrison M, Nienhuis AW. Intronlesshuman dihydrofolatereductase genes are derived from processed RNAmolecules. Proc Natl Acad Sci USA 7435-9.
[34]
Li R, Sirawaraporn R, Chitnumsub P, et al. Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs. J Mol Biol 2000; 295(2): 307-23.
[http://dx.doi.org/10.1006/jmbi.1999.3328] [PMID: 10623528]
[35]
Liu CT, Hanoian P, French JB, Pringle TH, Hammes-Schiffer S, Benkovic SJ. Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans. Proc Natl Acad Sci USA 2013; 110(25): 10159-64.
[http://dx.doi.org/10.1073/pnas.1307130110] [PMID: 23733948]
[36]
Severini C, Menegon M. Resistance to antimalarial drugs: An endless world war against Plasmodium that we risk losing. J Glob Antimicrob Resist 2015; 3(2): 58-63.
[http://dx.doi.org/10.1016/j.jgar.2015.02.002] [PMID: 27873670]
[37]
Schmid-Hempel P. Immune defence, parasite evasion strategies and their relevance for ‘macroscopic phenomena’ such as virulence. Philos Trans R Soc Lond B Biol Sci 2009; 364(1513): 85-98.
[http://dx.doi.org/10.1098/rstb.2008.0157] [PMID: 18930879]
[38]
Leirião P, Rodrigues CD, Albuquerque SS, Mota MM. Survival of protozoan intracellular parasites in host cells. EMBO Rep 2004; 5(12): 1142-7.
[http://dx.doi.org/10.1038/sj.embor.7400299] [PMID: 15577928]
[39]
Lemcke T, Christensen IT, Jorgensen FS. Towards understanding of drug resistance inmalaria: Three dimensional structure of P. falciparum DHFR by homology modelling Bioorg Med Chem 1997; 7(1): 03-11.
[40]
Rastelli G, Sirawaraporn W, Sompornpisut P, et al. Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: structural basis of antifolate resistance. Bioorg Med Chem 2000; 8(5): 1117-28.
[http://dx.doi.org/10.1016/S0968-0896(00)00022-5] [PMID: 10882022]
[41]
Delfino RT, Santos-Filho OA, Figueroa-Villar JD. Molecular modeling of wild-type and antifolate resistant mutant Plasmodium falciparum DHFR. Biophys Chem 2002; 98(3): 287-300.
[http://dx.doi.org/10.1016/S0301-4622(02)00077-7] [PMID: 12128181]
[42]
Santos-Filho OA, Hopfinger AJ. A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors. J Comput Aided Mol Des 2001; 15(1): 1-12.
[http://dx.doi.org/10.1023/A:1011152818340] [PMID: 11217916]
[43]
Santos FOA, de Alencastrob RD, Figueroa VJD. Homology modeling of wild type and pyrimethamine/cycloguanil-cross-resistant mutant type P. falciparum DHFR: A model for antimalarial chemotherapy resistance. Biophys Chem 2001; 91: 305-17.
[44]
Santos-Filho OA, Mishra RK, Hopfinger AJ. Free energy force field (FEFF) 3D-QSAR analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors. J Comput Aided Mol Des 2001; 15(9): 787-810.
[http://dx.doi.org/10.1023/A:1013199108020] [PMID: 11776291]
[45]
Adane L, Bharatam P. 3D-QSAR analysis of cycloguanil derivatives as inhibitors of dihydrofolatereductase enzyme from cycloguanil-resistant strain (T9/94) of P. falciparum: CoMFA and CoMSIA studies. J Mol Graph Model 2009; 28: 357-67.
[http://dx.doi.org/10.1016/j.jmgm.2009.09.001] [PMID: 19796975]
[46]
Adane L, Bharatam PV. Computer-aided molecular design of 1H-imidazole-2,4-diamine derivatives as potential inhibitors of Plasmodium falciparum DHFR enzyme. J Mol Model 2011; 17(4): 657-67.
[http://dx.doi.org/10.1007/s00894-010-0756-y] [PMID: 20524021]
[47]
Kumar M, Dagar A, Gupta VK, Sharma A. In silico docking studies of bioactive natural plant products as putative DHFR antagonists. Med Chem Res 2014; 23.
[48]
Sirichaiwat C, Intaraudom C, Kamchonwongpaisan S, Vanichtanankul J, Thebtaranonth Y, Yuthavong Y. Target guided synthesis of 5-benzyl-2,4-diamonopyrimidines: their antimalarial activities and binding affinities to wild type and mutant dihydrofolate reductases from Plasmodium falciparum. J Med Chem 2004; 47(2): 345-54.
[http://dx.doi.org/10.1021/jm0303352] [PMID: 14711307]
[49]
Warhurst DC. Resistance to antifolates in Plasmodium falciparum, the causative agent of tropical malaria. Sci Prog 2002; 85(Pt 1): 89-111.
[http://dx.doi.org/10.3184/003685002783238906] [PMID: 11969121]
[50]
Sahu S, Ghosh SK, Gahtori P, Pratap Singh U, Bhattacharyya DR, Bhat HR. In silico ADMET study, docking, synthesis and antimalarial evaluation of thiazole-1,3,5-triazine derivatives as Pf-DHFR inhibitor. Pharmacol Rep 2019; 71(5): 762-7.
[http://dx.doi.org/10.1016/j.pharep.2019.04.006] [PMID: 31351317]
[51]
Zhou W, Viswanathan K, Hill D, Anderson AC, Wright DL. Acetylenic linkers in lead compounds: a study of the stability of the propargyl-linked antifolates. Drug Metab Dispos 2012; 40(10): 2002-8.
[http://dx.doi.org/10.1124/dmd.112.046870] [PMID: 22815313]
[52]
Lamb KM. G-Dayanandan N, Wright DL, Anderson AC. Elucidating features that drive the design of selective antifolates using crystal structures of human dihydrofolate reductase. Biochemistry 2013; 52(41): 7318-26.
[http://dx.doi.org/10.1021/bi400852h] [PMID: 24053334]
[53]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[54]
Filimonov DA, Lagunin AA, Gloriozova TA, et al. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 2014; 50(3): 444-57.
[http://dx.doi.org/10.1007/s10593-014-1496-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy