Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Review Article

Advances in the Chromatographic Separation and Determination of Bioactive Compounds for Assessing the Nutrient Profile of Nuts

Author(s): Natasa P. Kalogiouri*, Natalia Manousi, Erwin Rosenberg, George A. Zachariadis and Victoria F. Samanidou

Volume 17, Issue 4, 2021

Published on: 29 July, 2020

Page: [495 - 511] Pages: 17

DOI: 10.2174/1573411016999200729111951

Price: $65

Abstract

Background: Nuts have been incorporated into guidelines for healthy eating since they contain considerable amounts of antioxidants and their effects are related to health benefits since they contribute to the prevention of nutritional deficiencies. The micronutrient characterization is based mainly on the determination of phenolics, which is the most abundant class of bioactive compounds in nuts. Terpenes constitute another class of bioactive compounds that are present in nuts and show high volatility. The analysis of phenolic compounds and terpenes is a very demanding task that requires optimization of the chromatographic conditions to improve the separation of the components. Moreover, nuts are rich in unsaturated fatty acids and they are therefore considered as cardioprotective. Gas chromatography is the predominant instrumental analytical technique for the determination of derivatized fatty acids and terpenes in food matrices, while high performance liquid chromatography is currently the most popular technique for the determination of phenolic compounds.

Objective: This review summarizes all the recent advances in the optimization of the chromatographic conditions for the determination of phenolic compounds, fatty acids and terpenes in nuts.

Conclusion: The state-of-the art in the technology available is critically discussed, exploring new analytical approaches to reduce the time of analysis and improve the performance of the chromatographic systems in terms of precision, reproducibility, limits of detection and quantification and overall quality of the results.

Keywords: Antioxidants, fatty acids, GC-MS, HPLC, nuts, phenolics.

Graphical Abstract
[1]
Bolling, B.W. Almond polyphenols: Methods of analysis, contribution to food quality, and health promotion. Compr. Rev. Food Sci. Food Saf., 2017, 16(3), 346-368.
[http://dx.doi.org/10.1111/1541-4337.12260]
[2]
Bolling, B.W.; Chen, C.Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev., 2011, 24(2), 244-275.
[http://dx.doi.org/10.1017/S095442241100014X] [PMID: 22153059]
[3]
Yuan, B.; Lu, M.; Eskridge, K.M.; Isom, L.D.; Hanna, M.A. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem., 2018, 244, 7-15.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.116] [PMID: 29120806]
[4]
World Health Organization. Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases WHO technical report series 2002. No. 916.
[5]
Kalogiouri, N.P.; Alygizakis, N.A.; Aalizadeh, R.; Thomaidis, N.S. Olive oil authenticity studies by target and nontarget LC-QTOF-MS combined with advanced chemometric techniques. Anal. Bioanal. Chem., 2016, 408(28), 7955-7970.
[http://dx.doi.org/10.1007/s00216-016-9891-3] [PMID: 27585916]
[6]
Kalogiouri, N.P.; Samanidou, V. advances in the optimization of chromatographic conditions for the separation of antioxidants in functional foods. Rev. Sep. Sci., 2019, 1(1), 17-33.
[http://dx.doi.org/10.17145/rss.19.003]
[7]
Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Application of an advanced and wide scope non-target screening workflow with LC-ESI-QTOF-MS and chemometrics for the classification of the Greek olive oil varieties. Food Chem., 2018, 256, 53-61.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.101] [PMID: 29606472]
[8]
Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Investigating the organic and conventional production type of olive oil with target and suspect screening by LC-QTOF-MS, a novel semi-quantification method using chemical similarity and advanced chemometrics. Anal. Bioanal. Chem., 2017, 409(23), 5413-5426.
[http://dx.doi.org/10.1007/s00216-017-0395-6] [PMID: 28540463]
[9]
de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Rasera, G.B.; Canniatti-Brazaca, S.G.; do Prado-Silva, L.; Alvarenga, V.O.; Sant’Ana, A.S.; Shahidi, F. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects. Food Chem., 2017, 237, 538-544.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.046] [PMID: 28764032]
[10]
de Camargo, A.C.; Vidal, C.M.M.; Canniatti-Brazaca, S.G.; Shahidi, F. Fortification of cookies with peanut skins: Effects on the composition, polyphenols, antioxidant properties, and sensory quality. J. Agric. Food Chem., 2014, 62(46), 11228-11235.
[http://dx.doi.org/10.1021/jf503625p] [PMID: 25350915]
[11]
Mannino, G.; Gentile, C.; Maffei, M.E. Chemical partitioning and DNA fingerprinting of some pistachio (Pistacia vera L.) varieties of different geographical origin. Phytochemistry, 2019, 160, 40-47.
[http://dx.doi.org/10.1016/j.phytochem.2019.01.010] [PMID: 30690343]
[12]
Motilva, M.J.; Serra, A.; Macià, A. Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: an overview. J. Chromatogr. A, 2013, 1292, 66-82.
[http://dx.doi.org/10.1016/j.chroma.2013.01.012] [PMID: 23369748]
[13]
Cifuentes, A. Food analysis and foodomics. J. Chromatogr. A, 2009, 1216(43), 7109.
[http://dx.doi.org/10.1016/j.chroma.2009.09.018] [PMID: 19765718]
[14]
Dennis, M.J. Recent developments in food authentication. Analyst (Lond.), 1998, 123(9), 151-156.
[http://dx.doi.org/10.1039/a802892c]
[15]
Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; González-Casado, A. Chromatographic fingerprinting: An innovative approach for food ‘identitation’ and food authentication - A tutorial. Anal. Chim. Acta, 2016, 909, 9-23.
[http://dx.doi.org/10.1016/j.aca.2015.12.042] [PMID: 26851080]
[16]
Ballistreri, G.; Arena, E.; Fallico, B. Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L. Molecules, 2009, 14(11), 4358-4369.
[http://dx.doi.org/10.3390/molecules14114358] [PMID: 19924070]
[17]
Mendes, M.K.A.; Oliveira, C.B.D.S.; Veras, M.D.A.; Araújo, B.Q.; Dantas, C.; Chaves, M.H.; Lopes Júnior, C.A.; Vieira, E.C. Application of multivariate optimization for the selective extraction of phenolic compounds in cashew nuts (Anacardium occidentale L.). Talanta, 2019, 205120100
[http://dx.doi.org/10.1016/j.talanta.2019.06.100] [PMID: 31450412]
[18]
Zhou, Z.; Shao, H.; Han, X.; Wang, K.; Gong, C.; Yang, X. The extraction efficiency enhancement of polyphenols from ulmus pumila L. barks by trienzyme-assisted extraction. Ind. Crops Prod., 2017, 97, 401-408.
[http://dx.doi.org/10.1016/j.indcrop.2016.12.060]
[19]
Bodoira, R.; Maestri, D. Phenolic compounds from nuts: Extraction, chemical profiles, and bioactivity. J. Agric. Food Chem., 2020, 68(4), 927-942.
[http://dx.doi.org/10.1021/acs.jafc.9b07160] [PMID: 31910006]
[20]
Khanna, S.K.; Viswanathan, P.N.; Krishnan, P.S.; Sanwal, G.G. Extraction of total phenolics in the presence of reducing agents. Phytochemistry, 1968, 7(9), 1513-1517.
[http://dx.doi.org/10.1016/S0031-9422(00)88598-2]
[21]
Fuentealba, C.; Hernández, I.; Saa, S.; Toledo, L.; Burdiles, P.; Chirinos, R.; Campos, D.; Brown, P.; Pedreschi, R. Colour and in vitro quality attributes of walnuts from different growing conditions correlate with key precursors of primary and secondary metabolism. Food Chem., 2017, 232, 664-672.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.029] [PMID: 28490125]
[22]
Gómez-Caravaca, A.M.; Verardo, V.; Caboni, M.F. Chromatographic techniques for the determination of alkyl-phenols, tocopherols and other minor polar compounds in raw and roasted cold pressed cashew nut oils. J. Chromatogr. A, 2010, 1217(47), 7411-7417.
[http://dx.doi.org/10.1016/j.chroma.2010.09.054] [PMID: 20961547]
[23]
Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. Identification and quantification of phenolic compounds in kernels, oil and bagasse pellets of common walnut (Juglans Regia L.). Food Res. Int., 2015, 67, 255-263.
[http://dx.doi.org/10.1016/j.foodres.2014.11.016]
[24]
Kalogiouri, N.P.; Samanidou, V.F. Recent trends in the development of green microextraction techniques for the determination of hazardous organic compounds in wine. Curr. Anal. Chem., 2019, 15(7), 788-800.
[http://dx.doi.org/10.2174/1573411015666190328185337]
[25]
Mudiam, M.K.R.; Jain, R.; Dua, V.K.; Singh, A.K.; Sharma, V.P.; Murthy, R.C. Application of ethyl chloroformate derivatization for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol-A in water and milk samples. Anal. Bioanal. Chem., 2011, 401(5), 1695-1701.
[http://dx.doi.org/10.1007/s00216-011-5226-6] [PMID: 21744235]
[26]
Ghisoni, S.; Lucini, L.; Rocchetti, G.; Chiodelli, G.; Farinelli, D.; Tombesi, S.; Trevisan, M. Untargeted metabolomics with multivariate analysis to discriminate hazelnut (Corylus avellana L.) cultivars and their geographical origin. J. Sci. Food Agric., 2020, 100(2), 500-508.
[http://dx.doi.org/10.1002/jsfa.9998] [PMID: 31435948]
[27]
Pycia, K.; Kapusta, I.; Jaworska, G. Changes in antioxidant activity, profile, and content of polyphenols and tocopherols in common hazel seed (Corylus avellana L.) depending on variety and harvest date. Molecules, 2019, 25(1), 1-15.
[http://dx.doi.org/10.3390/molecules25010043] [PMID: 31877675]
[28]
Noguera-Artiaga, L.; Pérez-López, D.; Burgos-Hernández, A.; Wojdyło, A.; Carbonell-Barrachina, Á.A. Phenolic and triterpenoid composition and inhibition of α-amylase of pistachio kernels (Pistacia vera L.) as affected by rootstock and irrigation treatment. Food Chem., 2018, 261, 240-245.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.033] [PMID: 29739589]
[29]
Noguera-Artiaga, L.; Salvador, M.D.; Fregapane, G.; Collado-González, J.; Wojdyło, A.; López-Lluch, D.; Carbonell-Barrachina, Á.A. Functional and sensory properties of pistachio nuts as affected by cultivar. J. Sci. Food Agric., 2019, 99(15), 6696-6705.
[http://dx.doi.org/10.1002/jsfa.9951] [PMID: 31350759]
[30]
Li, L.; Song, L.; Sun, X.; Yan, S.; Huang, W.; Liu, P. Characterisation of phenolics in fruit septum of Juglans regia Linn. by ultra performance liquid chromatography coupled with Orbitrap mass spectrometer. Food Chem., 2019, 286, 669-677.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.054] [PMID: 30827662]
[31]
Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap-Orbitrap mass spectrometry. Food Chem., 2014, 152, 340-348.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.158] [PMID: 24444946]
[32]
Jakopic, J.; Petkovsek, M.M.; Likozar, A.; Solar, A.; Stampar, F.; Veberic, R. HPLC-MS Identification of Phenols in Hazelnut (Corylus Avellana L.). Kernels. Food Chem., 2011, 124(3), 1100-1106.
[http://dx.doi.org/10.1016/j.foodchem.2010.06.011]
[33]
Persic, M.; Mikulic-Petkovsek, M.; Slatnar, A.; Solar, A.; Veberic, R. Changes in phenolic profiles of red-colored pellicle walnut and hazelnut kernel during ripening. Food Chem., 2018, 252, 349-355.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.124] [PMID: 29478553]
[34]
Sonmezdag, A.S.; Kelebek, H.; Selli, S. Effect of hulling methods and roasting treatment on phenolic compounds and physicochemical properties of cultivars ‘Ohadi’ and ‘Uzun’ pistachios (Pistacia vera L.). Food Chem., 2019, 272, 418-426.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.065] [PMID: 30309564]
[35]
Barreca, D.; Laganà, G.; Leuzzi, U.; Smeriglio, A.; Trombetta, D.; Bellocco, E. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls. Food Chem., 2016, 196, 493-502.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.077] [PMID: 26593519]
[36]
Akbari, V.; Jamei, R.; Heidari, R.; Esfahlan, A.J. Antiradical activity of different parts of Walnut (Juglans regia L.) fruit as a function of genotype. Food Chem., 2012, 135(4), 2404-2410.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.030] [PMID: 22980820]
[37]
Fabani, M.P.; Luna, L.; Baroni, M.V.; Monferran, M.V.; Ighani, M.; Tapia, A.; Wunderlin, D.A.; Feresin, G.E. Pistachio (pistacia vera var kerman) from argentinean cultivars. A natural product with potential to improve human health. J. Funct. Foods, 2013, 5(3), 1347-1356.
[http://dx.doi.org/10.1016/j.jff.2013.05.002]
[38]
Lin, J.T.; Liu, S.C.; Hu, C.C.; Shyu, Y.S.; Hsu, C.Y.; Yang, D.J. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem., 2016, 190, 520-528.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.004] [PMID: 26213005]
[39]
Robbins, K.S.; Gong, Y.; Wells, M.L.; Greenspan, P.; Pegg, R.B. Investigation of the antioxidant capacity and phenolic constituents of U.S. Pecans. J. Funct. Foods, 2015, 15, 11-22.
[http://dx.doi.org/10.1016/j.jff.2015.03.006]
[40]
Smeriglio, A.; Mandalari, G.; Bisignano, C.; Filocamo, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Polyphenolic content and biological properties of avola almond (Prunus Dulcis Mill. D.A. Webb). Skin and Its Industrial Byproducts. Ind. Crops Prod., 2016, 83, 283-293.
[http://dx.doi.org/10.1016/j.indcrop.2015.11.089]
[41]
Baz-Lomba, J.A.; Reid, M.J.; Thomas, K.V. Target and suspect screening of psychoactive substances in sewage-based samples by UHPLC-QTOF. Anal. Chim. Acta, 2016, 914, 81-90.
[http://dx.doi.org/10.1016/j.aca.2016.01.056] [PMID: 26965330]
[42]
Esslinger, S.; Riedl, J.; Fauhl-Hassek, C. Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res. Int., 2014, 60, 189-204.
[http://dx.doi.org/10.1016/j.foodres.2013.10.015]
[43]
Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem., 2003, 51(10), 2866-2887.
[http://dx.doi.org/10.1021/jf026182t] [PMID: 12720366]
[44]
Christov, R.; Bankova, V. Gas chromatographic analysis of underivatized phenolic constituents from propolis using an electron-capture detector. J. Chromatogr. A, 1992, 623(1), 182-185.
[http://dx.doi.org/10.1016/0021-9673(92)85316-L]
[45]
Heimler, D.; Pieroni, A. Capillary gas chromatography of plant tissues and soil phenolic acids. Chromatographia, 1994, 38, 475-478.
[http://dx.doi.org/10.1007/BF02269839]
[46]
Ng, L.K.; Lafontaine, P.; Harnois, J. Gas chromatographic-mass spectrometric analysis of acids and phenols in distilled alcohol beverages. Application of anion-exchange disk extraction combined with in-vial elution and silylation. J. Chromatogr. A, 2000, 873(1), 29-38.
[http://dx.doi.org/10.1016/S0021-9673(99)01100-0] [PMID: 10757282]
[47]
Chu, T.Y.; Chang, C.H.; Liao, Y.C.; Chen, Y.C. Microwave-accelerated derivatization processes for the determination of phenolic acids by gas chromatography-mass spectrometry. Talanta, 2001, 54(6), 1163-1171.
[http://dx.doi.org/10.1016/S0039-9140(01)00392-7] [PMID: 18968337]
[48]
Zuo, Y.; Wang, C.; Zhan, J. Separation, characterization, and quantitation of benzoic and phenolic antioxidants in American cranberry fruit by GC-MS. J. Agric. Food Chem., 2002, 50(13), 3789-3794.
[http://dx.doi.org/10.1021/jf020055f] [PMID: 12059161]
[49]
Waksmundzka-Hajnos, M. Chromatographic separations of aromatic carboxylic acids. J. Chromatogr. B Biomed. Sci. Appl., 1998, 717(1-2), 93-118.
[http://dx.doi.org/10.1016/S0378-4347(98)00257-6] [PMID: 9832241]
[50]
Martinsen, A.; Huhtikangas, A. Gas chromatographic analysis of tropic, benzoic and cinnamic acids, biosynthetic tropane alkaloid precursors. J. Chromatogr. A, 1991, 539(1), 232-236.
[http://dx.doi.org/10.1016/S0021-9673(01)95380-4]
[51]
Hušek, P. Fast derivatization and GC analysis of phenolic acids. Chromatographia, 1992, 34, 621-626.
[http://dx.doi.org/10.1007/BF02269874]
[52]
Fiamegos, Y.C.; Nanos, C.G.; Vervoort, J.; Stalikas, C.D. Analytical procedure for the in-vial derivatization--extraction of phenolic acids and flavonoids in methanolic and aqueous plant extracts followed by gas chromatography with mass-selective detection. J. Chromatogr. A, 2004, 1041(1-2), 11-18.
[http://dx.doi.org/10.1016/j.chroma.2004.04.041] [PMID: 15281249]
[53]
Smolarz, H.D. Application of GC-MS method for analysis of phenolic acids and their esters in chloroformic extracts from some taxons of polygonum L. Genus. Chem. Analityczna, 2001, 46(3), 439-444.
[54]
Athanasios, M.; Georgios, L.; Michael, K. A rapid microwave-assisted derivatization process for the determination of phenolic acids in brewer’s spent grains. Food Chem., 2007, 102(3), 606-611.
[http://dx.doi.org/10.1016/j.foodchem.2006.05.040]
[55]
Citová, I.; Sladkovský, R.; Solich, P. Analysis of phenolic acids as chloroformate derivatives using solid phase microextraction-gas chromatography. Anal. Chim. Acta, 2006, 573-574, 231-241.
[http://dx.doi.org/10.1016/j.aca.2006.04.077] [PMID: 17723529]
[56]
Saraji, M.; Mousavinia, F. Single-drop microextraction followed by in-syringe derivatization and gas chromatography-mass spectrometric detection for determination of organic acids in fruits and fruit juices. J. Sep. Sci., 2006, 29(9), 1223-1229.
[http://dx.doi.org/10.1002/jssc.200500345] [PMID: 16833079]
[57]
Senter, S.D.; Horvat, R.J.; Forbus, W.R. Comparative GLC‐MS analysis of phenolic acids of selected tree nuts. J. Food Sci., 1983, 48(3), 798-799.
[http://dx.doi.org/10.1111/j.1365-2621.1983.tb14902.x]
[58]
Senter, S.D.; Horvat, R.J.; Forbus, W.R. Relation between phenolic acid content and stability of pecans in accelerated storage. J. Food Sci., 1980, 45(5), 1380-1382.
[http://dx.doi.org/10.1111/j.1365-2621.1980.tb06559.x]
[59]
Osman, S.M.; Abdel-Megied, A.M.; Zain Eldain, M.H.; Haleema, S.; Gopinath, C.; Sumalekshmy, S.A.; Aboul-Enein, H.Y. A highly sensitive GC-MS method for simultaneous determination of anacardic acids in cashew (Anacardium occidentale) nut shell oil in the presence of other phenolic lipid derivatives. Biomed. Chromatogr., 2019, 33(11)e4659
[http://dx.doi.org/10.1002/bmc.4659] [PMID: 31325174]
[60]
Canini, A.; Alesiani, D.; D’Arcangelo, G.; Tagliatesta, P. Gas chromatography-mass spectrometry analysis of phenolic compounds from Carica Papaya L. Leaf. J. Food Compos. Anal., 2007, 20(7), 584-590.
[http://dx.doi.org/10.1016/j.jfca.2007.03.009]
[61]
Tokuşoglu, O.; Ünal, M.K.; Yemiş, F. Determination of the phytoalexin resveratrol (3,5,4′-trihydroxystilbene) in peanuts and pistachios by high-performance liquid chromatographic diode array (HPLC-DAD) and gas chromatography-mass spectrometry (GC-MS). J. Agric. Food Chem., 2005, 53(12), 5003-5009.
[http://dx.doi.org/10.1021/jf050496+] [PMID: 15941348]
[62]
Medina-Bolivar, F.; Condori, J.; Rimando, A.M.; Hubstenberger, J.; Shelton, K.; O’Keefe, S.F.; Bennett, S.; Dolan, M.C. Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry, 2007, 68(14), 1992-2003.
[http://dx.doi.org/10.1016/j.phytochem.2007.04.039] [PMID: 17574636]
[63]
Maguire, L.S.; O’Sullivan, S.M.; Galvin, K.; O’Connor, T.P.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nutr., 2004, 55(3), 171-178.
[http://dx.doi.org/10.1080/09637480410001725175] [PMID: 15223592]
[64]
Miraliakbari, H.; Shahidi, F. Lipid Class compositions, tocopherols and sterols of tree nut oils extracted with different solvents. J. Food Lipids, 2008, 15(1), 81-96.
[http://dx.doi.org/10.1111/j.1745-4522.2007.00104.x]
[65]
Maskan, M.; Karataş, Ş. Fatty acid oxidation of pistachio nuts stored under various atmospheric conditions and different temperatures. J. Sci. Food Agric., 1998, 77(3), 334-340.
[http://dx.doi.org/10.1002/(SICI)1097-0010(199807)77:3<334:AID-JSFA42>3.0.CO;2-A]
[66]
Glew, R.H.; Glew, R.S.; Chuang, L.T.; Huang, Y.S.; Millson, M.; Constans, D.; Vanderjagt, D.J. Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods Hum. Nutr., 2006, 61(2), 51-56.
[http://dx.doi.org/10.1007/s11130-006-0010-z] [PMID: 16770692]
[67]
Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of brazil, pecan, pine, pistachio and cashew nuts. Int. J. Food Sci. Nutr., 2006, 57(3-4), 219-228.
[http://dx.doi.org/10.1080/09637480600768077] [PMID: 17127473]
[68]
Destaillats, F.; Cruz-Hernandez, C.; Giuffrida, F.; Dionisi, F. Identification of the botanical origin of pine nuts found in food products by gas-liquid chromatography analysis of fatty acid profile. J. Agric. Food Chem., 2010, 58(4), 2082-2087.
[http://dx.doi.org/10.1021/jf9041722] [PMID: 20102203]
[69]
Aldai, N.; Murray, B.E.; Nájera, A.I.; Troy, D.J.; Osoro, K. Derivatization of fatty acids and its application for conjugated linoleic acid studies in ruminant meat lipids. J. Sci. Food Agric., 2005, 85(7), 1073-1083.
[http://dx.doi.org/10.1002/jsfa.2110]
[70]
Shantha, N.C.; Napolitano, G.E. Gas chromatography of fatty acids. J. Chromatogr. A, 1992, 624(1-2), 37-51.
[http://dx.doi.org/10.1016/0021-9673(92)85673-H] [PMID: 1494015]
[71]
Seppänen-Laakso, T.; Laakso, I.; Hiltunen, R. Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Anal. Chim. Acta, 2002, 465(1-2), 39-62.
[http://dx.doi.org/10.1016/S0003-2670(02)00397-5]
[72]
Fourie, P.C.; Basson, D.S. Application of a rapid transesterification method for identification of individual fatty acids by gas chromatography on three different nut oils. J. Am. Oil Chem. Soc., 1990, 67, 18-20.
[http://dx.doi.org/10.1007/BF02631382]
[73]
Liu, R.L.; Song, S.H.; Wu, M.; He, T.; Zhang, Z.Q. Rapid analysis of fatty acid profiles in raw nuts and seeds by microwave-ultrasonic synergistic in situ extraction-derivatisation and gas chromatography-mass spectrometry. Food Chem., 2013, 141(4), 4269-4277.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.011] [PMID: 23993615]
[74]
Cordero, C.; Kiefl, J.; Schieberle, P.; Reichenbach, S.E.; Bicchi, C. Comprehensive two-dimensional gas chromatography and food sensory properties: Potential and challenges. Anal. Bioanal. Chem., 2015, 407(1), 169-191.
[http://dx.doi.org/10.1007/s00216-014-8248-z] [PMID: 25354891]
[75]
Zeng, A.X.; Chin, S.T.; Marriott, P.J. Integrated multidimensional and comprehensive 2D GC analysis of fatty acid methyl esters. J. Sep. Sci., 2013, 36(5), 878-885.
[http://dx.doi.org/10.1002/jssc.201200923] [PMID: 23371466]
[76]
Vlaeminck, B.; Harynuk, J.; Fievez, V.; Marriott, P. Comprehensive two-dimensional gas chromatography for the separation of fatty acids in milk. Eur. J. Lipid Sci. Technol., 2007, 109, 757-766.
[http://dx.doi.org/10.1002/ejlt.200700004]
[77]
Purcaro, G.; Tranchida, P.Q.; Mondello, L. Comprehensive Gas Chromatography Methodologies for the Analysis of Lipids. In: Handbook of Advanced Chromatography/Mass Spectrometry Techniques; , 2017.
[http://dx.doi.org/10.1016/B978-0-12-811732-3.00011-X]
[78]
Erdogan, V.; Aygun, A. Fatty acid composition and physical properties of turkish tree hazel nuts. Chem. Nat. Compd., 2005, 41(4), 378-381.
[http://dx.doi.org/10.1007/s10600-005-0156-1]
[79]
Satil, F.; Azcan, N.; Baser, K.H.C. Fatty acid composition of pistachio nuts in Turkey. Chem. Nat. Compd., 2003, 39, 322-324.
[http://dx.doi.org/10.1023/B:CONC.0000003408.63300.b5]
[80]
Lasekan, O.; Abbas, K. Analysis of volatile flavour compounds and acrylamide in roasted Malaysian tropical almond (Terminalia catappa) nuts using supercritical fluid extraction. Food Chem. Toxicol., 2010, 48(8-9), 2212-2216.
[http://dx.doi.org/10.1016/j.fct.2010.05.050] [PMID: 20510332]
[81]
Manousi, N.; Zachariadis, G.A. Determination of volatile compounds in nut-based milk alternative beverages by HS-SPME prior to GC-MS analysis. Molecules, 2019, 24(17), 3091.
[http://dx.doi.org/10.3390/molecules24173091] [PMID: 31454898]
[82]
Vezzaro, A.; Krause, S.T.; Nonis, A.; Ramina, A.; Degenhardt, J.; Ruperti, B. Isolation and characterization of terpene synthases potentially involved in flavor development of ripening olive (Olea europaea) fruits. J. Plant Physiol., 2012, 169(9), 908-914.
[http://dx.doi.org/10.1016/j.jplph.2012.01.021] [PMID: 22475500]
[83]
Kupska, M.; Wasilewski, T.; Jędrkiewicz, R.; Gromadzka, J.; Namieśnik, J. Determination of terpene profiles in potential superfruits. Int. J. Food Prop., 2016, 29, 2726-2738.
[http://dx.doi.org/10.1080/10942912.2016.1144066]
[84]
Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem., 1990, 62(19), 2145-2148.
[http://dx.doi.org/10.1021/ac00218a019]
[85]
Zhang, Z.; Yang, M.J.; Pawliszyn, J. Solid-Phase microextraction: A solvent-free alternative for sample preparation. Anal. Chem., 1994, 66(17), 844-853.
[http://dx.doi.org/10.1021/ac00089a001]
[86]
Xiao, L.; Lee, J.; Zhang, G.; Ebeler, S.E.; Wickramasinghe, N.; Seiber, J.; Mitchell, A.E. HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chem., 2014, 151, 31-39.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.052] [PMID: 24423498]
[87]
Bakkalbaşi, E.; Yilmaz, Ö.M.; Javidipour, I.; Artik, N. Effects of packaging materials, storage conditions and variety on oxidative stability of shelled walnuts. Lebensm. Wiss. Technol., 2012, 46(1), 203-209.
[http://dx.doi.org/10.1016/j.lwt.2011.10.006]
[88]
Abegaz, E.G.; Kerr, W.L.; Koehler, P.E. The role of moisture in flavor changes of model peanut confections during storage. Lebensm. Wiss. Technol., 2004, 37(2), 215-225.
[http://dx.doi.org/10.1016/j.lwt.2003.07.007]
[89]
Salcedo, C.L.; Nazareno, M.A. Effect of phenolic compounds on the oxidative stability of ground walnuts and almonds. RSC Advances, 2015, 5(57), 45878-45887.
[http://dx.doi.org/10.1039/C5RA00245A]
[90]
Krist, S.; Unterweger, H.; Bandion, F.; Buchbauer, G. Volatile compound analysis of SPME headspace and extract samples from roasted italian chestnuts (Castanea Sativa Mill.) using GC-MS. Eur. Food Res. Technol., 2004, 219, 470-473.
[http://dx.doi.org/10.1007/s00217-004-0983-5]
[91]
Kendirci, P.; Onoǧur, T.A. Investigation of volatile compounds and characterization of flavor profiles of fresh pistachio nuts (Pistacia Vera L.). Int. J. Food Prop., 2011, 14(2), 319-330.
[http://dx.doi.org/10.1080/10942910903177830]
[92]
Lee, J.; Vázquez-Araújo, L.; Adhikari, K.; Warmund, M.; Elmore, J. Volatile compounds in light, medium, and dark black walnut and their influence on the sensory aromatic profile. J. Food Sci., 2011, 76(2), C199-C204.
[http://dx.doi.org/10.1111/j.1750-3841.2010.02014.x] [PMID: 21535735]
[93]
San Román, I.; Bartolomé, L.; Gee, W.S.; Alonso, R.M.; Beck, J.J. Comparison of Ex Situ volatile emissions from intact and mechanically damaged walnuts. Food Res. Int., 2015, 72, 198-207.
[http://dx.doi.org/10.1016/j.foodres.2015.04.009]
[94]
Casado, D.; Gemeno, C.; Avilla, J.; Riba, M. Diurnal variation of walnut tree volatiles and electrophysiological responses in Cydia pomonella (Lepidoptera: Tortricidae). Pest Manag. Sci., 2008, 64(7), 736-747.
[http://dx.doi.org/10.1002/ps.1551] [PMID: 18300208]
[95]
Kremser, A.; Jochmann, M.A.; Schmidt, T.C. Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography. Anal. Bioanal. Chem., 2016, 408(24), 6567-6579.
[http://dx.doi.org/10.1007/s00216-016-9843-y] [PMID: 27526093]
[96]
Schmidt, K.; Podmore, I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J. Biomark., 2015, 2015981458
[http://dx.doi.org/10.1155/2015/981458] [PMID: 26317039]
[97]
Rodríguez-Bencomo, J.J.; Kelebek, H.; Sonmezdag, A.S.; Rodríguez-Alcalá, L.M.; Fontecha, J.; Selli, S. Characterization of the aroma-active, phenolic, and lipid profiles of the pistachio (Pistacia Vera L.) nut as affected by the single and double roasting process. J. Agric. Food Chem., 2015, 63(35), 7830-7839.
[http://dx.doi.org/10.1021/acs.jafc.5b02576] [PMID: 26301818]
[98]
Morini, G.; Maga, J.A. Volatile compounds in roasted and boiled chinese chestnuts (Castanea Molissima). Lebensm. Wiss. Technol., 1995, 28(6), 638-640.
[http://dx.doi.org/10.1016/0023-6438(95)90014-4]
[99]
Kremser, A.; Jochmann, M.A.; Schmidt, T.C. PAL SPME Arrow--evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water. Anal. Bioanal. Chem., 2016, 408(3), 943-952.
[http://dx.doi.org/10.1007/s00216-015-9187-z] [PMID: 26677018]
[100]
Mesarchaki, E.; Yassaa, N.; Hein, D.; Lutterbeck, H.E.; Zindler, C.; Williams, J. A Novel method for the measurement of VOCs in seawater using needle trap devices and GC-MS. Mar. Chem., 2014, 159, 1-8.
[http://dx.doi.org/10.1016/j.marchem.2013.12.001]
[101]
Sonmezdag, A.S.; Kelebek, H.; Selli, S. Pistachio oil (Pistacia vera L. cv. Uzun): Characterization of key odorants in a representative aromatic extract by GC-MS-olfactometry and phenolic profile by LC-ESI-MS/MS. Food Chem., 2018, 240, 24-31.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.086] [PMID: 28946268]
[102]
Buttery, R.G.; Light, D.M.; Nam, Y.; Merrill, G.B.; Roitman, J.N. Volatile components of green walnut husks. J. Agric. Food Chem., 2000, 48(7), 2858-2861.
[http://dx.doi.org/10.1021/jf000288b] [PMID: 10898636]
[103]
Bail, S.; Stuebiger, G.; Unterweger, H.; Buchbauer, G.; Krist, S. Characterization of volatile compounds and triacylglycerol profiles of nut oils using SPME-GC-MS and MALDI-TOF-MS. Eur. J. Lipid Sci. Technol., 2009, 111(2), 170-182.
[http://dx.doi.org/10.1002/ejlt.200800007]
[104]
Li, Q.; Shi, X.; Zhao, Q.; Cui, Y.; Ouyang, J.; Xu, F. Effect of cooking methods on nutritional quality and volatile compounds of Chinese chestnut (Castanea mollissima Blume). Food Chem., 2016, 201, 80-86.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.068] [PMID: 26868551]
[105]
Farag, M.A. Headspace analysis of volatile compounds in leaves from the juglandaceae (Walnut) family. J. Essent. Oil Res., 2008, 20(4), 323-327.
[http://dx.doi.org/10.1080/10412905.2008.9700023]
[106]
Costa, R.; De Fina, M.R.; Valentino, M.R.; Dugo, P.; Mondello, L. Reliable identification of terpenoids and related compounds by using linear retention indices interactively with mass spectrometry search. Nat. Prod. Commun., 2007, 4(2), 413-418.
[http://dx.doi.org/10.1177/1934578X0700200412]
[107]
Kováts, E. Gas‐chromatographische charakterisierung organischer verbindungen. Teil 1: Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde Und Ketone. Helv. Chim. Acta, 1958, 41(7), 1915-1932.
[http://dx.doi.org/10.1002/hlca.19580410703]
[108]
van Den Dool, H. Dec. Kratz, P. A. Generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A, 1963, (11), 463-471.
[http://dx.doi.org/10.1016/S0021-9673(01)80947-X]
[109]
van Ruth, S.M. Methods for gas chromatography-olfactometry: A review. Biomol. Eng., 2001, 17(4-5), 121-128.
[http://dx.doi.org/10.1016/S1389-0344(01)00070-3] [PMID: 11377272]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy